<
From version < 43.61 >
edited by Xiaoling
on 2023/05/16 17:08
To version < 44.3 >
edited by Xiaoling
on 2023/05/18 09:02
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -41,8 +41,6 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 48  
... ... @@ -80,8 +80,6 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -109,8 +109,6 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 -
113 -
114 114  == 1.6 BLE connection ==
115 115  
116 116  
... ... @@ -157,7 +157,7 @@
157 157  == 2.1 How it works ==
158 158  
159 159  
160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161 161  
162 162  
163 163  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -165,7 +165,7 @@
165 165  
166 166  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
167 167  
168 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
169 169  
170 170  
171 171  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -214,7 +214,7 @@
214 214  === 2.3.1 Device Status, FPORT~=5 ===
215 215  
216 216  
217 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
211 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
218 218  
219 219  The Payload format is as below.
220 220  
... ... @@ -227,7 +227,7 @@
227 227  Example parse in TTNv3
228 228  
229 229  
230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
224 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
231 231  
232 232  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233 233  
... ... @@ -283,21 +283,22 @@
283 283  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284 284  
285 285  
286 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
287 287  
288 288  For example:
289 289  
290 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
291 291  
292 292  
293 293  (% style="color:red" %) **Important Notice:**
294 294  
295 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
296 -1. All modes share the same Payload Explanation from HERE.
297 -1. By default, the device will send an uplink message every 20 minutes.
289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
298 298  
291 +2. All modes share the same Payload Explanation from HERE.
299 299  
293 +3. By default, the device will send an uplink message every 20 minutes.
300 300  
295 +
301 301  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
302 302  
303 303  
... ... @@ -350,7 +350,7 @@
350 350  
351 351  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
352 352  
353 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
348 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
354 354  
355 355  [[image:image-20230512173903-6.png||height="596" width="715"]]
356 356  
... ... @@ -376,7 +376,7 @@
376 376  
377 377  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
378 378  
379 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
374 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
380 380  
381 381  [[image:image-20230512180609-7.png||height="555" width="802"]]
382 382  
... ... @@ -383,7 +383,7 @@
383 383  
384 384  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
385 385  
386 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
387 387  
388 388  [[image:image-20230513105207-4.png||height="469" width="802"]]
389 389  
... ... @@ -443,8 +443,8 @@
443 443  
444 444  Each HX711 need to be calibrated before used. User need to do below two steps:
445 445  
446 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
447 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
441 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
448 448  1. (((
449 449  Weight has 4 bytes, the unit is g.
450 450  
... ... @@ -454,7 +454,7 @@
454 454  
455 455  For example:
456 456  
457 -**AT+GETSENSORVALUE =0**
452 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
458 458  
459 459  Response:  Weight is 401 g
460 460  
... ... @@ -598,13 +598,13 @@
598 598  
599 599  The payload decoder function for TTN V3 are here:
600 600  
601 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
596 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
602 602  
603 603  
604 604  ==== 2.3.3.1 Battery Info ====
605 605  
606 606  
607 -Check the battery voltage for SN50v3.
602 +Check the battery voltage for SN50v3-LB.
608 608  
609 609  Ex1: 0x0B45 = 2885mV
610 610  
... ... @@ -658,6 +658,7 @@
658 658  
659 659  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
660 660  
656 +
661 661  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
662 662  
663 663  
... ... @@ -664,7 +664,7 @@
664 664  ==== 2.3.3.5 Digital Interrupt ====
665 665  
666 666  
667 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
663 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
668 668  
669 669  (% style="color:blue" %)** Interrupt connection method:**
670 670  
... ... @@ -677,18 +677,18 @@
677 677  
678 678  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
679 679  
680 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
676 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
681 681  
682 682  
683 683  (% style="color:blue" %)**Below is the installation example:**
684 684  
685 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
681 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
686 686  
687 687  * (((
688 -One pin to SN50_v3's PA8 pin
684 +One pin to SN50v3-LB's PA8 pin
689 689  )))
690 690  * (((
691 -The other pin to SN50_v3's VDD pin
687 +The other pin to SN50v3-LB's VDD pin
692 692  )))
693 693  
694 694  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -705,7 +705,7 @@
705 705  
706 706  The command is:
707 707  
708 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
704 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
709 709  
710 710  Below shows some screen captures in TTN V3:
711 711  
... ... @@ -724,11 +724,11 @@
724 724  
725 725  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
726 726  
727 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
723 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
728 728  
725 +
729 729  Below is the connection to SHT20/ SHT31. The connection is as below:
730 730  
731 -
732 732  [[image:image-20230513103633-3.png||height="448" width="716"]]
733 733  
734 734  The device will be able to get the I2C sensor data now and upload to IoT Server.
... ... @@ -757,7 +757,7 @@
757 757  
758 758  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
759 759  
760 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
756 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
761 761  
762 762  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
763 763  
... ... @@ -766,7 +766,7 @@
766 766  [[image:image-20230512173903-6.png||height="596" width="715"]]
767 767  
768 768  
769 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
765 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
770 770  
771 771  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
772 772  
... ... @@ -784,7 +784,7 @@
784 784  ==== 2.3.3.10  +5V Output ====
785 785  
786 786  
787 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
783 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
788 788  
789 789  The 5V output time can be controlled by AT Command.
790 790  
... ... @@ -825,8 +825,6 @@
825 825  * 7: MOD8
826 826  * 8: MOD9
827 827  
828 -
829 -
830 830  == 2.4 Payload Decoder file ==
831 831  
832 832  
... ... @@ -856,8 +856,6 @@
856 856  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
857 857  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
858 858  
859 -
860 -
861 861  == 3.2 General Commands ==
862 862  
863 863  
... ... @@ -874,7 +874,7 @@
874 874  == 3.3 Commands special design for SN50v3-LB ==
875 875  
876 876  
877 -These commands only valid for S31x-LB, as below:
869 +These commands only valid for SN50v3-LB, as below:
878 878  
879 879  
880 880  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -905,8 +905,6 @@
905 905  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
906 906  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
907 907  
908 -
909 -
910 910  === 3.3.2 Get Device Status ===
911 911  
912 912  
... ... @@ -955,8 +955,6 @@
955 955  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
956 956  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
957 957  
958 -
959 -
960 960  === 3.3.4 Set Power Output Duration ===
961 961  
962 962  
... ... @@ -989,8 +989,6 @@
989 989  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
990 990  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
991 991  
992 -
993 -
994 994  === 3.3.5 Set Weighing parameters ===
995 995  
996 996  
... ... @@ -1016,8 +1016,6 @@
1016 1016  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1017 1017  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1018 1018  
1019 -
1020 -
1021 1021  === 3.3.6 Set Digital pulse count value ===
1022 1022  
1023 1023  
... ... @@ -1041,8 +1041,6 @@
1041 1041  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1042 1042  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1043 1043  
1044 -
1045 -
1046 1046  === 3.3.7 Set Workmode ===
1047 1047  
1048 1048  
... ... @@ -1067,8 +1067,6 @@
1067 1067  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1068 1068  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1069 1069  
1070 -
1071 -
1072 1072  = 4. Battery & Power Consumption =
1073 1073  
1074 1074  
... ... @@ -1095,8 +1095,6 @@
1095 1095  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1096 1096  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1097 1097  
1098 -
1099 -
1100 1100  = 6. FAQ =
1101 1101  
1102 1102  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1105,8 +1105,6 @@
1105 1105  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1106 1106  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1107 1107  
1108 -
1109 -
1110 1110  = 7. Order Info =
1111 1111  
1112 1112  
... ... @@ -1130,8 +1130,6 @@
1130 1130  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1131 1131  * (% style="color:red" %)**NH**(%%): No Hole
1132 1132  
1133 -
1134 -
1135 1135  = 8. ​Packing Info =
1136 1136  
1137 1137  
... ... @@ -1146,8 +1146,6 @@
1146 1146  * Package Size / pcs : cm
1147 1147  * Weight / pcs : g
1148 1148  
1149 -
1150 -
1151 1151  = 9. Support =
1152 1152  
1153 1153  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0