<
From version < 43.7 >
edited by Xiaoling
on 2023/05/16 13:45
To version < 54.2 >
edited by Xiaoling
on 2023/07/13 15:14
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -30,6 +30,7 @@
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 +
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -40,6 +40,8 @@
40 40  * Downlink to change configure
41 41  * 8500mAh Battery for long term use
42 42  
44 +
45 +
43 43  == 1.3 Specification ==
44 44  
45 45  
... ... @@ -77,6 +77,8 @@
77 77  * Sleep Mode: 5uA @ 3.3v
78 78  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
83 +
84 +
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 82  
... ... @@ -104,6 +104,8 @@
104 104  )))
105 105  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 106  
112 +
113 +
107 107  == 1.6 BLE connection ==
108 108  
109 109  
... ... @@ -122,7 +122,7 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230513102034-2.png]]
132 +[[image:image-20230610163213-1.png||height="404" width="699"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -135,7 +135,7 @@
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
137 137  
138 -== Hole Option ==
145 +== 1.9 Hole Option ==
139 139  
140 140  
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
168 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
217 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,44 +215,44 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
225 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -*0x01: EU868
236 +0x01: EU868
230 230  
231 -*0x02: US915
238 +0x02: US915
232 232  
233 -*0x03: IN865
240 +0x03: IN865
234 234  
235 -*0x04: AU915
242 +0x04: AU915
236 236  
237 -*0x05: KZ865
244 +0x05: KZ865
238 238  
239 -*0x06: RU864
246 +0x06: RU864
240 240  
241 -*0x07: AS923
248 +0x07: AS923
242 242  
243 -*0x08: AS923-1
250 +0x08: AS923-1
244 244  
245 -*0x09: AS923-2
252 +0x09: AS923-2
246 246  
247 -*0x0a: AS923-3
254 +0x0a: AS923-3
248 248  
249 -*0x0b: CN470
256 +0x0b: CN470
250 250  
251 -*0x0c: EU433
258 +0x0c: EU433
252 252  
253 -*0x0d: KR920
260 +0x0d: KR920
254 254  
255 -*0x0e: MA869
262 +0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -276,19 +276,22 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
286 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
290 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
295 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
291 291  
297 +2. All modes share the same Payload Explanation from HERE.
298 +
299 +3. By default, the device will send an uplink message every 20 minutes.
300 +
301 +
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 294  
... ... @@ -295,22 +295,17 @@
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 297  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:191px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:78px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:216px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:308px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:154px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
300 -Temperature(DS18B20)
301 -(PC13)
308 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
309 +|Value|Bat|(% style="width:191px" %)(((
310 +Temperature(DS18B20)(PC13)
302 302  )))|(% style="width:78px" %)(((
303 -ADC
304 -(PA4)
312 +ADC(PA4)
305 305  )))|(% style="width:216px" %)(((
306 -Digital in(PB15) &
307 -Digital Interrupt(PA8)
314 +Digital in(PB15)&Digital Interrupt(PA8)
308 308  )))|(% style="width:308px" %)(((
309 -Temperature
310 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
316 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
311 311  )))|(% style="width:154px" %)(((
312 -Humidity
313 -(SHT20 or SHT31)
318 +Humidity(SHT20 or SHT31)
314 314  )))
315 315  
316 316  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
... ... @@ -318,108 +318,90 @@
318 318  
319 319  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
320 320  
326 +
321 321  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322 322  
323 -(% style="width:1011px" %)
324 -|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
325 -|**Value**|BAT|(% style="width:196px" %)(((
326 -Temperature(DS18B20)
327 -
328 -(PC13)
329 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 +|Value|BAT|(% style="width:196px" %)(((
332 +Temperature(DS18B20)(PC13)
329 329  )))|(% style="width:87px" %)(((
330 -ADC
331 -
332 -(PA4)
334 +ADC(PA4)
333 333  )))|(% style="width:189px" %)(((
334 -Digital in(PB15) &
335 -
336 -Digital Interrupt(PA8)
336 +Digital in(PB15) & Digital Interrupt(PA8)
337 337  )))|(% style="width:208px" %)(((
338 -Distance measure by:
339 -1) LIDAR-Lite V3HP
340 -Or
341 -2) Ultrasonic Sensor
338 +Distance measure by: 1) LIDAR-Lite V3HP
339 +Or 2) Ultrasonic Sensor
342 342  )))|(% style="width:117px" %)Reserved
343 343  
344 344  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
345 345  
346 -**Connection of LIDAR-Lite V3HP:**
347 347  
345 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
346 +
348 348  [[image:image-20230512173758-5.png||height="563" width="712"]]
349 349  
350 -**Connection to Ultrasonic Sensor:**
351 351  
352 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
350 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
353 353  
352 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
353 +
354 354  [[image:image-20230512173903-6.png||height="596" width="715"]]
355 355  
356 +
356 356  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
357 357  
358 -(% style="width:1113px" %)
359 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
360 -|**Value**|BAT|(% style="width:183px" %)(((
361 -Temperature(DS18B20)
362 -
363 -(PC13)
359 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
360 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
361 +|Value|BAT|(% style="width:183px" %)(((
362 +Temperature(DS18B20)(PC13)
364 364  )))|(% style="width:173px" %)(((
365 -Digital in(PB15) &
366 -
367 -Digital Interrupt(PA8)
364 +Digital in(PB15) & Digital Interrupt(PA8)
368 368  )))|(% style="width:84px" %)(((
369 -ADC
370 -
371 -(PA4)
366 +ADC(PA4)
372 372  )))|(% style="width:323px" %)(((
373 373  Distance measure by:1)TF-Mini plus LiDAR
374 -Or 
375 -2) TF-Luna LiDAR
369 +Or 2) TF-Luna LiDAR
376 376  )))|(% style="width:188px" %)Distance signal  strength
377 377  
378 378  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
379 379  
374 +
380 380  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
381 381  
382 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
383 383  
384 384  [[image:image-20230512180609-7.png||height="555" width="802"]]
385 385  
381 +
386 386  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
387 387  
388 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
384 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
389 389  
390 -[[image:image-20230513105207-4.png||height="469" width="802"]]
386 +[[image:image-20230610170047-1.png||height="452" width="799"]]
391 391  
392 392  
393 393  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
394 394  
391 +
395 395  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
396 396  
397 -(% style="width:1031px" %)
398 -|=(((
394 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
395 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
399 399  **Size(bytes)**
400 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
401 -|**Value**|(% style="width:68px" %)(((
402 -ADC1
403 -
404 -(PA4)
397 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
398 +|Value|(% style="width:68px" %)(((
399 +ADC1(PA4)
405 405  )))|(% style="width:75px" %)(((
406 -ADC2
407 -
408 -(PA5)
401 +ADC2(PA5)
409 409  )))|(((
410 -ADC3
411 -
412 -(PA8)
403 +ADC3(PA8)
413 413  )))|(((
414 414  Digital Interrupt(PB15)
415 415  )))|(% style="width:304px" %)(((
416 -Temperature
417 -
418 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
407 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
419 419  )))|(% style="width:163px" %)(((
420 -Humidity
421 -
422 -(SHT20 or SHT31)
409 +Humidity(SHT20 or SHT31)
423 423  )))|(% style="width:53px" %)Bat
424 424  
425 425  [[image:image-20230513110214-6.png]]
... ... @@ -430,73 +430,66 @@
430 430  
431 431  This mode has total 11 bytes. As shown below:
432 432  
433 -(% style="width:1017px" %)
434 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
435 -|**Value**|BAT|(% style="width:186px" %)(((
436 -Temperature1(DS18B20)
437 -(PC13)
420 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
421 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
422 +|Value|BAT|(% style="width:186px" %)(((
423 +Temperature1(DS18B20)(PC13)
438 438  )))|(% style="width:82px" %)(((
439 -ADC
440 -
441 -(PA4)
425 +ADC(PA4)
442 442  )))|(% style="width:210px" %)(((
443 -Digital in(PB15) &
444 -
445 -Digital Interrupt(PA8) 
427 +Digital in(PB15) & Digital Interrupt(PA8) 
446 446  )))|(% style="width:191px" %)Temperature2(DS18B20)
447 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
448 -(PB8)
429 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
449 449  
450 450  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
451 451  
433 +
452 452  [[image:image-20230513134006-1.png||height="559" width="736"]]
453 453  
454 454  
455 455  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
456 456  
439 +
457 457  [[image:image-20230512164658-2.png||height="532" width="729"]]
458 458  
459 459  Each HX711 need to be calibrated before used. User need to do below two steps:
460 460  
461 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
462 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
444 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
445 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
463 463  1. (((
464 464  Weight has 4 bytes, the unit is g.
448 +
449 +
450 +
465 465  )))
466 466  
467 467  For example:
468 468  
469 -**AT+GETSENSORVALUE =0**
455 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
470 470  
471 471  Response:  Weight is 401 g
472 472  
473 473  Check the response of this command and adjust the value to match the real value for thing.
474 474  
475 -(% style="width:767px" %)
476 -|=(((
461 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
462 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
477 477  **Size(bytes)**
478 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
479 -|**Value**|BAT|(% style="width:193px" %)(((
480 -Temperature(DS18B20)
481 -
482 -(PC13)
483 -
484 -
464 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
465 +|Value|BAT|(% style="width:193px" %)(((
466 +Temperature(DS18B20)(PC13)
485 485  )))|(% style="width:85px" %)(((
486 -ADC
487 -
488 -(PA4)
468 +ADC(PA4)
489 489  )))|(% style="width:186px" %)(((
490 -Digital in(PB15) &
491 -
492 -Digital Interrupt(PA8)
470 +Digital in(PB15) & Digital Interrupt(PA8)
493 493  )))|(% style="width:100px" %)Weight
494 494  
495 495  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
496 496  
497 497  
476 +
498 498  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
499 499  
479 +
500 500  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
501 501  
502 502  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -503,26 +503,19 @@
503 503  
504 504  [[image:image-20230512181814-9.png||height="543" width="697"]]
505 505  
506 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
507 507  
508 -(% style="width:961px" %)
509 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
510 -|**Value**|BAT|(% style="width:256px" %)(((
511 -Temperature(DS18B20)
487 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
512 512  
513 -(PC13)
489 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
490 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
491 +|Value|BAT|(% style="width:256px" %)(((
492 +Temperature(DS18B20)(PC13)
514 514  )))|(% style="width:108px" %)(((
515 -ADC
516 -
517 -(PA4)
494 +ADC(PA4)
518 518  )))|(% style="width:126px" %)(((
519 -Digital in
520 -
521 -(PB15)
496 +Digital in(PB15)
522 522  )))|(% style="width:145px" %)(((
523 -Count
524 -
525 -(PA8)
498 +Count(PA8)
526 526  )))
527 527  
528 528  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -530,18 +530,16 @@
530 530  
531 531  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
532 532  
533 -(% style="width:1108px" %)
534 -|=(((
506 +
507 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
508 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
535 535  **Size(bytes)**
536 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
537 -|**Value**|BAT|(% style="width:188px" %)(((
510 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
511 +|Value|BAT|(% style="width:188px" %)(((
538 538  Temperature(DS18B20)
539 -
540 540  (PC13)
541 541  )))|(% style="width:83px" %)(((
542 -ADC
543 -
544 -(PA5)
515 +ADC(PA5)
545 545  )))|(% style="width:184px" %)(((
546 546  Digital Interrupt1(PA8)
547 547  )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
... ... @@ -548,30 +548,25 @@
548 548  
549 549  [[image:image-20230513111203-7.png||height="324" width="975"]]
550 550  
522 +
551 551  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
552 552  
553 -(% style="width:922px" %)
554 -|=(((
525 +
526 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
527 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
555 555  **Size(bytes)**
556 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
557 -|**Value**|BAT|(% style="width:207px" %)(((
529 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
530 +|Value|BAT|(% style="width:207px" %)(((
558 558  Temperature(DS18B20)
559 -
560 560  (PC13)
561 561  )))|(% style="width:94px" %)(((
562 -ADC1
563 -
564 -(PA4)
534 +ADC1(PA4)
565 565  )))|(% style="width:198px" %)(((
566 566  Digital Interrupt(PB15)
567 567  )))|(% style="width:84px" %)(((
568 -ADC2
569 -
570 -(PA5)
538 +ADC2(PA5)
571 571  )))|(% style="width:82px" %)(((
572 -ADC3
573 -
574 -(PA8)
540 +ADC3(PA8)
575 575  )))
576 576  
577 577  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -579,56 +579,50 @@
579 579  
580 580  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
581 581  
582 -(% style="width:1010px" %)
583 -|=(((
584 -**Size(bytes)**
585 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
586 -|**Value**|BAT|(((
587 -Temperature1(DS18B20)
588 588  
589 -(PC13)
549 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
550 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
551 +**Size(bytes)**
552 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
553 +|Value|BAT|(((
554 +Temperature
555 +(DS18B20)(PC13)
590 590  )))|(((
591 -Temperature2(DS18B20)
592 -
593 -(PB9)
557 +Temperature2
558 +(DS18B20)(PB9)
594 594  )))|(((
595 595  Digital Interrupt
596 -
597 597  (PB15)
598 598  )))|(% style="width:193px" %)(((
599 -Temperature3(DS18B20)
600 -
601 -(PB8)
563 +Temperature3
564 +(DS18B20)(PB8)
602 602  )))|(% style="width:78px" %)(((
603 -Count1
604 -
605 -(PA8)
566 +Count1(PA8)
606 606  )))|(% style="width:78px" %)(((
607 -Count2
608 -
609 -(PA4)
568 +Count2(PA4)
610 610  )))
611 611  
612 612  [[image:image-20230513111255-9.png||height="341" width="899"]]
613 613  
614 -**The newly added AT command is issued correspondingly:**
573 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
615 615  
616 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
575 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
617 617  
618 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
577 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
619 619  
620 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
579 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
621 621  
622 -**AT+SETCNT=aa,bb** 
623 623  
582 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
583 +
624 624  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
625 625  
626 626  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
627 627  
628 628  
629 -
630 630  === 2.3.3  ​Decode payload ===
631 631  
591 +
632 632  While using TTN V3 network, you can add the payload format to decode the payload.
633 633  
634 634  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -635,13 +635,14 @@
635 635  
636 636  The payload decoder function for TTN V3 are here:
637 637  
638 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
598 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
639 639  
640 640  
641 641  ==== 2.3.3.1 Battery Info ====
642 642  
643 -Check the battery voltage for SN50v3.
644 644  
604 +Check the battery voltage for SN50v3-LB.
605 +
645 645  Ex1: 0x0B45 = 2885mV
646 646  
647 647  Ex2: 0x0B49 = 2889mV
... ... @@ -649,16 +649,18 @@
649 649  
650 650  ==== 2.3.3.2  Temperature (DS18B20) ====
651 651  
613 +
652 652  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
653 653  
654 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
616 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
655 655  
656 -**Connection:**
618 +(% style="color:blue" %)**Connection:**
657 657  
658 658  [[image:image-20230512180718-8.png||height="538" width="647"]]
659 659  
660 -**Example**:
661 661  
623 +(% style="color:blue" %)**Example**:
624 +
662 662  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
663 663  
664 664  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -668,6 +668,7 @@
668 668  
669 669  ==== 2.3.3.3 Digital Input ====
670 670  
634 +
671 671  The digital input for pin PB15,
672 672  
673 673  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -677,7 +677,7 @@
677 677  (((
678 678  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
679 679  
680 -**Note:**The maximum voltage input supports 3.6V.
644 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
681 681  
682 682  
683 683  )))
... ... @@ -684,45 +684,50 @@
684 684  
685 685  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
686 686  
687 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
688 688  
689 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
652 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
690 690  
654 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
655 +
691 691  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
692 692  
693 -**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
694 694  
659 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
695 695  
661 +
696 696  ==== 2.3.3.5 Digital Interrupt ====
697 697  
698 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
699 699  
700 -**~ Interrupt connection method:**
665 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
701 701  
667 +(% style="color:blue" %)** Interrupt connection method:**
668 +
702 702  [[image:image-20230513105351-5.png||height="147" width="485"]]
703 703  
704 -**Example to use with door sensor :**
705 705  
672 +(% style="color:blue" %)**Example to use with door sensor :**
673 +
706 706  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
707 707  
708 708  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
709 709  
710 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
678 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
711 711  
712 -**~ Below is the installation example:**
713 713  
714 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
681 +(% style="color:blue" %)**Below is the installation example:**
715 715  
683 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
684 +
716 716  * (((
717 -One pin to SN50_v3's PA8 pin
686 +One pin to SN50v3-LB's PA8 pin
718 718  )))
719 719  * (((
720 -The other pin to SN50_v3's VDD pin
689 +The other pin to SN50v3-LB's VDD pin
721 721  )))
722 722  
723 723  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
724 724  
725 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
694 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
726 726  
727 727  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
728 728  
... ... @@ -734,29 +734,32 @@
734 734  
735 735  The command is:
736 736  
737 -**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
706 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
738 738  
739 739  Below shows some screen captures in TTN V3:
740 740  
741 741  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
742 742  
743 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
744 744  
713 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
714 +
745 745  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
746 746  
747 747  
748 748  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
749 749  
720 +
750 750  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
751 751  
752 752  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
753 753  
754 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
725 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
755 755  
727 +
756 756  Below is the connection to SHT20/ SHT31. The connection is as below:
757 757  
730 +[[image:image-20230610170152-2.png||height="501" width="846"]]
758 758  
759 -[[image:image-20230513103633-3.png||height="448" width="716"]]
760 760  
761 761  The device will be able to get the I2C sensor data now and upload to IoT Server.
762 762  
... ... @@ -775,23 +775,26 @@
775 775  
776 776  ==== 2.3.3.7  ​Distance Reading ====
777 777  
778 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
779 779  
751 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
780 780  
753 +
781 781  ==== 2.3.3.8 Ultrasonic Sensor ====
782 782  
756 +
783 783  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
784 784  
785 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
759 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
786 786  
787 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
761 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
788 788  
789 789  The picture below shows the connection:
790 790  
791 791  [[image:image-20230512173903-6.png||height="596" width="715"]]
792 792  
793 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
794 794  
768 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
769 +
795 795  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
796 796  
797 797  **Example:**
... ... @@ -799,37 +799,40 @@
799 799  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
800 800  
801 801  
802 -
803 803  ==== 2.3.3.9  Battery Output - BAT pin ====
804 804  
805 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
806 806  
780 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
807 807  
782 +
808 808  ==== 2.3.3.10  +5V Output ====
809 809  
810 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
811 811  
786 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
787 +
812 812  The 5V output time can be controlled by AT Command.
813 813  
814 -**AT+5VT=1000**
790 +(% style="color:blue" %)**AT+5VT=1000**
815 815  
816 816  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
817 817  
818 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
794 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
819 819  
820 820  
821 -
822 822  ==== 2.3.3.11  BH1750 Illumination Sensor ====
823 823  
799 +
824 824  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
825 825  
826 826  [[image:image-20230512172447-4.png||height="416" width="712"]]
827 827  
804 +
828 828  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
829 829  
830 830  
831 831  ==== 2.3.3.12  Working MOD ====
832 832  
810 +
833 833  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
834 834  
835 835  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -846,8 +846,8 @@
846 846  * 7: MOD8
847 847  * 8: MOD9
848 848  
849 -== ==
850 850  
828 +
851 851  == 2.4 Payload Decoder file ==
852 852  
853 853  
... ... @@ -858,7 +858,6 @@
858 858  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
859 859  
860 860  
861 -
862 862  == 2.5 Frequency Plans ==
863 863  
864 864  
... ... @@ -878,6 +878,8 @@
878 878  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
879 879  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
880 880  
858 +
859 +
881 881  == 3.2 General Commands ==
882 882  
883 883  
... ... @@ -894,17 +894,18 @@
894 894  == 3.3 Commands special design for SN50v3-LB ==
895 895  
896 896  
897 -These commands only valid for S31x-LB, as below:
876 +These commands only valid for SN50v3-LB, as below:
898 898  
899 899  
900 900  === 3.3.1 Set Transmit Interval Time ===
901 901  
881 +
902 902  Feature: Change LoRaWAN End Node Transmit Interval.
903 903  
904 904  (% style="color:blue" %)**AT Command: AT+TDC**
905 905  
906 906  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
907 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
887 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
908 908  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
909 909  30000
910 910  OK
... ... @@ -924,25 +924,27 @@
924 924  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
925 925  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
926 926  
927 -=== ===
928 928  
908 +
929 929  === 3.3.2 Get Device Status ===
930 930  
911 +
931 931  Send a LoRaWAN downlink to ask the device to send its status.
932 932  
933 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
914 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
934 934  
935 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
916 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
936 936  
937 937  
938 938  === 3.3.3 Set Interrupt Mode ===
939 939  
921 +
940 940  Feature, Set Interrupt mode for GPIO_EXIT.
941 941  
942 942  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
943 943  
944 944  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
945 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
927 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
946 946  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
947 947  0
948 948  OK
... ... @@ -957,7 +957,6 @@
957 957  )))|(% style="width:157px" %)OK
958 958  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
959 959  Set Transmit Interval
960 -
961 961  trigger by rising edge.
962 962  )))|(% style="width:157px" %)OK
963 963  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -973,10 +973,11 @@
973 973  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
974 974  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
975 975  
976 -=== ===
977 977  
958 +
978 978  === 3.3.4 Set Power Output Duration ===
979 979  
961 +
980 980  Control the output duration 5V . Before each sampling, device will
981 981  
982 982  ~1. first enable the power output to external sensor,
... ... @@ -988,10 +988,9 @@
988 988  (% style="color:blue" %)**AT Command: AT+5VT**
989 989  
990 990  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
991 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
973 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
992 992  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
993 993  500(default)
994 -
995 995  OK
996 996  )))
997 997  |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
... ... @@ -1007,16 +1007,17 @@
1007 1007  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1008 1008  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1009 1009  
1010 -=== ===
1011 1011  
992 +
1012 1012  === 3.3.5 Set Weighing parameters ===
1013 1013  
995 +
1014 1014  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1015 1015  
1016 1016  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1017 1017  
1018 1018  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1019 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1001 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1020 1020  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1021 1021  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1022 1022  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1033,10 +1033,11 @@
1033 1033  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1034 1034  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1035 1035  
1036 -=== ===
1037 1037  
1019 +
1038 1038  === 3.3.6 Set Digital pulse count value ===
1039 1039  
1022 +
1040 1040  Feature: Set the pulse count value.
1041 1041  
1042 1042  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1044,7 +1044,7 @@
1044 1044  (% style="color:blue" %)**AT Command: AT+SETCNT**
1045 1045  
1046 1046  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1047 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1030 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1048 1048  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1049 1049  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1050 1050  
... ... @@ -1057,22 +1057,22 @@
1057 1057  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1058 1058  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1059 1059  
1060 -=== ===
1061 1061  
1044 +
1062 1062  === 3.3.7 Set Workmode ===
1063 1063  
1047 +
1064 1064  Feature: Switch working mode.
1065 1065  
1066 1066  (% style="color:blue" %)**AT Command: AT+MOD**
1067 1067  
1068 1068  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1069 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1053 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1070 1070  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1071 1071  OK
1072 1072  )))
1073 1073  |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1074 1074  OK
1075 -
1076 1076  Attention:Take effect after ATZ
1077 1077  )))
1078 1078  
... ... @@ -1083,8 +1083,8 @@
1083 1083  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1084 1084  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1085 1085  
1086 -= =
1087 1087  
1070 +
1088 1088  = 4. Battery & Power Consumption =
1089 1089  
1090 1090  
... ... @@ -1097,27 +1097,31 @@
1097 1097  
1098 1098  
1099 1099  (% class="wikigeneratedid" %)
1100 -User can change firmware SN50v3-LB to:
1083 +**User can change firmware SN50v3-LB to:**
1101 1101  
1102 1102  * Change Frequency band/ region.
1103 1103  * Update with new features.
1104 1104  * Fix bugs.
1105 1105  
1106 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1089 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1107 1107  
1091 +**Methods to Update Firmware:**
1108 1108  
1109 -Methods to Update Firmware:
1093 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1094 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1110 1110  
1111 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1112 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1113 1113  
1097 +
1114 1114  = 6. FAQ =
1115 1115  
1116 1116  == 6.1 Where can i find source code of SN50v3-LB? ==
1117 1117  
1102 +
1118 1118  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1119 1119  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1120 1120  
1106 +
1107 +
1121 1121  = 7. Order Info =
1122 1122  
1123 1123  
... ... @@ -1141,8 +1141,11 @@
1141 1141  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1142 1142  * (% style="color:red" %)**NH**(%%): No Hole
1143 1143  
1131 +
1132 +
1144 1144  = 8. ​Packing Info =
1145 1145  
1135 +
1146 1146  (% style="color:#037691" %)**Package Includes**:
1147 1147  
1148 1148  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1154,8 +1154,11 @@
1154 1154  * Package Size / pcs : cm
1155 1155  * Weight / pcs : g
1156 1156  
1147 +
1148 +
1157 1157  = 9. Support =
1158 1158  
1159 1159  
1160 1160  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1153 +
1161 1161  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0