Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 15 added, 0 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.ting - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,7 +27,6 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -41,8 +41,6 @@ 41 41 * Downlink to change configure 42 42 * 8500mAh Battery for long term use 43 43 44 - 45 - 46 46 == 1.3 Specification == 47 47 48 48 ... ... @@ -80,8 +80,6 @@ 80 80 * Sleep Mode: 5uA @ 3.3v 81 81 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 82 82 83 - 84 - 85 85 == 1.4 Sleep mode and working mode == 86 86 87 87 ... ... @@ -109,8 +109,6 @@ 109 109 ))) 110 110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 111 111 112 - 113 - 114 114 == 1.6 BLE connection == 115 115 116 116 ... ... @@ -129,7 +129,7 @@ 129 129 == 1.7 Pin Definitions == 130 130 131 131 132 -[[image:image-20230 513102034-2.png]]125 +[[image:image-20230610163213-1.png||height="404" width="699"]] 133 133 134 134 135 135 == 1.8 Mechanical == ... ... @@ -142,7 +142,7 @@ 142 142 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 143 143 144 144 145 -== Hole Option == 138 +== 1.9 Hole Option == 146 146 147 147 148 148 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -157,7 +157,7 @@ 157 157 == 2.1 How it works == 158 158 159 159 160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 161 161 162 162 163 163 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -165,7 +165,7 @@ 165 165 166 166 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 167 167 168 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.161 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 169 169 170 170 171 171 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -214,7 +214,7 @@ 214 214 === 2.3.1 Device Status, FPORT~=5 === 215 215 216 216 217 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 210 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 218 218 219 219 The Payload format is as below. 220 220 ... ... @@ -222,44 +222,44 @@ 222 222 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 223 223 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 224 224 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 225 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT218 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 226 226 227 227 Example parse in TTNv3 228 228 229 229 230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 231 231 232 232 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 233 233 234 234 (% style="color:#037691" %)**Frequency Band**: 235 235 236 - *0x01: EU868229 +0x01: EU868 237 237 238 - *0x02: US915231 +0x02: US915 239 239 240 - *0x03: IN865233 +0x03: IN865 241 241 242 - *0x04: AU915235 +0x04: AU915 243 243 244 - *0x05: KZ865237 +0x05: KZ865 245 245 246 - *0x06: RU864239 +0x06: RU864 247 247 248 - *0x07: AS923241 +0x07: AS923 249 249 250 - *0x08: AS923-1243 +0x08: AS923-1 251 251 252 - *0x09: AS923-2245 +0x09: AS923-2 253 253 254 - *0x0a: AS923-3247 +0x0a: AS923-3 255 255 256 - *0x0b: CN470249 +0x0b: CN470 257 257 258 - *0x0c: EU433251 +0x0c: EU433 259 259 260 - *0x0d: KR920253 +0x0d: KR920 261 261 262 - *0x0e: MA869255 +0x0e: MA869 263 263 264 264 265 265 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -283,21 +283,22 @@ 283 283 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 284 284 285 285 286 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 279 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 287 287 288 288 For example: 289 289 290 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 283 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 291 291 292 292 293 293 (% style="color:red" %) **Important Notice:** 294 294 295 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 296 -1. All modes share the same Payload Explanation from HERE. 297 -1. By default, the device will send an uplink message every 20 minutes. 288 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 298 298 290 +2. All modes share the same Payload Explanation from HERE. 299 299 292 +3. By default, the device will send an uplink message every 20 minutes. 300 300 294 + 301 301 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 302 302 303 303 ... ... @@ -305,7 +305,7 @@ 305 305 306 306 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 307 307 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 308 -| **Value**|Bat|(% style="width:191px" %)(((302 +|Value|Bat|(% style="width:191px" %)((( 309 309 Temperature(DS18B20)(PC13) 310 310 )))|(% style="width:78px" %)((( 311 311 ADC(PA4) ... ... @@ -320,7 +320,6 @@ 320 320 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 321 321 322 322 323 - 324 324 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 325 325 326 326 ... ... @@ -328,7 +328,7 @@ 328 328 329 329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 330 330 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 -| **Value**|BAT|(% style="width:196px" %)(((324 +|Value|BAT|(% style="width:196px" %)((( 332 332 Temperature(DS18B20)(PC13) 333 333 )))|(% style="width:87px" %)((( 334 334 ADC(PA4) ... ... @@ -335,9 +335,8 @@ 335 335 )))|(% style="width:189px" %)((( 336 336 Digital in(PB15) & Digital Interrupt(PA8) 337 337 )))|(% style="width:208px" %)((( 338 -Distance measure by:1) LIDAR-Lite V3HP 339 -Or 340 -2) Ultrasonic Sensor 331 +Distance measure by: 1) LIDAR-Lite V3HP 332 +Or 2) Ultrasonic Sensor 341 341 )))|(% style="width:117px" %)Reserved 342 342 343 343 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -350,7 +350,7 @@ 350 350 351 351 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 352 352 353 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 345 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 354 354 355 355 [[image:image-20230512173903-6.png||height="596" width="715"]] 356 356 ... ... @@ -359,7 +359,7 @@ 359 359 360 360 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 361 361 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 362 -| **Value**|BAT|(% style="width:183px" %)(((354 +|Value|BAT|(% style="width:183px" %)((( 363 363 Temperature(DS18B20)(PC13) 364 364 )))|(% style="width:173px" %)((( 365 365 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -367,8 +367,7 @@ 367 367 ADC(PA4) 368 368 )))|(% style="width:323px" %)((( 369 369 Distance measure by:1)TF-Mini plus LiDAR 370 -Or 371 -2) TF-Luna LiDAR 362 +Or 2) TF-Luna LiDAR 372 372 )))|(% style="width:188px" %)Distance signal strength 373 373 374 374 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] ... ... @@ -376,7 +376,7 @@ 376 376 377 377 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 378 378 379 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 370 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 380 380 381 381 [[image:image-20230512180609-7.png||height="555" width="802"]] 382 382 ... ... @@ -383,9 +383,9 @@ 383 383 384 384 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 385 385 386 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 387 387 388 -[[image:image-20230 513105207-4.png||height="469" width="802"]]379 +[[image:image-20230610170047-1.png||height="452" width="799"]] 389 389 390 390 391 391 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== ... ... @@ -397,7 +397,7 @@ 397 397 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 398 398 **Size(bytes)** 399 399 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 400 -| **Value**|(% style="width:68px" %)(((391 +|Value|(% style="width:68px" %)((( 401 401 ADC1(PA4) 402 402 )))|(% style="width:75px" %)((( 403 403 ADC2(PA5) ... ... @@ -421,7 +421,7 @@ 421 421 422 422 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 423 423 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 424 -| **Value**|BAT|(% style="width:186px" %)(((415 +|Value|BAT|(% style="width:186px" %)((( 425 425 Temperature1(DS18B20)(PC13) 426 426 )))|(% style="width:82px" %)((( 427 427 ADC(PA4) ... ... @@ -432,10 +432,10 @@ 432 432 433 433 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 434 434 426 + 435 435 [[image:image-20230513134006-1.png||height="559" width="736"]] 436 436 437 437 438 - 439 439 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 440 440 441 441 ... ... @@ -443,8 +443,8 @@ 443 443 444 444 Each HX711 need to be calibrated before used. User need to do below two steps: 445 445 446 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 447 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 437 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 438 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 448 448 1. ((( 449 449 Weight has 4 bytes, the unit is g. 450 450 ... ... @@ -454,7 +454,7 @@ 454 454 455 455 For example: 456 456 457 -**AT+GETSENSORVALUE =0** 448 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 458 458 459 459 Response: Weight is 401 g 460 460 ... ... @@ -464,7 +464,7 @@ 464 464 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 465 465 **Size(bytes)** 466 466 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 467 -| **Value**|BAT|(% style="width:193px" %)(((458 +|Value|BAT|(% style="width:193px" %)((( 468 468 Temperature(DS18B20)(PC13) 469 469 )))|(% style="width:85px" %)((( 470 470 ADC(PA4) ... ... @@ -475,7 +475,6 @@ 475 475 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 476 476 477 477 478 - 479 479 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 480 480 481 481 ... ... @@ -490,7 +490,7 @@ 490 490 491 491 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 492 492 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 493 -| **Value**|BAT|(% style="width:256px" %)(((483 +|Value|BAT|(% style="width:256px" %)((( 494 494 Temperature(DS18B20)(PC13) 495 495 )))|(% style="width:108px" %)((( 496 496 ADC(PA4) ... ... @@ -503,7 +503,6 @@ 503 503 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 504 504 505 505 506 - 507 507 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 508 508 509 509 ... ... @@ -511,7 +511,7 @@ 511 511 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 512 512 **Size(bytes)** 513 513 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 514 -| **Value**|BAT|(% style="width:188px" %)(((503 +|Value|BAT|(% style="width:188px" %)((( 515 515 Temperature(DS18B20) 516 516 (PC13) 517 517 )))|(% style="width:83px" %)((( ... ... @@ -530,7 +530,7 @@ 530 530 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 531 531 **Size(bytes)** 532 532 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 533 -| **Value**|BAT|(% style="width:207px" %)(((522 +|Value|BAT|(% style="width:207px" %)((( 534 534 Temperature(DS18B20) 535 535 (PC13) 536 536 )))|(% style="width:94px" %)((( ... ... @@ -553,7 +553,7 @@ 553 553 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 554 554 **Size(bytes)** 555 555 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 556 -| **Value**|BAT|(((545 +|Value|BAT|((( 557 557 Temperature 558 558 (DS18B20)(PC13) 559 559 )))|((( ... ... @@ -589,6 +589,87 @@ 589 589 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 590 590 591 591 581 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 582 + 583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 + 585 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 + 587 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 + 589 + 590 +===== 2.3.2.10.a Uplink, PWM input capture ===== 591 + 592 + 593 +[[image:image-20230817172209-2.png||height="439" width="683"]] 594 + 595 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 596 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 +|Value|Bat|(% style="width:191px" %)((( 598 +Temperature(DS18B20)(PC13) 599 +)))|(% style="width:78px" %)((( 600 +ADC(PA4) 601 +)))|(% style="width:135px" %)((( 602 +PWM_Setting 603 + 604 +&Digital Interrupt(PA8) 605 +)))|(% style="width:70px" %)((( 606 +Pulse period 607 +)))|(% style="width:89px" %)((( 608 +Duration of high level 609 +))) 610 + 611 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 612 + 613 + 614 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 615 + 616 +**Frequency:** 617 + 618 +(% class="MsoNormal" %) 619 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 620 + 621 +(% class="MsoNormal" %) 622 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 623 + 624 + 625 +(% class="MsoNormal" %) 626 +**Duty cycle:** 627 + 628 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 629 + 630 +[[image:image-20230818092200-1.png||height="344" width="627"]] 631 + 632 +===== 2.3.2.10.b Uplink, PWM output ===== 633 + 634 +[[image:image-20230817172209-2.png||height="439" width="683"]] 635 + 636 + 637 + 638 + 639 + 640 + 641 +===== 2.3.2.10.c Downlink, PWM output ===== 642 + 643 + 644 +[[image:image-20230817173800-3.png||height="412" width="685"]] 645 + 646 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 647 + 648 + xx xx xx is the output frequency, the unit is HZ. 649 + 650 + yy is the duty cycle of the output, the unit is %. 651 + 652 + zz zz is the time delay of the output, the unit is ms. 653 + 654 + 655 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 656 + 657 +The oscilloscope displays as follows: 658 + 659 +[[image:image-20230817173858-5.png||height="694" width="921"]] 660 + 661 + 592 592 === 2.3.3 Decode payload === 593 593 594 594 ... ... @@ -598,13 +598,13 @@ 598 598 599 599 The payload decoder function for TTN V3 are here: 600 600 601 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 671 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 602 602 603 603 604 604 ==== 2.3.3.1 Battery Info ==== 605 605 606 606 607 -Check the battery voltage for SN50v3. 677 +Check the battery voltage for SN50v3-LB. 608 608 609 609 Ex1: 0x0B45 = 2885mV 610 610 ... ... @@ -652,19 +652,24 @@ 652 652 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 653 653 654 654 655 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 725 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 656 656 657 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 727 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 658 658 659 659 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 660 660 731 + 661 661 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 662 662 663 663 735 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 736 + 737 +[[image:image-20230811113449-1.png||height="370" width="608"]] 738 + 664 664 ==== 2.3.3.5 Digital Interrupt ==== 665 665 666 666 667 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 742 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 668 668 669 669 (% style="color:blue" %)** Interrupt connection method:** 670 670 ... ... @@ -677,18 +677,18 @@ 677 677 678 678 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 679 679 680 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.755 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 681 681 682 682 683 683 (% style="color:blue" %)**Below is the installation example:** 684 684 685 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50 _v3 as follows:760 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 686 686 687 687 * ((( 688 -One pin to SN50 _v3's PA8 pin763 +One pin to SN50v3-LB's PA8 pin 689 689 ))) 690 690 * ((( 691 -The other pin to SN50 _v3's VDD pin766 +The other pin to SN50v3-LB's VDD pin 692 692 ))) 693 693 694 694 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -705,7 +705,7 @@ 705 705 706 706 The command is: 707 707 708 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 783 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 709 709 710 710 Below shows some screen captures in TTN V3: 711 711 ... ... @@ -712,7 +712,7 @@ 712 712 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 713 713 714 714 715 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 790 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 716 716 717 717 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 718 718 ... ... @@ -724,12 +724,13 @@ 724 724 725 725 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 726 726 727 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.802 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 728 728 804 + 729 729 Below is the connection to SHT20/ SHT31. The connection is as below: 730 730 807 +[[image:image-20230610170152-2.png||height="501" width="846"]] 731 731 732 -[[image:image-20230513103633-3.png||height="448" width="716"]] 733 733 734 734 The device will be able to get the I2C sensor data now and upload to IoT Server. 735 735 ... ... @@ -757,7 +757,7 @@ 757 757 758 758 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 759 759 760 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.836 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 761 761 762 762 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 763 763 ... ... @@ -766,7 +766,7 @@ 766 766 [[image:image-20230512173903-6.png||height="596" width="715"]] 767 767 768 768 769 -Connect to the SN50 _v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).845 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 770 770 771 771 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 772 772 ... ... @@ -778,13 +778,13 @@ 778 778 ==== 2.3.3.9 Battery Output - BAT pin ==== 779 779 780 780 781 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 857 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 782 782 783 783 784 784 ==== 2.3.3.10 +5V Output ==== 785 785 786 786 787 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 863 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 788 788 789 789 The 5V output time can be controlled by AT Command. 790 790 ... ... @@ -792,7 +792,7 @@ 792 792 793 793 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 794 794 795 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 871 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 796 796 797 797 798 798 ==== 2.3.3.11 BH1750 Illumination Sensor ==== ... ... @@ -806,9 +806,40 @@ 806 806 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 807 807 808 808 809 -==== 2.3.3.12 W orkingMOD ====885 +==== 2.3.3.12 PWM MOD ==== 810 810 811 811 888 +* ((( 889 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 890 +))) 891 +* ((( 892 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 893 +))) 894 + 895 + [[image:image-20230817183249-3.png||height="320" width="417"]] 896 + 897 +* ((( 898 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 899 +))) 900 +* ((( 901 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 902 +))) 903 +* ((( 904 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 905 + 906 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 907 + 908 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 909 + 910 +b) If the output duration is more than 30 seconds, better to use external power source. 911 + 912 + 913 + 914 +))) 915 + 916 +==== 2.3.3.13 Working MOD ==== 917 + 918 + 812 812 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 813 813 814 814 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -824,9 +824,8 @@ 824 824 * 6: MOD7 825 825 * 7: MOD8 826 826 * 8: MOD9 934 +* 9: MOD10 827 827 828 - 829 - 830 830 == 2.4 Payload Decoder file == 831 831 832 832 ... ... @@ -856,8 +856,6 @@ 856 856 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 857 857 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 858 858 859 - 860 - 861 861 == 3.2 General Commands == 862 862 863 863 ... ... @@ -874,7 +874,7 @@ 874 874 == 3.3 Commands special design for SN50v3-LB == 875 875 876 876 877 -These commands only valid for S3 1x-LB, as below:981 +These commands only valid for SN50v3-LB, as below: 878 878 879 879 880 880 === 3.3.1 Set Transmit Interval Time === ... ... @@ -885,7 +885,7 @@ 885 885 (% style="color:blue" %)**AT Command: AT+TDC** 886 886 887 887 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 888 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 992 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 889 889 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 890 890 30000 891 891 OK ... ... @@ -905,16 +905,14 @@ 905 905 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 906 906 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 907 907 908 - 909 - 910 910 === 3.3.2 Get Device Status === 911 911 912 912 913 913 Send a LoRaWAN downlink to ask the device to send its status. 914 914 915 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 011017 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 916 916 917 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 1019 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 918 918 919 919 920 920 === 3.3.3 Set Interrupt Mode === ... ... @@ -925,7 +925,7 @@ 925 925 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 926 926 927 927 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 928 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1030 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 929 929 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 930 930 0 931 931 OK ... ... @@ -955,8 +955,6 @@ 955 955 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 956 956 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 957 957 958 - 959 - 960 960 === 3.3.4 Set Power Output Duration === 961 961 962 962 ... ... @@ -971,7 +971,7 @@ 971 971 (% style="color:blue" %)**AT Command: AT+5VT** 972 972 973 973 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 974 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1074 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 975 975 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 976 976 500(default) 977 977 OK ... ... @@ -989,8 +989,6 @@ 989 989 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 990 990 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 991 991 992 - 993 - 994 994 === 3.3.5 Set Weighing parameters === 995 995 996 996 ... ... @@ -999,7 +999,7 @@ 999 999 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1000 1000 1001 1001 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1002 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1100 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1003 1003 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1004 1004 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1005 1005 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1016,8 +1016,6 @@ 1016 1016 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1017 1017 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1018 1018 1019 - 1020 - 1021 1021 === 3.3.6 Set Digital pulse count value === 1022 1022 1023 1023 ... ... @@ -1028,7 +1028,7 @@ 1028 1028 (% style="color:blue" %)**AT Command: AT+SETCNT** 1029 1029 1030 1030 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1031 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1127 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1032 1032 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1033 1033 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1034 1034 ... ... @@ -1041,8 +1041,6 @@ 1041 1041 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1042 1042 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1043 1043 1044 - 1045 - 1046 1046 === 3.3.7 Set Workmode === 1047 1047 1048 1048 ... ... @@ -1051,7 +1051,7 @@ 1051 1051 (% style="color:blue" %)**AT Command: AT+MOD** 1052 1052 1053 1053 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1054 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1148 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1055 1055 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1056 1056 OK 1057 1057 ))) ... ... @@ -1067,11 +1067,101 @@ 1067 1067 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1068 1068 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1069 1069 1164 +(% id="H3.3.8PWMsetting" %) 1165 +=== 3.3.8 PWM setting === 1070 1070 1071 1071 1072 -= 4. Battery&PowerConsumption=1168 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1073 1073 1170 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1074 1074 1172 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1173 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1174 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1175 +0(default) 1176 + 1177 +OK 1178 +))) 1179 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1180 +OK 1181 + 1182 +))) 1183 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1184 + 1185 +(% style="color:blue" %)**Downlink Command: 0x0C** 1186 + 1187 +Format: Command Code (0x0C) followed by 1 bytes. 1188 + 1189 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1190 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1191 + 1192 + 1193 + 1194 +(% class="mark" %)Feature: Set the time acquisition unit for PWM output. 1195 + 1196 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1197 + 1198 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1199 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1200 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1201 +0,0,0(default) 1202 + 1203 +OK 1204 +))) 1205 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1206 +OK 1207 + 1208 +))) 1209 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1210 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1211 + 1212 + 1213 +)))|(% style="width:137px" %)((( 1214 +OK 1215 +))) 1216 + 1217 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1218 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1219 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1220 +AT+PWMOUT=a,b,c 1221 + 1222 + 1223 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1224 +Set PWM output time, output frequency and output duty cycle.((( 1225 + 1226 +))) 1227 + 1228 +((( 1229 + 1230 +))) 1231 +)))|(% style="width:242px" %)((( 1232 +a: Output time (unit: seconds) 1233 + 1234 +The value ranges from 0 to 65535. 1235 + 1236 +When a=65535, PWM will always output. 1237 +))) 1238 +|(% style="width:242px" %)((( 1239 +b: Output frequency (unit: HZ) 1240 +))) 1241 +|(% style="width:242px" %)((( 1242 +c: Output duty cycle (unit: %) 1243 + 1244 +The value ranges from 0 to 100. 1245 +))) 1246 + 1247 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1248 + 1249 +Format: Command Code (0x0B01) followed by 6 bytes. 1250 + 1251 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1252 + 1253 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1254 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1255 + 1256 += 4. Battery & Power Cons = 1257 + 1258 + 1075 1075 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1076 1076 1077 1077 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . ... ... @@ -1081,22 +1081,19 @@ 1081 1081 1082 1082 1083 1083 (% class="wikigeneratedid" %) 1084 -User can change firmware SN50v3-LB to: 1268 +**User can change firmware SN50v3-LB to:** 1085 1085 1086 1086 * Change Frequency band/ region. 1087 1087 * Update with new features. 1088 1088 * Fix bugs. 1089 1089 1090 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1274 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]** 1091 1091 1276 +**Methods to Update Firmware:** 1092 1092 1093 -Methods to Update Firmware: 1278 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1279 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1094 1094 1095 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1096 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1097 - 1098 - 1099 - 1100 1100 = 6. FAQ = 1101 1101 1102 1102 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1105,8 +1105,22 @@ 1105 1105 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1106 1106 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1107 1107 1289 +== 6.2 How to generate PWM Output in SN50v3-LB? == 1108 1108 1109 1109 1292 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1293 + 1294 + 1295 +== 6.3 How to put several sensors to a SN50v3-LB? == 1296 + 1297 + 1298 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1299 + 1300 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1301 + 1302 +[[image:image-20230810121434-1.png||height="242" width="656"]] 1303 + 1304 + 1110 1110 = 7. Order Info = 1111 1111 1112 1112 ... ... @@ -1130,8 +1130,6 @@ 1130 1130 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1131 1131 * (% style="color:red" %)**NH**(%%): No Hole 1132 1132 1133 - 1134 - 1135 1135 = 8. Packing Info = 1136 1136 1137 1137 ... ... @@ -1146,8 +1146,6 @@ 1146 1146 * Package Size / pcs : cm 1147 1147 * Weight / pcs : g 1148 1148 1149 - 1150 - 1151 1151 = 9. Support = 1152 1152 1153 1153
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content