Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -304,7 +304,7 @@ 304 304 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 305 305 306 306 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 307 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width: 50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**307 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 308 308 |**Value**|Bat|(% style="width:191px" %)((( 309 309 Temperature(DS18B20)(PC13) 310 310 )))|(% style="width:78px" %)((( ... ... @@ -327,7 +327,7 @@ 327 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 328 328 329 329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 330 -|(% style="background-color:#d9e2f3; color:#0070c0; width: 50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 331 |**Value**|BAT|(% style="width:196px" %)((( 332 332 Temperature(DS18B20)(PC13) 333 333 )))|(% style="width:87px" %)((( ... ... @@ -336,8 +336,7 @@ 336 336 Digital in(PB15) & Digital Interrupt(PA8) 337 337 )))|(% style="width:208px" %)((( 338 338 Distance measure by:1) LIDAR-Lite V3HP 339 -Or 340 -2) Ultrasonic Sensor 339 +Or 2) Ultrasonic Sensor 341 341 )))|(% style="width:117px" %)Reserved 342 342 343 343 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -396,7 +396,7 @@ 396 396 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 397 397 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 398 398 **Size(bytes)** 399 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1398 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 400 400 |**Value**|(% style="width:68px" %)((( 401 401 ADC1(PA4) 402 402 )))|(% style="width:75px" %)((( ... ... @@ -447,9 +447,6 @@ 447 447 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 448 448 1. ((( 449 449 Weight has 4 bytes, the unit is g. 450 - 451 - 452 - 453 453 ))) 454 454 455 455 For example: ... ... @@ -465,11 +465,13 @@ 465 465 **Size(bytes)** 466 466 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 467 467 |**Value**|BAT|(% style="width:193px" %)((( 468 -Temperature(DS18B20)(PC13) 464 +Temperature(DS18B20) 465 +(PC13) 469 469 )))|(% style="width:85px" %)((( 470 470 ADC(PA4) 471 471 )))|(% style="width:186px" %)((( 472 -Digital in(PB15) & Digital Interrupt(PA8) 469 +Digital in(PB15) & 470 +Digital Interrupt(PA8) 473 473 )))|(% style="width:100px" %)Weight 474 474 475 475 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] ... ... @@ -485,11 +485,10 @@ 485 485 486 486 [[image:image-20230512181814-9.png||height="543" width="697"]] 487 487 488 - 489 489 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 490 490 491 491 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 492 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**489 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 493 493 |**Value**|BAT|(% style="width:256px" %)((( 494 494 Temperature(DS18B20)(PC13) 495 495 )))|(% style="width:108px" %)((( ... ... @@ -529,7 +529,7 @@ 529 529 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 530 530 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 531 531 **Size(bytes)** 532 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2529 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 533 533 |**Value**|BAT|(% style="width:207px" %)((( 534 534 Temperature(DS18B20) 535 535 (PC13) ... ... @@ -552,19 +552,19 @@ 552 552 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 553 553 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 554 554 **Size(bytes)** 555 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4552 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 556 556 |**Value**|BAT|((( 557 -Temperature 558 -( DS18B20)(PC13)554 +Temperature1(DS18B20) 555 +(PC13) 559 559 )))|((( 560 -Temperature2 561 -( DS18B20)(PB9)557 +Temperature2(DS18B20) 558 +(PB9) 562 562 )))|((( 563 563 Digital Interrupt 564 564 (PB15) 565 565 )))|(% style="width:193px" %)((( 566 -Temperature3 567 -( DS18B20)(PB8)563 +Temperature3(DS18B20) 564 +(PB8) 568 568 )))|(% style="width:78px" %)((( 569 569 Count1(PA8) 570 570 )))|(% style="width:78px" %)((( ... ... @@ -622,7 +622,6 @@ 622 622 623 623 [[image:image-20230512180718-8.png||height="538" width="647"]] 624 624 625 - 626 626 (% style="color:blue" %)**Example**: 627 627 628 628 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree ... ... @@ -634,7 +634,6 @@ 634 634 635 635 ==== 2.3.3.3 Digital Input ==== 636 636 637 - 638 638 The digital input for pin PB15, 639 639 640 640 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -644,14 +644,11 @@ 644 644 ((( 645 645 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 646 646 647 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 648 - 649 - 642 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 650 650 ))) 651 651 652 652 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 653 653 654 - 655 655 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 656 656 657 657 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -658,12 +658,11 @@ 658 658 659 659 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 660 660 661 -(% style="color:red" %)**Note: **653 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 662 662 663 663 664 664 ==== 2.3.3.5 Digital Interrupt ==== 665 665 666 - 667 667 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 668 668 669 669 (% style="color:blue" %)** Interrupt connection method:** ... ... @@ -670,7 +670,6 @@ 670 670 671 671 [[image:image-20230513105351-5.png||height="147" width="485"]] 672 672 673 - 674 674 (% style="color:blue" %)**Example to use with door sensor :** 675 675 676 676 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -679,9 +679,8 @@ 679 679 680 680 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 681 681 672 +(% style="color:blue" %)** Below is the installation example:** 682 682 683 -(% style="color:blue" %)**Below is the installation example:** 684 - 685 685 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 686 686 687 687 * ((( ... ... @@ -693,7 +693,7 @@ 693 693 694 694 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 695 695 696 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.685 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 697 697 698 698 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 699 699 ... ... @@ -711,7 +711,6 @@ 711 711 712 712 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 713 713 714 - 715 715 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 716 716 717 717 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; ... ... @@ -719,7 +719,6 @@ 719 719 720 720 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 721 721 722 - 723 723 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 724 724 725 725 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. ... ... @@ -748,13 +748,11 @@ 748 748 749 749 ==== 2.3.3.7 Distance Reading ==== 750 750 751 - 752 752 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 753 753 754 754 755 755 ==== 2.3.3.8 Ultrasonic Sensor ==== 756 756 757 - 758 758 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 759 759 760 760 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. ... ... @@ -765,7 +765,6 @@ 765 765 766 766 [[image:image-20230512173903-6.png||height="596" width="715"]] 767 767 768 - 769 769 Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 770 770 771 771 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. ... ... @@ -775,15 +775,14 @@ 775 775 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 776 776 777 777 762 + 778 778 ==== 2.3.3.9 Battery Output - BAT pin ==== 779 779 780 - 781 781 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 782 782 783 783 784 784 ==== 2.3.3.10 +5V Output ==== 785 785 786 - 787 787 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 788 788 789 789 The 5V output time can be controlled by AT Command. ... ... @@ -795,20 +795,18 @@ 795 795 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 796 796 797 797 781 + 798 798 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 799 799 800 - 801 801 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 802 802 803 803 [[image:image-20230512172447-4.png||height="416" width="712"]] 804 804 805 - 806 806 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 807 807 808 808 809 809 ==== 2.3.3.12 Working MOD ==== 810 810 811 - 812 812 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 813 813 814 814 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -836,6 +836,7 @@ 836 836 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 837 837 838 838 820 + 839 839 == 2.5 Frequency Plans == 840 840 841 841 ... ... @@ -855,7 +855,6 @@ 855 855 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 856 856 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 857 857 858 - 859 859 == 3.2 General Commands == 860 860 861 861 ... ... @@ -877,7 +877,6 @@ 877 877 878 878 === 3.3.1 Set Transmit Interval Time === 879 879 880 - 881 881 Feature: Change LoRaWAN End Node Transmit Interval. 882 882 883 883 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -906,7 +906,6 @@ 906 906 907 907 === 3.3.2 Get Device Status === 908 908 909 - 910 910 Send a LoRaWAN downlink to ask the device to send its status. 911 911 912 912 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 ... ... @@ -916,7 +916,6 @@ 916 916 917 917 === 3.3.3 Set Interrupt Mode === 918 918 919 - 920 920 Feature, Set Interrupt mode for GPIO_EXIT. 921 921 922 922 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -937,6 +937,7 @@ 937 937 )))|(% style="width:157px" %)OK 938 938 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 939 939 Set Transmit Interval 918 + 940 940 trigger by rising edge. 941 941 )))|(% style="width:157px" %)OK 942 942 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -955,7 +955,6 @@ 955 955 956 956 === 3.3.4 Set Power Output Duration === 957 957 958 - 959 959 Control the output duration 5V . Before each sampling, device will 960 960 961 961 ~1. first enable the power output to external sensor, ... ... @@ -988,7 +988,6 @@ 988 988 989 989 === 3.3.5 Set Weighing parameters === 990 990 991 - 992 992 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 993 993 994 994 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -1014,7 +1014,6 @@ 1014 1014 1015 1015 === 3.3.6 Set Digital pulse count value === 1016 1016 1017 - 1018 1018 Feature: Set the pulse count value. 1019 1019 1020 1020 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1038,7 +1038,6 @@ 1038 1038 1039 1039 === 3.3.7 Set Workmode === 1040 1040 1041 - 1042 1042 Feature: Switch working mode. 1043 1043 1044 1044 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1087,16 +1087,13 @@ 1087 1087 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1088 1088 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1089 1089 1090 - 1091 1091 = 6. FAQ = 1092 1092 1093 1093 == 6.1 Where can i find source code of SN50v3-LB? == 1094 1094 1095 - 1096 1096 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1097 1097 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1098 1098 1099 - 1100 1100 = 7. Order Info = 1101 1101 1102 1102 ... ... @@ -1120,10 +1120,8 @@ 1120 1120 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1121 1121 * (% style="color:red" %)**NH**(%%): No Hole 1122 1122 1123 - 1124 1124 = 8. Packing Info = 1125 1125 1126 - 1127 1127 (% style="color:#037691" %)**Package Includes**: 1128 1128 1129 1129 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1135,7 +1135,6 @@ 1135 1135 * Package Size / pcs : cm 1136 1136 * Weight / pcs : g 1137 1137 1138 - 1139 1139 = 9. Support = 1140 1140 1141 1141