Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 6 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -30,6 +30,7 @@ 30 30 31 31 == 1.2 Features == 32 32 33 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -40,6 +40,7 @@ 40 40 * Downlink to change configure 41 41 * 8500mAh Battery for long term use 42 42 44 + 43 43 == 1.3 Specification == 44 44 45 45 ... ... @@ -77,6 +77,7 @@ 77 77 * Sleep Mode: 5uA @ 3.3v 78 78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 79 79 82 + 80 80 == 1.4 Sleep mode and working mode == 81 81 82 82 ... ... @@ -104,6 +104,7 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 110 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 513102034-2.png]]129 +[[image:image-20230610163213-1.png||height="404" width="699"]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -135,7 +135,7 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== Hole Option == 142 +== 1.9 Hole Option == 139 139 140 140 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.165 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 214 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -215,44 +215,44 @@ 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 217 217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 218 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT222 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 219 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: 228 228 229 - *0x01: EU868233 +0x01: EU868 230 230 231 - *0x02: US915235 +0x02: US915 232 232 233 - *0x03: IN865237 +0x03: IN865 234 234 235 - *0x04: AU915239 +0x04: AU915 236 236 237 - *0x05: KZ865241 +0x05: KZ865 238 238 239 - *0x06: RU864243 +0x06: RU864 240 240 241 - *0x07: AS923245 +0x07: AS923 242 242 243 - *0x08: AS923-1247 +0x08: AS923-1 244 244 245 - *0x09: AS923-2249 +0x09: AS923-2 246 246 247 - *0x0a: AS923-3251 +0x0a: AS923-3 248 248 249 - *0x0b: CN470253 +0x0b: CN470 250 250 251 - *0x0c: EU433255 +0x0c: EU433 252 252 253 - *0x0d: KR920257 +0x0d: KR920 254 254 255 - *0x0e: MA869259 +0x0e: MA869 256 256 257 257 258 258 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -276,19 +276,22 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 283 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 287 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 292 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 291 291 294 +2. All modes share the same Payload Explanation from HERE. 295 + 296 +3. By default, the device will send an uplink message every 20 minutes. 297 + 298 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -295,29 +295,17 @@ 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style="background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:191px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:78px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:216px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:308px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:154px;background-color:#D9E2F3;color:#0070C0" %)**2** 299 -|**Value**|Bat|(% style="width:191px" %)((( 300 -Temperature(DS18B20) 301 - 302 -(PC13) 305 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 306 +|Value|Bat|(% style="width:191px" %)((( 307 +Temperature(DS18B20)(PC13) 303 303 )))|(% style="width:78px" %)((( 304 -ADC 305 - 306 -(PA4) 309 +ADC(PA4) 307 307 )))|(% style="width:216px" %)((( 308 -Digital in(PB15) & 309 - 310 -Digital Interrupt(PA8) 311 - 312 - 311 +Digital in(PB15)&Digital Interrupt(PA8) 313 313 )))|(% style="width:308px" %)((( 314 -Temperature 315 - 316 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 313 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 317 317 )))|(% style="width:154px" %)((( 318 -Humidity 319 - 320 -(SHT20 or SHT31) 315 +Humidity(SHT20 or SHT31) 321 321 ))) 322 322 323 323 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] ... ... @@ -325,108 +325,90 @@ 325 325 326 326 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 327 327 323 + 328 328 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 329 329 330 -(% style="width:1011px" %) 331 -|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2** 332 -|**Value**|BAT|(% style="width:196px" %)((( 333 -Temperature(DS18B20) 334 - 335 -(PC13) 326 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 327 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 328 +|Value|BAT|(% style="width:196px" %)((( 329 +Temperature(DS18B20)(PC13) 336 336 )))|(% style="width:87px" %)((( 337 -ADC 338 - 339 -(PA4) 331 +ADC(PA4) 340 340 )))|(% style="width:189px" %)((( 341 -Digital in(PB15) & 342 - 343 -Digital Interrupt(PA8) 333 +Digital in(PB15) & Digital Interrupt(PA8) 344 344 )))|(% style="width:208px" %)((( 345 -Distance measure by: 346 -1) LIDAR-Lite V3HP 347 -Or 348 -2) Ultrasonic Sensor 335 +Distance measure by: 1) LIDAR-Lite V3HP 336 +Or 2) Ultrasonic Sensor 349 349 )))|(% style="width:117px" %)Reserved 350 350 351 351 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 352 352 353 -**Connection of LIDAR-Lite V3HP:** 354 354 342 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 343 + 355 355 [[image:image-20230512173758-5.png||height="563" width="712"]] 356 356 357 -**Connection to Ultrasonic Sensor:** 358 358 359 - NeedtomoveR1 and R2 resistorstogetlow power,otherwise there willbe240uA standby current.347 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 360 360 349 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 350 + 361 361 [[image:image-20230512173903-6.png||height="596" width="715"]] 362 362 353 + 363 363 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 364 364 365 -(% style="width:1113px" %) 366 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2** 367 -|**Value**|BAT|(% style="width:183px" %)((( 368 -Temperature(DS18B20) 369 - 370 -(PC13) 356 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 357 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 358 +|Value|BAT|(% style="width:183px" %)((( 359 +Temperature(DS18B20)(PC13) 371 371 )))|(% style="width:173px" %)((( 372 -Digital in(PB15) & 373 - 374 -Digital Interrupt(PA8) 361 +Digital in(PB15) & Digital Interrupt(PA8) 375 375 )))|(% style="width:84px" %)((( 376 -ADC 377 - 378 -(PA4) 363 +ADC(PA4) 379 379 )))|(% style="width:323px" %)((( 380 380 Distance measure by:1)TF-Mini plus LiDAR 381 -Or 382 -2) TF-Luna LiDAR 366 +Or 2) TF-Luna LiDAR 383 383 )))|(% style="width:188px" %)Distance signal strength 384 384 385 385 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 386 386 371 + 387 387 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 388 388 389 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 374 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 390 390 391 391 [[image:image-20230512180609-7.png||height="555" width="802"]] 392 392 378 + 393 393 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 394 394 395 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 396 396 397 -[[image:image-20230 513105207-4.png||height="469" width="802"]]383 +[[image:image-20230610170047-1.png||height="452" width="799"]] 398 398 399 399 400 400 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 401 401 388 + 402 402 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 403 403 404 -(% style="width: 1031px" %)405 -|=((( 391 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 392 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 406 406 **Size(bytes)** 407 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1 408 -|**Value**|(% style="width:68px" %)((( 409 -ADC1 410 - 411 -(PA4) 394 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 395 +|Value|(% style="width:68px" %)((( 396 +ADC1(PA4) 412 412 )))|(% style="width:75px" %)((( 413 -ADC2 414 - 415 -(PA5) 398 +ADC2(PA5) 416 416 )))|((( 417 -ADC3 418 - 419 -(PA8) 400 +ADC3(PA8) 420 420 )))|((( 421 421 Digital Interrupt(PB15) 422 422 )))|(% style="width:304px" %)((( 423 -Temperature 424 - 425 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 404 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 426 426 )))|(% style="width:163px" %)((( 427 -Humidity 428 - 429 -(SHT20 or SHT31) 406 +Humidity(SHT20 or SHT31) 430 430 )))|(% style="width:53px" %)Bat 431 431 432 432 [[image:image-20230513110214-6.png]] ... ... @@ -437,73 +437,66 @@ 437 437 438 438 This mode has total 11 bytes. As shown below: 439 439 440 -(% style="width:1017px" %) 441 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 442 -|**Value**|BAT|(% style="width:186px" %)((( 443 -Temperature1(DS18B20) 444 -(PC13) 417 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 418 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 419 +|Value|BAT|(% style="width:186px" %)((( 420 +Temperature1(DS18B20)(PC13) 445 445 )))|(% style="width:82px" %)((( 446 -ADC 447 - 448 -(PA4) 422 +ADC(PA4) 449 449 )))|(% style="width:210px" %)((( 450 -Digital in(PB15) & 451 - 452 -Digital Interrupt(PA8) 424 +Digital in(PB15) & Digital Interrupt(PA8) 453 453 )))|(% style="width:191px" %)Temperature2(DS18B20) 454 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 455 -(PB8) 426 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 456 456 457 457 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 458 458 430 + 459 459 [[image:image-20230513134006-1.png||height="559" width="736"]] 460 460 461 461 462 462 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 463 463 436 + 464 464 [[image:image-20230512164658-2.png||height="532" width="729"]] 465 465 466 466 Each HX711 need to be calibrated before used. User need to do below two steps: 467 467 468 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 469 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 441 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 442 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 470 470 1. ((( 471 471 Weight has 4 bytes, the unit is g. 445 + 446 + 447 + 472 472 ))) 473 473 474 474 For example: 475 475 476 -**AT+GETSENSORVALUE =0** 452 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 477 477 478 478 Response: Weight is 401 g 479 479 480 480 Check the response of this command and adjust the value to match the real value for thing. 481 481 482 -(% style="width: 767px" %)483 -|=((( 458 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 459 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 484 484 **Size(bytes)** 485 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4** 486 -|**Value**|BAT|(% style="width:193px" %)((( 487 -Temperature(DS18B20) 488 - 489 -(PC13) 490 - 491 - 461 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 462 +|Value|BAT|(% style="width:193px" %)((( 463 +Temperature(DS18B20)(PC13) 492 492 )))|(% style="width:85px" %)((( 493 -ADC 494 - 495 -(PA4) 465 +ADC(PA4) 496 496 )))|(% style="width:186px" %)((( 497 -Digital in(PB15) & 498 - 499 -Digital Interrupt(PA8) 467 +Digital in(PB15) & Digital Interrupt(PA8) 500 500 )))|(% style="width:100px" %)Weight 501 501 502 502 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 503 503 504 504 473 + 505 505 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 506 506 476 + 507 507 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 508 508 509 509 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -510,26 +510,19 @@ 510 510 511 511 [[image:image-20230512181814-9.png||height="543" width="697"]] 512 512 513 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 514 514 515 -(% style="width:961px" %) 516 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 517 -|**Value**|BAT|(% style="width:256px" %)((( 518 -Temperature(DS18B20) 484 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 519 519 520 -(PC13) 486 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 488 +|Value|BAT|(% style="width:256px" %)((( 489 +Temperature(DS18B20)(PC13) 521 521 )))|(% style="width:108px" %)((( 522 -ADC 523 - 524 -(PA4) 491 +ADC(PA4) 525 525 )))|(% style="width:126px" %)((( 526 -Digital in 527 - 528 -(PB15) 493 +Digital in(PB15) 529 529 )))|(% style="width:145px" %)((( 530 -Count 531 - 532 -(PA8) 495 +Count(PA8) 533 533 ))) 534 534 535 535 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] ... ... @@ -537,18 +537,16 @@ 537 537 538 538 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 539 539 540 -(% style="width:1108px" %) 541 -|=((( 503 + 504 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 505 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 542 542 **Size(bytes)** 543 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width:83px;" %)**2**|=(% style="width:184px;" %)**1**|=(% style="width:186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width:100px;" %)2544 -| **Value**|BAT|(% style="width:188px" %)(((507 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 508 +|Value|BAT|(% style="width:188px" %)((( 545 545 Temperature(DS18B20) 546 - 547 547 (PC13) 548 548 )))|(% style="width:83px" %)((( 549 -ADC 550 - 551 -(PA5) 512 +ADC(PA5) 552 552 )))|(% style="width:184px" %)((( 553 553 Digital Interrupt1(PA8) 554 554 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -555,30 +555,25 @@ 555 555 556 556 [[image:image-20230513111203-7.png||height="324" width="975"]] 557 557 519 + 558 558 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 559 559 560 -(% style="width:922px" %) 561 -|=((( 522 + 523 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 524 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 562 562 **Size(bytes)** 563 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2564 -| **Value**|BAT|(% style="width:207px" %)(((526 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 527 +|Value|BAT|(% style="width:207px" %)((( 565 565 Temperature(DS18B20) 566 - 567 567 (PC13) 568 568 )))|(% style="width:94px" %)((( 569 -ADC1 570 - 571 -(PA4) 531 +ADC1(PA4) 572 572 )))|(% style="width:198px" %)((( 573 573 Digital Interrupt(PB15) 574 574 )))|(% style="width:84px" %)((( 575 -ADC2 576 - 577 -(PA5) 535 +ADC2(PA5) 578 578 )))|(% style="width:82px" %)((( 579 -ADC3 580 - 581 -(PA8) 537 +ADC3(PA8) 582 582 ))) 583 583 584 584 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -586,56 +586,50 @@ 586 586 587 587 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 588 588 589 -(% style="width:1010px" %) 590 -|=((( 591 -**Size(bytes)** 592 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4 593 -|**Value**|BAT|((( 594 -Temperature1(DS18B20) 595 595 596 -(PC13) 546 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 547 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 548 +**Size(bytes)** 549 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 550 +|Value|BAT|((( 551 +Temperature 552 +(DS18B20)(PC13) 597 597 )))|((( 598 -Temperature2(DS18B20) 599 - 600 -(PB9) 554 +Temperature2 555 +(DS18B20)(PB9) 601 601 )))|((( 602 602 Digital Interrupt 603 - 604 604 (PB15) 605 605 )))|(% style="width:193px" %)((( 606 -Temperature3(DS18B20) 607 - 608 -(PB8) 560 +Temperature3 561 +(DS18B20)(PB8) 609 609 )))|(% style="width:78px" %)((( 610 -Count1 611 - 612 -(PA8) 563 +Count1(PA8) 613 613 )))|(% style="width:78px" %)((( 614 -Count2 615 - 616 -(PA4) 565 +Count2(PA4) 617 617 ))) 618 618 619 619 [[image:image-20230513111255-9.png||height="341" width="899"]] 620 620 621 -**The newly added AT command is issued correspondingly:** 570 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 622 622 623 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**572 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 624 624 625 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**574 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 626 626 627 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**576 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 628 628 629 -**AT+SETCNT=aa,bb** 630 630 579 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 580 + 631 631 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 632 632 633 633 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 634 634 635 635 636 - 637 637 === 2.3.3 Decode payload === 638 638 588 + 639 639 While using TTN V3 network, you can add the payload format to decode the payload. 640 640 641 641 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -642,13 +642,14 @@ 642 642 643 643 The payload decoder function for TTN V3 are here: 644 644 645 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 595 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 646 646 647 647 648 648 ==== 2.3.3.1 Battery Info ==== 649 649 650 -Check the battery voltage for SN50v3. 651 651 601 +Check the battery voltage for SN50v3-LB. 602 + 652 652 Ex1: 0x0B45 = 2885mV 653 653 654 654 Ex2: 0x0B49 = 2889mV ... ... @@ -656,16 +656,18 @@ 656 656 657 657 ==== 2.3.3.2 Temperature (DS18B20) ==== 658 658 610 + 659 659 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 660 660 661 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]613 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 662 662 663 -**Connection:** 615 +(% style="color:blue" %)**Connection:** 664 664 665 665 [[image:image-20230512180718-8.png||height="538" width="647"]] 666 666 667 -**Example**: 668 668 620 +(% style="color:blue" %)**Example**: 621 + 669 669 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 670 670 671 671 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -675,6 +675,7 @@ 675 675 676 676 ==== 2.3.3.3 Digital Input ==== 677 677 631 + 678 678 The digital input for pin PB15, 679 679 680 680 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -684,7 +684,7 @@ 684 684 ((( 685 685 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 686 686 687 -**Note: **The maximum voltage input supports 3.6V.641 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 688 688 689 689 690 690 ))) ... ... @@ -691,45 +691,54 @@ 691 691 692 692 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 693 693 694 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 695 695 696 - Whenthemeasuredoutput voltage of thesensorisnot withinthe rangeof0Vand1.1V,theoutputvoltageterminal of theensor shall be divided The example in the following figure istoreduce the output voltage of the sensorby three timesIf it is necessary toreduce moretimes,calculate according to the formula in the figure and connect the corresponding resistance in series.649 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 697 697 651 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 652 + 698 698 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 699 699 700 -**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 701 701 656 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 702 702 658 + 659 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 660 + 661 +[[image:image-20230811113449-1.png||height="370" width="608"]] 662 + 703 703 ==== 2.3.3.5 Digital Interrupt ==== 704 704 705 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 706 706 707 - **~Interruptconnection method:**666 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 708 708 668 +(% style="color:blue" %)** Interrupt connection method:** 669 + 709 709 [[image:image-20230513105351-5.png||height="147" width="485"]] 710 710 711 -**Example to use with door sensor :** 712 712 673 +(% style="color:blue" %)**Example to use with door sensor :** 674 + 713 713 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 714 714 715 715 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 716 716 717 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.679 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 718 718 719 -**~ Below is the installation example:** 720 720 721 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:682 +(% style="color:blue" %)**Below is the installation example:** 722 722 684 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 685 + 723 723 * ((( 724 -One pin to SN50 _v3's PA8 pin687 +One pin to SN50v3-LB's PA8 pin 725 725 ))) 726 726 * ((( 727 -The other pin to SN50 _v3's VDD pin690 +The other pin to SN50v3-LB's VDD pin 728 728 ))) 729 729 730 730 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 731 731 732 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 695 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 733 733 734 734 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 735 735 ... ... @@ -741,29 +741,32 @@ 741 741 742 742 The command is: 743 743 744 -**AT+INTMOD1=1 707 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 745 745 746 746 Below shows some screen captures in TTN V3: 747 747 748 748 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 749 749 750 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 751 751 714 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 715 + 752 752 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 753 753 754 754 755 755 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 756 756 721 + 757 757 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 758 758 759 759 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 760 760 761 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.726 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 762 762 728 + 763 763 Below is the connection to SHT20/ SHT31. The connection is as below: 764 764 731 +[[image:image-20230610170152-2.png||height="501" width="846"]] 765 765 766 -[[image:image-20230513103633-3.png||height="448" width="716"]] 767 767 768 768 The device will be able to get the I2C sensor data now and upload to IoT Server. 769 769 ... ... @@ -782,23 +782,26 @@ 782 782 783 783 ==== 2.3.3.7 Distance Reading ==== 784 784 785 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 786 786 752 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 787 787 754 + 788 788 ==== 2.3.3.8 Ultrasonic Sensor ==== 789 789 757 + 790 790 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 791 791 792 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.760 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 793 793 794 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 762 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 795 795 796 796 The picture below shows the connection: 797 797 798 798 [[image:image-20230512173903-6.png||height="596" width="715"]] 799 799 800 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 801 801 769 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 770 + 802 802 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 803 803 804 804 **Example:** ... ... @@ -806,37 +806,40 @@ 806 806 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 807 807 808 808 809 - 810 810 ==== 2.3.3.9 Battery Output - BAT pin ==== 811 811 812 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 813 813 781 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 814 814 783 + 815 815 ==== 2.3.3.10 +5V Output ==== 816 816 817 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 818 818 787 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 788 + 819 819 The 5V output time can be controlled by AT Command. 820 820 821 -**AT+5VT=1000** 791 +(% style="color:blue" %)**AT+5VT=1000** 822 822 823 823 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 824 824 825 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 795 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 826 826 827 827 828 - 829 829 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 830 830 800 + 831 831 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 832 832 833 833 [[image:image-20230512172447-4.png||height="416" width="712"]] 834 834 805 + 835 835 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 836 836 837 837 838 838 ==== 2.3.3.12 Working MOD ==== 839 839 811 + 840 840 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 841 841 842 842 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -853,7 +853,6 @@ 853 853 * 7: MOD8 854 854 * 8: MOD9 855 855 856 -== == 857 857 858 858 == 2.4 Payload Decoder file == 859 859 ... ... @@ -865,7 +865,6 @@ 865 865 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 866 866 867 867 868 - 869 869 == 2.5 Frequency Plans == 870 870 871 871 ... ... @@ -885,6 +885,7 @@ 885 885 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 886 886 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 887 887 858 + 888 888 == 3.2 General Commands == 889 889 890 890 ... ... @@ -901,17 +901,18 @@ 901 901 == 3.3 Commands special design for SN50v3-LB == 902 902 903 903 904 -These commands only valid for S3 1x-LB, as below:875 +These commands only valid for SN50v3-LB, as below: 905 905 906 906 907 907 === 3.3.1 Set Transmit Interval Time === 908 908 880 + 909 909 Feature: Change LoRaWAN End Node Transmit Interval. 910 910 911 911 (% style="color:blue" %)**AT Command: AT+TDC** 912 912 913 913 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 914 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 886 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 915 915 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 916 916 30000 917 917 OK ... ... @@ -931,25 +931,26 @@ 931 931 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 932 932 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 933 933 934 -=== === 935 935 936 936 === 3.3.2 Get Device Status === 937 937 909 + 938 938 Send a LoRaWAN downlink to ask the device to send its status. 939 939 940 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01912 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 941 941 942 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 914 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 943 943 944 944 945 945 === 3.3.3 Set Interrupt Mode === 946 946 919 + 947 947 Feature, Set Interrupt mode for GPIO_EXIT. 948 948 949 949 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 950 950 951 951 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 952 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**925 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 953 953 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 954 954 0 955 955 OK ... ... @@ -964,7 +964,6 @@ 964 964 )))|(% style="width:157px" %)OK 965 965 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 966 966 Set Transmit Interval 967 - 968 968 trigger by rising edge. 969 969 )))|(% style="width:157px" %)OK 970 970 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -980,10 +980,10 @@ 980 980 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 981 981 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 982 982 983 -=== === 984 984 985 985 === 3.3.4 Set Power Output Duration === 986 986 958 + 987 987 Control the output duration 5V . Before each sampling, device will 988 988 989 989 ~1. first enable the power output to external sensor, ... ... @@ -995,10 +995,9 @@ 995 995 (% style="color:blue" %)**AT Command: AT+5VT** 996 996 997 997 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 998 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**970 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 999 999 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1000 1000 500(default) 1001 - 1002 1002 OK 1003 1003 ))) 1004 1004 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( ... ... @@ -1014,16 +1014,16 @@ 1014 1014 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1015 1015 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1016 1016 1017 -=== === 1018 1018 1019 1019 === 3.3.5 Set Weighing parameters === 1020 1020 991 + 1021 1021 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1022 1022 1023 1023 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1024 1024 1025 1025 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1026 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**997 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1027 1027 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1028 1028 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1029 1029 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1040,10 +1040,10 @@ 1040 1040 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1041 1041 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1042 1042 1043 -=== === 1044 1044 1045 1045 === 3.3.6 Set Digital pulse count value === 1046 1046 1017 + 1047 1047 Feature: Set the pulse count value. 1048 1048 1049 1049 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1051,7 +1051,7 @@ 1051 1051 (% style="color:blue" %)**AT Command: AT+SETCNT** 1052 1052 1053 1053 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1054 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1025 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1055 1055 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1056 1056 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1057 1057 ... ... @@ -1064,22 +1064,21 @@ 1064 1064 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1065 1065 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1066 1066 1067 -=== === 1068 1068 1069 1069 === 3.3.7 Set Workmode === 1070 1070 1041 + 1071 1071 Feature: Switch working mode. 1072 1072 1073 1073 (% style="color:blue" %)**AT Command: AT+MOD** 1074 1074 1075 1075 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1076 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1047 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1077 1077 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1078 1078 OK 1079 1079 ))) 1080 1080 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1081 1081 OK 1082 - 1083 1083 Attention:Take effect after ATZ 1084 1084 ))) 1085 1085 ... ... @@ -1090,7 +1090,6 @@ 1090 1090 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1091 1091 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1092 1092 1093 -= = 1094 1094 1095 1095 = 4. Battery & Power Consumption = 1096 1096 ... ... @@ -1104,27 +1104,45 @@ 1104 1104 1105 1105 1106 1106 (% class="wikigeneratedid" %) 1107 -User can change firmware SN50v3-LB to: 1076 +**User can change firmware SN50v3-LB to:** 1108 1108 1109 1109 * Change Frequency band/ region. 1110 1110 * Update with new features. 1111 1111 * Fix bugs. 1112 1112 1113 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1082 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]** 1114 1114 1084 +**Methods to Update Firmware:** 1115 1115 1116 -Methods to Update Firmware: 1086 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1087 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1117 1117 1118 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1119 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1120 1120 1121 1121 = 6. FAQ = 1122 1122 1123 1123 == 6.1 Where can i find source code of SN50v3-LB? == 1124 1124 1094 + 1125 1125 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1126 1126 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1127 1127 1098 + 1099 +== 6.2 How to generate PWM Output in SN50v3-LB? == 1100 + 1101 + 1102 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1103 + 1104 + 1105 +== 6.3 How to put several sensors to a SN50v3-LB? == 1106 + 1107 + 1108 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1109 + 1110 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1111 + 1112 +[[image:image-20230810121434-1.png||height="242" width="656"]] 1113 + 1114 + 1128 1128 = 7. Order Info = 1129 1129 1130 1130 ... ... @@ -1148,8 +1148,10 @@ 1148 1148 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1149 1149 * (% style="color:red" %)**NH**(%%): No Hole 1150 1150 1138 + 1151 1151 = 8. Packing Info = 1152 1152 1141 + 1153 1153 (% style="color:#037691" %)**Package Includes**: 1154 1154 1155 1155 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1165,4 +1165,5 @@ 1165 1165 1166 1166 1167 1167 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1157 + 1168 1168 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +973.1 KB - Content