Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 ... ... @@ -16,15 +16,18 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 20 + 22 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 30 ... ... @@ -42,7 +42,6 @@ 42 42 43 43 == 1.3 Specification == 44 44 45 - 46 46 (% style="color:#037691" %)**Common DC Characteristics:** 47 47 48 48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -79,7 +79,6 @@ 79 79 80 80 == 1.4 Sleep mode and working mode == 81 81 82 - 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -137,7 +137,6 @@ 137 137 138 138 == Hole Option == 139 139 140 - 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 142 142 143 143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -291,25 +291,30 @@ 291 291 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 - 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style="background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:191px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:78px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:216px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:308px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:154px;background-color:#D9E2F3;color:#0070C0" %)**2** 299 -|**Value**|Bat|(% style="width:191px" %)((( 295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 +|**Value**|Bat|((( 300 300 Temperature(DS18B20) 298 + 301 301 (PC13) 302 -)))|( % style="width:78px" %)(((300 +)))|((( 303 303 ADC 302 + 304 304 (PA4) 305 305 )))|(% style="width:216px" %)((( 306 306 Digital in(PB15) & 307 -Digital Interrupt(PA8) 308 -)))|(% style="width:308px" %)((( 306 + 307 +Digital Interrupt(PA8) 308 + 309 + 310 +)))|(% style="width:342px" %)((( 309 309 Temperature 312 + 310 310 (SHT20 or SHT31 or BH1750 Illumination Sensor) 311 -)))|(% style="width:1 54px" %)(((314 +)))|(% style="width:171px" %)((( 312 312 Humidity 316 + 313 313 (SHT20 or SHT31) 314 314 ))) 315 315 ... ... @@ -320,26 +320,25 @@ 320 320 321 321 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 322 322 323 -(% style="width:1011px" %) 324 -|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2** 325 -|**Value**|BAT|(% style="width:196px" %)((( 327 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 328 +|**Value**|BAT|((( 326 326 Temperature(DS18B20) 327 327 328 328 (PC13) 329 -)))|( % style="width:87px" %)(((332 +)))|((( 330 330 ADC 331 331 332 332 (PA4) 333 -)))|( % style="width:189px" %)(((336 +)))|((( 334 334 Digital in(PB15) & 335 335 336 336 Digital Interrupt(PA8) 337 -)))|( % style="width:208px" %)(((340 +)))|((( 338 338 Distance measure by: 339 339 1) LIDAR-Lite V3HP 340 340 Or 341 341 2) Ultrasonic Sensor 342 -)))| (% style="width:117px" %)Reserved345 +)))|Reserved 343 343 344 344 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 345 345 ... ... @@ -355,25 +355,24 @@ 355 355 356 356 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 357 357 358 -(% style="width:1113px" %) 359 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2** 360 -|**Value**|BAT|(% style="width:183px" %)((( 361 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 362 +|**Value**|BAT|((( 361 361 Temperature(DS18B20) 362 362 363 363 (PC13) 364 -)))|( % style="width:173px" %)(((366 +)))|((( 365 365 Digital in(PB15) & 366 366 367 367 Digital Interrupt(PA8) 368 -)))|( % style="width:84px" %)(((370 +)))|((( 369 369 ADC 370 370 371 371 (PA4) 372 -)))|( % style="width:323px" %)(((374 +)))|((( 373 373 Distance measure by:1)TF-Mini plus LiDAR 374 374 Or 375 375 2) TF-Luna LiDAR 376 -)))| (% style="width:188px" %)Distance signal strength378 +)))|Distance signal strength 377 377 378 378 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 379 379 ... ... @@ -472,25 +472,25 @@ 472 472 473 473 Check the response of this command and adjust the value to match the real value for thing. 474 474 475 -(% style="width: 767px" %)477 +(% style="width:982px" %) 476 476 |=((( 477 477 **Size(bytes)** 478 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width:85px;" %)**2**|=(% style="width:186px;" %)**1**|=(% style="width: 100px;" %)**4**479 -|**Value**|BAT|(% style="width: 193px" %)(((480 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4** 481 +|**Value**|BAT|(% style="width:282px" %)((( 480 480 Temperature(DS18B20) 481 481 482 482 (PC13) 483 483 484 484 485 -)))|(% style="width: 85px" %)(((487 +)))|(% style="width:119px" %)((( 486 486 ADC 487 487 488 488 (PA4) 489 -)))|(% style="width: 186px" %)(((491 +)))|(% style="width:279px" %)((( 490 490 Digital in(PB15) & 491 491 492 492 Digital Interrupt(PA8) 493 -)))|(% style="width:10 0px" %)Weight495 +)))|(% style="width:106px" %)Weight 494 494 495 495 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 496 496 ... ... @@ -530,30 +530,29 @@ 530 530 531 531 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 532 532 533 -(% style="width:1108px" %) 534 534 |=((( 535 535 **Size(bytes)** 536 -)))|=**2**|= (% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width: 100px;" %)2537 -|**Value**|BAT|( % style="width:188px" %)(((537 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 538 +|**Value**|BAT|((( 538 538 Temperature(DS18B20) 539 539 540 540 (PC13) 541 -)))|( % style="width:83px" %)(((542 +)))|((( 542 542 ADC 543 543 544 544 (PA5) 545 -)))|( % style="width:184px" %)(((546 +)))|((( 546 546 Digital Interrupt1(PA8) 547 -)))| (% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved548 +)))|Digital Interrupt2(PA4)|Digital Interrupt3(PB15)|Reserved 548 548 549 549 [[image:image-20230513111203-7.png||height="324" width="975"]] 550 550 551 551 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 552 552 553 -(% style="width:9 22px" %)554 +(% style="width:917px" %) 554 554 |=((( 555 555 **Size(bytes)** 556 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2557 +)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 79px;" %)2 557 557 |**Value**|BAT|(% style="width:207px" %)((( 558 558 Temperature(DS18B20) 559 559 ... ... @@ -568,7 +568,7 @@ 568 568 ADC2 569 569 570 570 (PA5) 571 -)))|(% style="width: 82px" %)(((572 +)))|(% style="width:79px" %)((( 572 572 ADC3 573 573 574 574 (PA8) ... ... @@ -649,7 +649,7 @@ 649 649 650 650 ==== 2.3.3.2 Temperature (DS18B20) ==== 651 651 652 -If there is a DS18B20 connected to P C13 pin. The temperature will be uploaded in the payload.653 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 653 653 654 654 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 655 655 ... ... @@ -678,8 +678,6 @@ 678 678 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 679 679 680 680 **Note:**The maximum voltage input supports 3.6V. 681 - 682 - 683 683 ))) 684 684 685 685 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== ... ... @@ -692,7 +692,6 @@ 692 692 693 693 **Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 694 694 695 - 696 696 ==== 2.3.3.5 Digital Interrupt ==== 697 697 698 698 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. ... ... @@ -749,14 +749,14 @@ 749 749 750 750 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 751 751 752 -We have made an example to show how to use the I2C interface to connect to the SHT20 /SHT31 Temperature and Humidity Sensor.750 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 753 753 754 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 /SHT31code in SN50_v3 will be a good reference.752 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference. 755 755 756 756 Below is the connection to SHT20/ SHT31. The connection is as below: 757 757 758 758 759 -[[image:image-20230513103633-3.png||height=" 448" width="716"]]757 +[[image:image-20230513103633-3.png||height="636" width="1017"]] 760 760 761 761 The device will be able to get the I2C sensor data now and upload to IoT Server. 762 762 ... ... @@ -823,9 +823,9 @@ 823 823 824 824 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 825 825 826 -[[image:image-20230512172447-4.png||height=" 416" width="712"]]824 +[[image:image-20230512172447-4.png||height="593" width="1015"]] 827 827 828 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]826 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 829 829 830 830 831 831 ==== 2.3.3.12 Working MOD ==== ... ... @@ -846,8 +846,6 @@ 846 846 * 7: MOD8 847 847 * 8: MOD9 848 848 849 -== == 850 - 851 851 == 2.4 Payload Decoder file == 852 852 853 853 ... ... @@ -855,7 +855,7 @@ 855 855 856 856 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 857 857 858 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50 _v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]854 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 859 859 860 860 861 861 ... ... @@ -899,6 +899,7 @@ 899 899 900 900 === 3.3.1 Set Transmit Interval Time === 901 901 898 + 902 902 Feature: Change LoRaWAN End Node Transmit Interval. 903 903 904 904 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -924,11 +924,9 @@ 924 924 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 925 925 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 926 926 927 -=== === 928 - 929 929 === 3.3.2 Get Device Status === 930 930 931 -Send a LoRaWAN downlink to ask thedevicetosenditsstatus.926 +Send a LoRaWAN downlink to ask device send Alarm settings. 932 932 933 933 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 934 934 ... ... @@ -937,6 +937,7 @@ 937 937 938 938 === 3.3.3 Set Interrupt Mode === 939 939 935 + 940 940 Feature, Set Interrupt mode for GPIO_EXIT. 941 941 942 942 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -973,8 +973,6 @@ 973 973 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 974 974 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 975 975 976 -=== === 977 - 978 978 === 3.3.4 Set Power Output Duration === 979 979 980 980 Control the output duration 5V . Before each sampling, device will ... ... @@ -1004,11 +1004,9 @@ 1004 1004 1005 1005 The first and second bytes are the time to turn on. 1006 1006 1007 -* Example 1: Downlink Payload: 070000 1008 -* Example 2: Downlink Payload: 0701F4 1001 +* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1002 +* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1009 1009 1010 -=== === 1011 - 1012 1012 === 3.3.5 Set Weighing parameters === 1013 1013 1014 1014 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. ... ... @@ -1023,6 +1023,7 @@ 1023 1023 1024 1024 (% style="color:blue" %)**Downlink Command: 0x08** 1025 1025 1018 + 1026 1026 Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1027 1027 1028 1028 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. ... ... @@ -1033,8 +1033,6 @@ 1033 1033 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1034 1034 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1035 1035 1036 -=== === 1037 - 1038 1038 === 3.3.6 Set Digital pulse count value === 1039 1039 1040 1040 Feature: Set the pulse count value. ... ... @@ -1050,6 +1050,7 @@ 1050 1050 1051 1051 (% style="color:blue" %)**Downlink Command: 0x09** 1052 1052 1044 + 1053 1053 Format: Command Code (0x09) followed by 5 bytes. 1054 1054 1055 1055 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. ... ... @@ -1057,8 +1057,6 @@ 1057 1057 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1058 1058 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1059 1059 1060 -=== === 1061 - 1062 1062 === 3.3.7 Set Workmode === 1063 1063 1064 1064 Feature: Switch working mode. ... ... @@ -1078,13 +1078,12 @@ 1078 1078 1079 1079 (% style="color:blue" %)**Downlink Command: 0x0A** 1080 1080 1071 + 1081 1081 Format: Command Code (0x0A) followed by 1 bytes. 1082 1082 1083 1083 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1084 1084 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1085 1085 1086 -= = 1087 - 1088 1088 = 4. Battery & Power Consumption = 1089 1089 1090 1090 ... ... @@ -1158,4 +1158,4 @@ 1158 1158 1159 1159 1160 1160 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1161 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.c c>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]1150 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content