<
From version < 43.7 >
edited by Xiaoling
on 2023/05/16 13:45
To version < 11.2 >
edited by Edwin Chen
on 2023/05/11 23:01
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,15 +16,18 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
... ... @@ -42,7 +42,6 @@
42 42  
43 43  == 1.3 Specification ==
44 44  
45 -
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 48  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,7 +79,6 @@
79 79  
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 -
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -122,7 +122,7 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230513102034-2.png]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -137,7 +137,6 @@
137 137  
138 138  == Hole Option ==
139 139  
140 -
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -273,390 +273,39 @@
273 273  Ex2: 0x0B49 = 2889mV
274 274  
275 275  
276 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
275 +=== 2.3.2  Sensor Data. FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
278 +Sensor Data is uplink via FPORT=2
280 280  
281 -For example:
282 -
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 -
285 -
286 -(% style="color:red" %) **Important Notice:**
287 -
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
291 -
292 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 -
294 -
295 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 -
297 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:191px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:78px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:216px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:308px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:154px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
300 -Temperature(DS18B20)
301 -(PC13)
302 -)))|(% style="width:78px" %)(((
303 -ADC
304 -(PA4)
305 -)))|(% style="width:216px" %)(((
306 -Digital in(PB15) &
307 -Digital Interrupt(PA8)
308 -)))|(% style="width:308px" %)(((
309 -Temperature
310 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
311 -)))|(% style="width:154px" %)(((
312 -Humidity
313 -(SHT20 or SHT31)
314 -)))
315 -
316 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
317 -
318 -
319 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
320 -
321 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322 -
323 -(% style="width:1011px" %)
324 -|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
325 -|**Value**|BAT|(% style="width:196px" %)(((
326 -Temperature(DS18B20)
327 -
328 -(PC13)
329 -)))|(% style="width:87px" %)(((
330 -ADC
331 -
332 -(PA4)
333 -)))|(% style="width:189px" %)(((
334 -Digital in(PB15) &
335 -
336 -Digital Interrupt(PA8)
337 -)))|(% style="width:208px" %)(((
338 -Distance measure by:
339 -1) LIDAR-Lite V3HP
340 -Or
341 -2) Ultrasonic Sensor
342 -)))|(% style="width:117px" %)Reserved
343 -
344 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
345 -
346 -**Connection of LIDAR-Lite V3HP:**
347 -
348 -[[image:image-20230512173758-5.png||height="563" width="712"]]
349 -
350 -**Connection to Ultrasonic Sensor:**
351 -
352 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
353 -
354 -[[image:image-20230512173903-6.png||height="596" width="715"]]
355 -
356 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
357 -
358 -(% style="width:1113px" %)
359 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
360 -|**Value**|BAT|(% style="width:183px" %)(((
361 -Temperature(DS18B20)
362 -
363 -(PC13)
364 -)))|(% style="width:173px" %)(((
365 -Digital in(PB15) &
366 -
367 -Digital Interrupt(PA8)
368 -)))|(% style="width:84px" %)(((
369 -ADC
370 -
371 -(PA4)
372 -)))|(% style="width:323px" %)(((
373 -Distance measure by:1)TF-Mini plus LiDAR
374 -Or 
375 -2) TF-Luna LiDAR
376 -)))|(% style="width:188px" %)Distance signal  strength
377 -
378 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
379 -
380 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
381 -
382 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
383 -
384 -[[image:image-20230512180609-7.png||height="555" width="802"]]
385 -
386 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
387 -
388 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
389 -
390 -[[image:image-20230513105207-4.png||height="469" width="802"]]
391 -
392 -
393 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
394 -
395 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
396 -
397 -(% style="width:1031px" %)
398 -|=(((
280 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
281 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
399 399  **Size(bytes)**
400 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
401 -|**Value**|(% style="width:68px" %)(((
402 -ADC1
403 -
404 -(PA4)
405 -)))|(% style="width:75px" %)(((
406 -ADC2
407 -
408 -(PA5)
409 -)))|(((
410 -ADC3
411 -
412 -(PA8)
413 -)))|(((
414 -Digital Interrupt(PB15)
415 -)))|(% style="width:304px" %)(((
416 -Temperature
417 -
418 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
419 -)))|(% style="width:163px" %)(((
420 -Humidity
421 -
422 -(SHT20 or SHT31)
423 -)))|(% style="width:53px" %)Bat
424 -
425 -[[image:image-20230513110214-6.png]]
426 -
427 -
428 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
429 -
430 -
431 -This mode has total 11 bytes. As shown below:
432 -
433 -(% style="width:1017px" %)
434 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
435 -|**Value**|BAT|(% style="width:186px" %)(((
436 -Temperature1(DS18B20)
437 -(PC13)
438 -)))|(% style="width:82px" %)(((
439 -ADC
440 -
441 -(PA4)
442 -)))|(% style="width:210px" %)(((
443 -Digital in(PB15) &
444 -
445 -Digital Interrupt(PA8) 
446 -)))|(% style="width:191px" %)Temperature2(DS18B20)
447 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
448 -(PB8)
449 -
450 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
451 -
452 -[[image:image-20230513134006-1.png||height="559" width="736"]]
453 -
454 -
455 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
456 -
457 -[[image:image-20230512164658-2.png||height="532" width="729"]]
458 -
459 -Each HX711 need to be calibrated before used. User need to do below two steps:
460 -
461 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
462 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
463 -1. (((
464 -Weight has 4 bytes, the unit is g.
283 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
284 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
285 +[[Battery>>||anchor="HBattery:"]]
286 +)))|(% style="width:130px" %)(((
287 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
288 +)))|(% style="width:91px" %)(((
289 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
290 +)))|(% style="width:103px" %)(((
291 +[[Temperature>>||anchor="HTemperature:"]]
292 +)))|(% style="width:80px" %)(((
293 +[[Humidity>>||anchor="HHumidity:"]]
465 465  )))
466 466  
467 -For example:
296 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
468 468  
469 -**AT+GETSENSORVALUE =0**
298 +Sensor Battery Level.
470 470  
471 -Response:  Weight is 401 g
472 -
473 -Check the response of this command and adjust the value to match the real value for thing.
474 -
475 -(% style="width:767px" %)
476 -|=(((
477 -**Size(bytes)**
478 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
479 -|**Value**|BAT|(% style="width:193px" %)(((
480 -Temperature(DS18B20)
481 -
482 -(PC13)
483 -
484 -
485 -)))|(% style="width:85px" %)(((
486 -ADC
487 -
488 -(PA4)
489 -)))|(% style="width:186px" %)(((
490 -Digital in(PB15) &
491 -
492 -Digital Interrupt(PA8)
493 -)))|(% style="width:100px" %)Weight
494 -
495 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
496 -
497 -
498 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
499 -
500 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
501 -
502 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
503 -
504 -[[image:image-20230512181814-9.png||height="543" width="697"]]
505 -
506 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
507 -
508 -(% style="width:961px" %)
509 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
510 -|**Value**|BAT|(% style="width:256px" %)(((
511 -Temperature(DS18B20)
512 -
513 -(PC13)
514 -)))|(% style="width:108px" %)(((
515 -ADC
516 -
517 -(PA4)
518 -)))|(% style="width:126px" %)(((
519 -Digital in
520 -
521 -(PB15)
522 -)))|(% style="width:145px" %)(((
523 -Count
524 -
525 -(PA8)
526 -)))
527 -
528 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
529 -
530 -
531 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
532 -
533 -(% style="width:1108px" %)
534 -|=(((
535 -**Size(bytes)**
536 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
537 -|**Value**|BAT|(% style="width:188px" %)(((
538 -Temperature(DS18B20)
539 -
540 -(PC13)
541 -)))|(% style="width:83px" %)(((
542 -ADC
543 -
544 -(PA5)
545 -)))|(% style="width:184px" %)(((
546 -Digital Interrupt1(PA8)
547 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
548 -
549 -[[image:image-20230513111203-7.png||height="324" width="975"]]
550 -
551 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
552 -
553 -(% style="width:922px" %)
554 -|=(((
555 -**Size(bytes)**
556 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
557 -|**Value**|BAT|(% style="width:207px" %)(((
558 -Temperature(DS18B20)
559 -
560 -(PC13)
561 -)))|(% style="width:94px" %)(((
562 -ADC1
563 -
564 -(PA4)
565 -)))|(% style="width:198px" %)(((
566 -Digital Interrupt(PB15)
567 -)))|(% style="width:84px" %)(((
568 -ADC2
569 -
570 -(PA5)
571 -)))|(% style="width:82px" %)(((
572 -ADC3
573 -
574 -(PA8)
575 -)))
576 -
577 -[[image:image-20230513111231-8.png||height="335" width="900"]]
578 -
579 -
580 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
581 -
582 -(% style="width:1010px" %)
583 -|=(((
584 -**Size(bytes)**
585 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
586 -|**Value**|BAT|(((
587 -Temperature1(DS18B20)
588 -
589 -(PC13)
590 -)))|(((
591 -Temperature2(DS18B20)
592 -
593 -(PB9)
594 -)))|(((
595 -Digital Interrupt
596 -
597 -(PB15)
598 -)))|(% style="width:193px" %)(((
599 -Temperature3(DS18B20)
600 -
601 -(PB8)
602 -)))|(% style="width:78px" %)(((
603 -Count1
604 -
605 -(PA8)
606 -)))|(% style="width:78px" %)(((
607 -Count2
608 -
609 -(PA4)
610 -)))
611 -
612 -[[image:image-20230513111255-9.png||height="341" width="899"]]
613 -
614 -**The newly added AT command is issued correspondingly:**
615 -
616 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
617 -
618 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
619 -
620 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
621 -
622 -**AT+SETCNT=aa,bb** 
623 -
624 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
625 -
626 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
627 -
628 -
629 -
630 -=== 2.3.3  ​Decode payload ===
631 -
632 -While using TTN V3 network, you can add the payload format to decode the payload.
633 -
634 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
635 -
636 -The payload decoder function for TTN V3 are here:
637 -
638 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
639 -
640 -
641 -==== 2.3.3.1 Battery Info ====
642 -
643 -Check the battery voltage for SN50v3.
644 -
645 645  Ex1: 0x0B45 = 2885mV
646 646  
647 647  Ex2: 0x0B49 = 2889mV
648 648  
649 649  
650 -==== 2.3.3.2  Temperature (DS18B20) ====
651 651  
652 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
306 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
653 653  
654 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
655 -
656 -**Connection:**
657 -
658 -[[image:image-20230512180718-8.png||height="538" width="647"]]
659 -
660 660  **Example**:
661 661  
662 662  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -666,213 +666,195 @@
666 666  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
667 667  
668 668  
669 -==== 2.3.3.3 Digital Input ====
317 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
670 670  
671 -The digital input for pin PB15,
672 672  
673 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
674 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
320 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
675 675  
676 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
677 -(((
678 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
679 679  
680 -**Note:**The maximum voltage input supports 3.6V.
323 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
681 681  
682 -
683 -)))
684 684  
685 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
326 +**Example:**
686 686  
687 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
328 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
688 688  
689 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
330 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
690 690  
691 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
332 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
692 692  
693 -**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
334 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
694 694  
695 695  
696 -==== 2.3.3.5 Digital Interrupt ====
337 +== 2.4 Payload Decoder file ==
697 697  
698 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
699 699  
700 -**~ Interrupt connection method:**
340 +In TTN, use can add a custom payload so it shows friendly reading
701 701  
702 -[[image:image-20230513105351-5.png||height="147" width="485"]]
342 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
703 703  
704 -**Example to use with door sensor :**
344 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
705 705  
706 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
707 707  
708 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
347 +== 2.5 Datalog Feature ==
709 709  
710 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
711 711  
712 -**~ Below is the installation example:**
350 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
713 713  
714 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
715 715  
716 -* (((
717 -One pin to SN50_v3's PA8 pin
718 -)))
719 -* (((
720 -The other pin to SN50_v3's VDD pin
721 -)))
353 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
722 722  
723 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
724 724  
725 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
356 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
726 726  
727 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
358 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
359 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
728 728  
729 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
361 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
730 730  
731 -The above photos shows the two parts of the magnetic switch fitted to a door.
363 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
732 732  
733 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
365 +=== 2.5.2 Unix TimeStamp ===
734 734  
735 -The command is:
736 736  
737 -**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
368 +S31x-LB uses Unix TimeStamp format based on
738 738  
739 -Below shows some screen captures in TTN V3:
370 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
740 740  
741 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
372 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
742 742  
743 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
374 +Below is the converter example
744 744  
745 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
376 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
746 746  
378 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
747 747  
748 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
749 749  
750 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
381 +=== 2.5.3 Set Device Time ===
751 751  
752 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
753 753  
754 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
384 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
755 755  
756 -Below is the connection to SHT20/ SHT31. The connection is as below:
386 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
757 757  
388 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
758 758  
759 -[[image:image-20230513103633-3.png||height="448" width="716"]]
760 760  
761 -The device will be able to get the I2C sensor data now and upload to IoT Server.
391 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
762 762  
763 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
764 764  
765 -Convert the read byte to decimal and divide it by ten.
394 +The Datalog uplinks will use below payload format.
766 766  
767 -**Example:**
396 +**Retrieval data payload:**
768 768  
769 -Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
398 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
399 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
400 +**Size(bytes)**
401 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
402 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
403 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
404 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
770 770  
771 -Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
406 +**Poll message flag & Ext:**
772 772  
773 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
408 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
774 774  
410 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
775 775  
776 -==== 2.3.3.7  ​Distance Reading ====
412 +**Poll Message Flag**: 1: This message is a poll message reply.
777 777  
778 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
414 +* Poll Message Flag is set to 1.
779 779  
416 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
780 780  
781 -==== 2.3.3.8 Ultrasonic Sensor ====
418 +For example, in US915 band, the max payload for different DR is:
782 782  
783 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
420 +**a) DR0:** max is 11 bytes so one entry of data
784 784  
785 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
422 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
786 786  
787 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
424 +**c) DR2:** total payload includes 11 entries of data
788 788  
789 -The picture below shows the connection:
426 +**d) DR3: **total payload includes 22 entries of data.
790 790  
791 -[[image:image-20230512173903-6.png||height="596" width="715"]]
428 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
792 792  
793 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
794 794  
795 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
796 -
797 797  **Example:**
798 798  
799 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
433 +If S31x-LB has below data inside Flash:
800 800  
435 +[[image:1682646494051-944.png]]
801 801  
437 +If user sends below downlink command: 3160065F9760066DA705
802 802  
803 -==== 2.3.3.9  Battery Output - BAT pin ====
439 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
804 804  
805 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
441 + Stop time: 60066DA7= time 21/1/19 05:27:03
806 806  
807 807  
808 -==== 2.3.3.1 +5V Output ====
444 +**S31x-LB will uplink this payload.**
809 809  
810 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling
446 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
811 811  
812 -The 5V output time can be controlled by AT Command.
448 +(((
449 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
450 +)))
813 813  
814 -**AT+5VT=1000**
452 +(((
453 +Where the first 11 bytes is for the first entry:
454 +)))
815 815  
816 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
456 +(((
457 +7FFF089801464160065F97
458 +)))
817 817  
818 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
460 +(((
461 +**Ext sensor data**=0x7FFF/100=327.67
462 +)))
819 819  
464 +(((
465 +**Temp**=0x088E/100=22.00
466 +)))
820 820  
468 +(((
469 +**Hum**=0x014B/10=32.6
470 +)))
821 821  
822 -==== 2.3.3.11  BH1750 Illumination Sensor ====
472 +(((
473 +**poll message flag & Ext**=0x41,means reply data,Ext=1
474 +)))
823 823  
824 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
476 +(((
477 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
478 +)))
825 825  
826 -[[image:image-20230512172447-4.png||height="416" width="712"]]
827 827  
828 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
481 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
829 829  
483 +== 2.6 Temperature Alarm Feature ==
830 830  
831 -==== 2.3.3.12  Working MOD ====
832 832  
833 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
486 +S31x-LB work flow with Alarm feature.
834 834  
835 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
836 836  
837 -Case 7^^th^^ Byte >> 2 & 0x1f:
489 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
838 838  
839 -* 0: MOD1
840 -* 1: MOD2
841 -* 2: MOD3
842 -* 3: MOD4
843 -* 4: MOD5
844 -* 5: MOD6
845 -* 6: MOD7
846 -* 7: MOD8
847 -* 8: MOD9
848 848  
849 -== ==
492 +== 2.7 Frequency Plans ==
850 850  
851 -== 2.4 Payload Decoder file ==
852 852  
495 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
853 853  
854 -In TTN, use can add a custom payload so it shows friendly reading
855 -
856 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
857 -
858 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
859 -
860 -
861 -
862 -== 2.5 Frequency Plans ==
863 -
864 -
865 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
866 -
867 867  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
868 868  
869 869  
870 -= 3. Configure SN50v3-LB =
500 += 3. Configure S31x-LB =
871 871  
872 872  == 3.1 Configure Methods ==
873 873  
874 874  
875 -SN50v3-LB supports below configure method:
505 +S31x-LB supports below configure method:
876 876  
877 877  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
878 878  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -891,7 +891,7 @@
891 891  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
892 892  
893 893  
894 -== 3.3 Commands special design for SN50v3-LB ==
524 +== 3.3 Commands special design for S31x-LB ==
895 895  
896 896  
897 897  These commands only valid for S31x-LB, as below:
... ... @@ -899,6 +899,7 @@
899 899  
900 900  === 3.3.1 Set Transmit Interval Time ===
901 901  
532 +
902 902  Feature: Change LoRaWAN End Node Transmit Interval.
903 903  
904 904  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -924,167 +924,118 @@
924 924  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
925 925  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
926 926  
927 -=== ===
928 -
929 929  === 3.3.2 Get Device Status ===
930 930  
931 -Send a LoRaWAN downlink to ask the device to send its status.
932 932  
561 +Send a LoRaWAN downlink to ask device send Alarm settings.
562 +
933 933  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
934 934  
935 935  Sensor will upload Device Status via FPORT=5. See payload section for detail.
936 936  
937 937  
938 -=== 3.3.3 Set Interrupt Mode ===
568 +=== 3.3.3 Set Temperature Alarm Threshold ===
939 939  
940 -Feature, Set Interrupt mode for GPIO_EXIT.
570 +* (% style="color:blue" %)**AT Command:**
941 941  
942 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
572 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
943 943  
944 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
945 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
946 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
947 -0
948 -OK
949 -the mode is 0 =Disable Interrupt
950 -)))
951 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
952 -Set Transmit Interval
953 -0. (Disable Interrupt),
954 -~1. (Trigger by rising and falling edge)
955 -2. (Trigger by falling edge)
956 -3. (Trigger by rising edge)
957 -)))|(% style="width:157px" %)OK
958 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
959 -Set Transmit Interval
574 +* When min=0, and max≠0, Alarm higher than max
575 +* When min≠0, and max=0, Alarm lower than min
576 +* When min≠0 and max≠0, Alarm higher than max or lower than min
960 960  
961 -trigger by rising edge.
962 -)))|(% style="width:157px" %)OK
963 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
578 +Example:
964 964  
965 -(% style="color:blue" %)**Downlink Command: 0x06**
580 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
966 966  
967 -Format: Command Code (0x06) followed by 3 bytes.
582 +* (% style="color:blue" %)**Downlink Payload:**
968 968  
969 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
584 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
970 970  
971 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
972 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
973 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
974 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
586 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
975 975  
976 -=== ===
977 977  
978 -=== 3.3.4 Set Power Output Duration ===
589 +=== 3.3.4 Set Humidity Alarm Threshold ===
979 979  
980 -Control the output duration 5V . Before each sampling, device will
591 +* (% style="color:blue" %)**AT Command:**
981 981  
982 -~1. first enable the power output to external sensor,
593 +(% style="color:#037691" %)**AT+SHHUM=min,max**
983 983  
984 -2. keep it on as per duration, read sensor value and construct uplink payload
595 +* When min=0, and max≠0, Alarm higher than max
596 +* When min≠0, and max=0, Alarm lower than min
597 +* When min≠0 and max≠0, Alarm higher than max or lower than min
985 985  
986 -3. final, close the power output.
599 +Example:
987 987  
988 -(% style="color:blue" %)**AT Command: AT+5VT**
601 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
989 989  
990 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
991 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
992 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
993 -500(default)
603 +* (% style="color:blue" %)**Downlink Payload:**
994 994  
995 -OK
996 -)))
997 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
998 -Close after a delay of 1000 milliseconds.
999 -)))|(% style="width:157px" %)OK
605 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
1000 1000  
1001 -(% style="color:blue" %)**Downlink Command: 0x07**
607 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
1002 1002  
1003 -Format: Command Code (0x07) followed by 2 bytes.
1004 1004  
1005 -The first and second bytes are the time to turn on.
610 +=== 3.3.5 Set Alarm Interval ===
1006 1006  
1007 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1008 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
612 +The shortest time of two Alarm packet. (unit: min)
1009 1009  
1010 -=== ===
614 +* (% style="color:blue" %)**AT Command:**
1011 1011  
1012 -=== 3.3.5 Set Weighing parameters ===
616 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
1013 1013  
1014 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
618 +* (% style="color:blue" %)**Downlink Payload:**
1015 1015  
1016 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
620 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
1017 1017  
1018 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1019 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1020 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1021 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1022 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1023 1023  
1024 -(% style="color:blue" %)**Downlink Command: 0x08**
623 +=== 3.3.6 Get Alarm settings ===
1025 1025  
1026 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1027 1027  
1028 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
626 +Send a LoRaWAN downlink to ask device send Alarm settings.
1029 1029  
1030 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
628 +* (% style="color:#037691" %)**Downlink Payload **(%%)0x0E 01
1031 1031  
1032 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1033 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1034 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
630 +**Example:**
1035 1035  
1036 -=== ===
632 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1037 1037  
1038 -=== 3.3.6 Set Digital pulse count value ===
1039 1039  
1040 -Feature: Set the pulse count value.
635 +**Explain:**
1041 1041  
1042 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
637 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1043 1043  
1044 -(% style="color:blue" %)**AT Command: AT+SETCNT**
639 +=== 3.3.7 Set Interrupt Mode ===
1045 1045  
1046 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1047 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1048 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1049 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1050 1050  
1051 -(% style="color:blue" %)**Downlink Command: 0x09**
642 +Feature, Set Interrupt mode for GPIO_EXIT.
1052 1052  
1053 -Format: Command Code (0x09) followed by 5 bytes.
644 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1054 1054  
1055 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1056 -
1057 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1058 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1059 -
1060 -=== ===
1061 -
1062 -=== 3.3.7 Set Workmode ===
1063 -
1064 -Feature: Switch working mode.
1065 -
1066 -(% style="color:blue" %)**AT Command: AT+MOD**
1067 -
1068 1068  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1069 1069  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1070 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
648 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
649 +0
1071 1071  OK
651 +the mode is 0 =Disable Interrupt
1072 1072  )))
1073 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1074 -OK
653 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
654 +Set Transmit Interval
655 +0. (Disable Interrupt),
656 +~1. (Trigger by rising and falling edge)
657 +2. (Trigger by falling edge)
658 +3. (Trigger by rising edge)
659 +)))|(% style="width:157px" %)OK
1075 1075  
1076 -Attention:Take effect after ATZ
1077 -)))
661 +(% style="color:blue" %)**Downlink Command: 0x06**
1078 1078  
1079 -(% style="color:blue" %)**Downlink Command: 0x0A**
663 +Format: Command Code (0x06) followed by 3 bytes.
1080 1080  
1081 -Format: Command Code (0x0A) followed by 1 bytes.
665 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1082 1082  
1083 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1084 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
667 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
668 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1085 1085  
1086 -= =
1087 -
1088 1088  = 4. Battery & Power Consumption =
1089 1089  
1090 1090  
... ... @@ -1113,10 +1113,7 @@
1113 1113  
1114 1114  = 6. FAQ =
1115 1115  
1116 -== 6.1 Where can i find source code of SN50v3-LB? ==
1117 1117  
1118 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1119 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1120 1120  
1121 1121  = 7. Order Info =
1122 1122  
... ... @@ -1158,4 +1158,4 @@
1158 1158  
1159 1159  
1160 1160  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1161 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
740 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0