Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 4 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Edwin - Content
-
... ... @@ -30,6 +30,7 @@ 30 30 31 31 == 1.2 Features == 32 32 33 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -40,6 +40,7 @@ 40 40 * Downlink to change configure 41 41 * 8500mAh Battery for long term use 42 42 44 + 43 43 == 1.3 Specification == 44 44 45 45 ... ... @@ -77,6 +77,7 @@ 77 77 * Sleep Mode: 5uA @ 3.3v 78 78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 79 79 82 + 80 80 == 1.4 Sleep mode and working mode == 81 81 82 82 ... ... @@ -104,6 +104,7 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 110 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 513102034-2.png]]129 +[[image:image-20230610163213-1.png||height="404" width="699"]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -135,7 +135,7 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== Hole Option == 142 +== 1.9 Hole Option == 139 139 140 140 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.165 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 214 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -215,44 +215,44 @@ 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 217 217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 218 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT222 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 219 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: 228 228 229 - *0x01: EU868233 +0x01: EU868 230 230 231 - *0x02: US915235 +0x02: US915 232 232 233 - *0x03: IN865237 +0x03: IN865 234 234 235 - *0x04: AU915239 +0x04: AU915 236 236 237 - *0x05: KZ865241 +0x05: KZ865 238 238 239 - *0x06: RU864243 +0x06: RU864 240 240 241 - *0x07: AS923245 +0x07: AS923 242 242 243 - *0x08: AS923-1247 +0x08: AS923-1 244 244 245 - *0x09: AS923-2249 +0x09: AS923-2 246 246 247 - *0x0a: AS923-3251 +0x0a: AS923-3 248 248 249 - *0x0b: CN470253 +0x0b: CN470 250 250 251 - *0x0c: EU433255 +0x0c: EU433 252 252 253 - *0x0d: KR920257 +0x0d: KR920 254 254 255 - *0x0e: MA869259 +0x0e: MA869 256 256 257 257 258 258 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -276,19 +276,22 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 283 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 287 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 292 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 291 291 294 +2. All modes share the same Payload Explanation from HERE. 295 + 296 +3. By default, the device will send an uplink message every 20 minutes. 297 + 298 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -295,22 +295,17 @@ 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style="background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:191px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:78px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:216px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:308px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:154px;background-color:#D9E2F3;color:#0070C0" %)**2** 299 -|**Value**|Bat|(% style="width:191px" %)((( 300 -Temperature(DS18B20) 301 -(PC13) 305 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 306 +|Value|Bat|(% style="width:191px" %)((( 307 +Temperature(DS18B20)(PC13) 302 302 )))|(% style="width:78px" %)((( 303 -ADC 304 -(PA4) 309 +ADC(PA4) 305 305 )))|(% style="width:216px" %)((( 306 -Digital in(PB15) & 307 -Digital Interrupt(PA8) 311 +Digital in(PB15)&Digital Interrupt(PA8) 308 308 )))|(% style="width:308px" %)((( 309 -Temperature 310 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 313 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 311 311 )))|(% style="width:154px" %)((( 312 -Humidity 313 -(SHT20 or SHT31) 315 +Humidity(SHT20 or SHT31) 314 314 ))) 315 315 316 316 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] ... ... @@ -318,108 +318,90 @@ 318 318 319 319 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 320 320 323 + 321 321 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 322 322 323 -(% style="width:1011px" %) 324 -|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2** 325 -|**Value**|BAT|(% style="width:196px" %)((( 326 -Temperature(DS18B20) 327 - 328 -(PC13) 326 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 327 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 328 +|Value|BAT|(% style="width:196px" %)((( 329 +Temperature(DS18B20)(PC13) 329 329 )))|(% style="width:87px" %)((( 330 -ADC 331 - 332 -(PA4) 331 +ADC(PA4) 333 333 )))|(% style="width:189px" %)((( 334 -Digital in(PB15) & 335 - 336 -Digital Interrupt(PA8) 333 +Digital in(PB15) & Digital Interrupt(PA8) 337 337 )))|(% style="width:208px" %)((( 338 -Distance measure by: 339 -1) LIDAR-Lite V3HP 340 -Or 341 -2) Ultrasonic Sensor 335 +Distance measure by: 1) LIDAR-Lite V3HP 336 +Or 2) Ultrasonic Sensor 342 342 )))|(% style="width:117px" %)Reserved 343 343 344 344 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 345 345 346 -**Connection of LIDAR-Lite V3HP:** 347 347 342 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 343 + 348 348 [[image:image-20230512173758-5.png||height="563" width="712"]] 349 349 350 -**Connection to Ultrasonic Sensor:** 351 351 352 - NeedtomoveR1 and R2 resistorstogetlow power,otherwise there willbe240uA standby current.347 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 353 353 349 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 350 + 354 354 [[image:image-20230512173903-6.png||height="596" width="715"]] 355 355 353 + 356 356 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 357 357 358 -(% style="width:1113px" %) 359 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2** 360 -|**Value**|BAT|(% style="width:183px" %)((( 361 -Temperature(DS18B20) 362 - 363 -(PC13) 356 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 357 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 358 +|Value|BAT|(% style="width:183px" %)((( 359 +Temperature(DS18B20)(PC13) 364 364 )))|(% style="width:173px" %)((( 365 -Digital in(PB15) & 366 - 367 -Digital Interrupt(PA8) 361 +Digital in(PB15) & Digital Interrupt(PA8) 368 368 )))|(% style="width:84px" %)((( 369 -ADC 370 - 371 -(PA4) 363 +ADC(PA4) 372 372 )))|(% style="width:323px" %)((( 373 373 Distance measure by:1)TF-Mini plus LiDAR 374 -Or 375 -2) TF-Luna LiDAR 366 +Or 2) TF-Luna LiDAR 376 376 )))|(% style="width:188px" %)Distance signal strength 377 377 378 378 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 379 379 371 + 380 380 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 381 381 382 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 374 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 383 383 384 384 [[image:image-20230512180609-7.png||height="555" width="802"]] 385 385 378 + 386 386 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 387 387 388 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 389 389 390 -[[image:image-20230 513105207-4.png||height="469" width="802"]]383 +[[image:image-20230610170047-1.png||height="452" width="799"]] 391 391 392 392 393 393 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 394 394 388 + 395 395 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 396 396 397 -(% style="width: 1031px" %)398 -|=((( 391 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 392 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 399 399 **Size(bytes)** 400 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1 401 -|**Value**|(% style="width:68px" %)((( 402 -ADC1 403 - 404 -(PA4) 394 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 395 +|Value|(% style="width:68px" %)((( 396 +ADC1(PA4) 405 405 )))|(% style="width:75px" %)((( 406 -ADC2 407 - 408 -(PA5) 398 +ADC2(PA5) 409 409 )))|((( 410 -ADC3 411 - 412 -(PA8) 400 +ADC3(PA8) 413 413 )))|((( 414 414 Digital Interrupt(PB15) 415 415 )))|(% style="width:304px" %)((( 416 -Temperature 417 - 418 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 404 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 419 419 )))|(% style="width:163px" %)((( 420 -Humidity 421 - 422 -(SHT20 or SHT31) 406 +Humidity(SHT20 or SHT31) 423 423 )))|(% style="width:53px" %)Bat 424 424 425 425 [[image:image-20230513110214-6.png]] ... ... @@ -430,73 +430,66 @@ 430 430 431 431 This mode has total 11 bytes. As shown below: 432 432 433 -(% style="width:1017px" %) 434 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 435 -|**Value**|BAT|(% style="width:186px" %)((( 436 -Temperature1(DS18B20) 437 -(PC13) 417 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 418 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 419 +|Value|BAT|(% style="width:186px" %)((( 420 +Temperature1(DS18B20)(PC13) 438 438 )))|(% style="width:82px" %)((( 439 -ADC 440 - 441 -(PA4) 422 +ADC(PA4) 442 442 )))|(% style="width:210px" %)((( 443 -Digital in(PB15) & 444 - 445 -Digital Interrupt(PA8) 424 +Digital in(PB15) & Digital Interrupt(PA8) 446 446 )))|(% style="width:191px" %)Temperature2(DS18B20) 447 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 448 -(PB8) 426 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 449 449 450 450 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 451 451 430 + 452 452 [[image:image-20230513134006-1.png||height="559" width="736"]] 453 453 454 454 455 455 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 456 456 436 + 457 457 [[image:image-20230512164658-2.png||height="532" width="729"]] 458 458 459 459 Each HX711 need to be calibrated before used. User need to do below two steps: 460 460 461 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 462 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 441 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 442 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 463 463 1. ((( 464 464 Weight has 4 bytes, the unit is g. 445 + 446 + 447 + 465 465 ))) 466 466 467 467 For example: 468 468 469 -**AT+GETSENSORVALUE =0** 452 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 470 470 471 471 Response: Weight is 401 g 472 472 473 473 Check the response of this command and adjust the value to match the real value for thing. 474 474 475 -(% style="width: 767px" %)476 -|=((( 458 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 459 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 477 477 **Size(bytes)** 478 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4** 479 -|**Value**|BAT|(% style="width:193px" %)((( 480 -Temperature(DS18B20) 481 - 482 -(PC13) 483 - 484 - 461 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 462 +|Value|BAT|(% style="width:193px" %)((( 463 +Temperature(DS18B20)(PC13) 485 485 )))|(% style="width:85px" %)((( 486 -ADC 487 - 488 -(PA4) 465 +ADC(PA4) 489 489 )))|(% style="width:186px" %)((( 490 -Digital in(PB15) & 491 - 492 -Digital Interrupt(PA8) 467 +Digital in(PB15) & Digital Interrupt(PA8) 493 493 )))|(% style="width:100px" %)Weight 494 494 495 495 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 496 496 497 497 473 + 498 498 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 499 499 476 + 500 500 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 501 501 502 502 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -503,26 +503,19 @@ 503 503 504 504 [[image:image-20230512181814-9.png||height="543" width="697"]] 505 505 506 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 507 507 508 -(% style="width:961px" %) 509 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 510 -|**Value**|BAT|(% style="width:256px" %)((( 511 -Temperature(DS18B20) 484 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 512 512 513 -(PC13) 486 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 488 +|Value|BAT|(% style="width:256px" %)((( 489 +Temperature(DS18B20)(PC13) 514 514 )))|(% style="width:108px" %)((( 515 -ADC 516 - 517 -(PA4) 491 +ADC(PA4) 518 518 )))|(% style="width:126px" %)((( 519 -Digital in 520 - 521 -(PB15) 493 +Digital in(PB15) 522 522 )))|(% style="width:145px" %)((( 523 -Count 524 - 525 -(PA8) 495 +Count(PA8) 526 526 ))) 527 527 528 528 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] ... ... @@ -530,18 +530,16 @@ 530 530 531 531 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 532 532 533 -(% style="width:1108px" %) 534 -|=((( 503 + 504 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 505 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 535 535 **Size(bytes)** 536 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width:83px;" %)**2**|=(% style="width:184px;" %)**1**|=(% style="width:186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width:100px;" %)2537 -| **Value**|BAT|(% style="width:188px" %)(((507 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 508 +|Value|BAT|(% style="width:188px" %)((( 538 538 Temperature(DS18B20) 539 - 540 540 (PC13) 541 541 )))|(% style="width:83px" %)((( 542 -ADC 543 - 544 -(PA5) 512 +ADC(PA5) 545 545 )))|(% style="width:184px" %)((( 546 546 Digital Interrupt1(PA8) 547 547 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -548,30 +548,25 @@ 548 548 549 549 [[image:image-20230513111203-7.png||height="324" width="975"]] 550 550 519 + 551 551 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 552 552 553 -(% style="width:922px" %) 554 -|=((( 522 + 523 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 524 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 555 555 **Size(bytes)** 556 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2557 -| **Value**|BAT|(% style="width:207px" %)(((526 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 527 +|Value|BAT|(% style="width:207px" %)((( 558 558 Temperature(DS18B20) 559 - 560 560 (PC13) 561 561 )))|(% style="width:94px" %)((( 562 -ADC1 563 - 564 -(PA4) 531 +ADC1(PA4) 565 565 )))|(% style="width:198px" %)((( 566 566 Digital Interrupt(PB15) 567 567 )))|(% style="width:84px" %)((( 568 -ADC2 569 - 570 -(PA5) 535 +ADC2(PA5) 571 571 )))|(% style="width:82px" %)((( 572 -ADC3 573 - 574 -(PA8) 537 +ADC3(PA8) 575 575 ))) 576 576 577 577 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -579,56 +579,50 @@ 579 579 580 580 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 581 581 582 -(% style="width:1010px" %) 583 -|=((( 584 -**Size(bytes)** 585 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4 586 -|**Value**|BAT|((( 587 -Temperature1(DS18B20) 588 588 589 -(PC13) 546 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 547 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 548 +**Size(bytes)** 549 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 550 +|Value|BAT|((( 551 +Temperature 552 +(DS18B20)(PC13) 590 590 )))|((( 591 -Temperature2(DS18B20) 592 - 593 -(PB9) 554 +Temperature2 555 +(DS18B20)(PB9) 594 594 )))|((( 595 595 Digital Interrupt 596 - 597 597 (PB15) 598 598 )))|(% style="width:193px" %)((( 599 -Temperature3(DS18B20) 600 - 601 -(PB8) 560 +Temperature3 561 +(DS18B20)(PB8) 602 602 )))|(% style="width:78px" %)((( 603 -Count1 604 - 605 -(PA8) 563 +Count1(PA8) 606 606 )))|(% style="width:78px" %)((( 607 -Count2 608 - 609 -(PA4) 565 +Count2(PA4) 610 610 ))) 611 611 612 612 [[image:image-20230513111255-9.png||height="341" width="899"]] 613 613 614 -**The newly added AT command is issued correspondingly:** 570 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 615 615 616 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**572 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 617 617 618 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**574 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 619 619 620 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**576 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 621 621 622 -**AT+SETCNT=aa,bb** 623 623 579 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 580 + 624 624 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 625 625 626 626 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 627 627 628 628 629 - 630 630 === 2.3.3 Decode payload === 631 631 588 + 632 632 While using TTN V3 network, you can add the payload format to decode the payload. 633 633 634 634 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -635,13 +635,14 @@ 635 635 636 636 The payload decoder function for TTN V3 are here: 637 637 638 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 595 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 639 639 640 640 641 641 ==== 2.3.3.1 Battery Info ==== 642 642 643 -Check the battery voltage for SN50v3. 644 644 601 +Check the battery voltage for SN50v3-LB. 602 + 645 645 Ex1: 0x0B45 = 2885mV 646 646 647 647 Ex2: 0x0B49 = 2889mV ... ... @@ -649,16 +649,18 @@ 649 649 650 650 ==== 2.3.3.2 Temperature (DS18B20) ==== 651 651 610 + 652 652 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 653 653 654 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]613 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 655 655 656 -**Connection:** 615 +(% style="color:blue" %)**Connection:** 657 657 658 658 [[image:image-20230512180718-8.png||height="538" width="647"]] 659 659 660 -**Example**: 661 661 620 +(% style="color:blue" %)**Example**: 621 + 662 662 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 663 663 664 664 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -668,6 +668,7 @@ 668 668 669 669 ==== 2.3.3.3 Digital Input ==== 670 670 631 + 671 671 The digital input for pin PB15, 672 672 673 673 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -677,7 +677,7 @@ 677 677 ((( 678 678 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 679 679 680 -**Note: **The maximum voltage input supports 3.6V.641 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 681 681 682 682 683 683 ))) ... ... @@ -684,45 +684,50 @@ 684 684 685 685 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 686 686 687 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 688 688 689 - Whenthemeasuredoutput voltage of thesensorisnot withinthe rangeof0Vand1.1V,theoutputvoltageterminal of theensor shall be divided The example in the following figure istoreduce the output voltage of the sensorby three timesIf it is necessary toreduce moretimes,calculate according to the formula in the figure and connect the corresponding resistance in series.649 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 690 690 651 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 652 + 691 691 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 692 692 693 -**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 694 694 656 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 695 695 658 + 696 696 ==== 2.3.3.5 Digital Interrupt ==== 697 697 698 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 699 699 700 - **~Interruptconnection method:**662 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 701 701 664 +(% style="color:blue" %)** Interrupt connection method:** 665 + 702 702 [[image:image-20230513105351-5.png||height="147" width="485"]] 703 703 704 -**Example to use with door sensor :** 705 705 669 +(% style="color:blue" %)**Example to use with door sensor :** 670 + 706 706 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 707 707 708 708 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 709 709 710 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.675 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 711 711 712 -**~ Below is the installation example:** 713 713 714 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:678 +(% style="color:blue" %)**Below is the installation example:** 715 715 680 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 681 + 716 716 * ((( 717 -One pin to SN50 _v3's PA8 pin683 +One pin to SN50v3-LB's PA8 pin 718 718 ))) 719 719 * ((( 720 -The other pin to SN50 _v3's VDD pin686 +The other pin to SN50v3-LB's VDD pin 721 721 ))) 722 722 723 723 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 724 724 725 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 691 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 726 726 727 727 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 728 728 ... ... @@ -734,29 +734,32 @@ 734 734 735 735 The command is: 736 736 737 -**AT+INTMOD1=1 703 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 738 738 739 739 Below shows some screen captures in TTN V3: 740 740 741 741 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 742 742 743 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 744 744 710 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 711 + 745 745 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 746 746 747 747 748 748 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 749 749 717 + 750 750 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 751 751 752 752 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 753 753 754 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.722 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 755 755 724 + 756 756 Below is the connection to SHT20/ SHT31. The connection is as below: 757 757 727 +[[image:image-20230610170152-2.png||height="501" width="846"]] 758 758 759 -[[image:image-20230513103633-3.png||height="448" width="716"]] 760 760 761 761 The device will be able to get the I2C sensor data now and upload to IoT Server. 762 762 ... ... @@ -775,23 +775,26 @@ 775 775 776 776 ==== 2.3.3.7 Distance Reading ==== 777 777 778 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 779 779 748 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 780 780 750 + 781 781 ==== 2.3.3.8 Ultrasonic Sensor ==== 782 782 753 + 783 783 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 784 784 785 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.756 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 786 786 787 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 758 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 788 788 789 789 The picture below shows the connection: 790 790 791 791 [[image:image-20230512173903-6.png||height="596" width="715"]] 792 792 793 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 794 794 765 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 766 + 795 795 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 796 796 797 797 **Example:** ... ... @@ -799,37 +799,40 @@ 799 799 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 800 800 801 801 802 - 803 803 ==== 2.3.3.9 Battery Output - BAT pin ==== 804 804 805 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 806 806 777 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 807 807 779 + 808 808 ==== 2.3.3.10 +5V Output ==== 809 809 810 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 811 811 783 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 784 + 812 812 The 5V output time can be controlled by AT Command. 813 813 814 -**AT+5VT=1000** 787 +(% style="color:blue" %)**AT+5VT=1000** 815 815 816 816 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 817 817 818 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 791 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 819 819 820 820 821 - 822 822 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 823 823 796 + 824 824 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 825 825 826 826 [[image:image-20230512172447-4.png||height="416" width="712"]] 827 827 801 + 828 828 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 829 829 830 830 831 831 ==== 2.3.3.12 Working MOD ==== 832 832 807 + 833 833 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 834 834 835 835 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -846,7 +846,6 @@ 846 846 * 7: MOD8 847 847 * 8: MOD9 848 848 849 -== == 850 850 851 851 == 2.4 Payload Decoder file == 852 852 ... ... @@ -858,7 +858,6 @@ 858 858 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 859 859 860 860 861 - 862 862 == 2.5 Frequency Plans == 863 863 864 864 ... ... @@ -878,6 +878,7 @@ 878 878 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 879 879 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 880 880 854 + 881 881 == 3.2 General Commands == 882 882 883 883 ... ... @@ -894,17 +894,18 @@ 894 894 == 3.3 Commands special design for SN50v3-LB == 895 895 896 896 897 -These commands only valid for S3 1x-LB, as below:871 +These commands only valid for SN50v3-LB, as below: 898 898 899 899 900 900 === 3.3.1 Set Transmit Interval Time === 901 901 876 + 902 902 Feature: Change LoRaWAN End Node Transmit Interval. 903 903 904 904 (% style="color:blue" %)**AT Command: AT+TDC** 905 905 906 906 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 907 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 882 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 908 908 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 909 909 30000 910 910 OK ... ... @@ -924,25 +924,26 @@ 924 924 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 925 925 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 926 926 927 -=== === 928 928 929 929 === 3.3.2 Get Device Status === 930 930 905 + 931 931 Send a LoRaWAN downlink to ask the device to send its status. 932 932 933 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01908 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 934 934 935 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 910 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 936 936 937 937 938 938 === 3.3.3 Set Interrupt Mode === 939 939 915 + 940 940 Feature, Set Interrupt mode for GPIO_EXIT. 941 941 942 942 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 943 943 944 944 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 945 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**921 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 946 946 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 947 947 0 948 948 OK ... ... @@ -957,7 +957,6 @@ 957 957 )))|(% style="width:157px" %)OK 958 958 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 959 959 Set Transmit Interval 960 - 961 961 trigger by rising edge. 962 962 )))|(% style="width:157px" %)OK 963 963 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -973,10 +973,10 @@ 973 973 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 974 974 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 975 975 976 -=== === 977 977 978 978 === 3.3.4 Set Power Output Duration === 979 979 954 + 980 980 Control the output duration 5V . Before each sampling, device will 981 981 982 982 ~1. first enable the power output to external sensor, ... ... @@ -988,10 +988,9 @@ 988 988 (% style="color:blue" %)**AT Command: AT+5VT** 989 989 990 990 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 991 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**966 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 992 992 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 993 993 500(default) 994 - 995 995 OK 996 996 ))) 997 997 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( ... ... @@ -1007,16 +1007,16 @@ 1007 1007 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1008 1008 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1009 1009 1010 -=== === 1011 1011 1012 1012 === 3.3.5 Set Weighing parameters === 1013 1013 987 + 1014 1014 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1015 1015 1016 1016 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1017 1017 1018 1018 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1019 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**993 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1020 1020 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1021 1021 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1022 1022 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1033,10 +1033,10 @@ 1033 1033 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1034 1034 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1035 1035 1036 -=== === 1037 1037 1038 1038 === 3.3.6 Set Digital pulse count value === 1039 1039 1013 + 1040 1040 Feature: Set the pulse count value. 1041 1041 1042 1042 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1044,7 +1044,7 @@ 1044 1044 (% style="color:blue" %)**AT Command: AT+SETCNT** 1045 1045 1046 1046 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1047 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1021 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1048 1048 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1049 1049 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1050 1050 ... ... @@ -1057,22 +1057,21 @@ 1057 1057 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1058 1058 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1059 1059 1060 -=== === 1061 1061 1062 1062 === 3.3.7 Set Workmode === 1063 1063 1037 + 1064 1064 Feature: Switch working mode. 1065 1065 1066 1066 (% style="color:blue" %)**AT Command: AT+MOD** 1067 1067 1068 1068 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1069 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1043 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1070 1070 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1071 1071 OK 1072 1072 ))) 1073 1073 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1074 1074 OK 1075 - 1076 1076 Attention:Take effect after ATZ 1077 1077 ))) 1078 1078 ... ... @@ -1083,7 +1083,6 @@ 1083 1083 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1084 1084 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1085 1085 1086 -= = 1087 1087 1088 1088 = 4. Battery & Power Consumption = 1089 1089 ... ... @@ -1097,27 +1097,34 @@ 1097 1097 1098 1098 1099 1099 (% class="wikigeneratedid" %) 1100 -User can change firmware SN50v3-LB to: 1072 +**User can change firmware SN50v3-LB to:** 1101 1101 1102 1102 * Change Frequency band/ region. 1103 1103 * Update with new features. 1104 1104 * Fix bugs. 1105 1105 1106 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1078 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]** 1107 1107 1080 +**Methods to Update Firmware:** 1108 1108 1109 -Methods to Update Firmware: 1082 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1083 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1110 1110 1111 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1112 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1113 1113 1114 1114 = 6. FAQ = 1115 1115 1116 1116 == 6.1 Where can i find source code of SN50v3-LB? == 1117 1117 1090 + 1118 1118 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1119 1119 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1120 1120 1094 + 1095 +== 6.2 How to generate PWM Output in SN50v3-L? == 1096 + 1097 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1098 + 1099 + 1121 1121 = 7. Order Info = 1122 1122 1123 1123 ... ... @@ -1141,8 +1141,10 @@ 1141 1141 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1142 1142 * (% style="color:red" %)**NH**(%%): No Hole 1143 1143 1123 + 1144 1144 = 8. Packing Info = 1145 1145 1126 + 1146 1146 (% style="color:#037691" %)**Package Includes**: 1147 1147 1148 1148 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1154,8 +1154,10 @@ 1154 1154 * Package Size / pcs : cm 1155 1155 * Weight / pcs : g 1156 1156 1138 + 1157 1157 = 9. Support = 1158 1158 1159 1159 1160 1160 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1143 + 1161 1161 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +359.5 KB - Content