<
From version < 43.6 >
edited by Xiaoling
on 2023/05/16 13:45
To version < 53.3 >
edited by Xiaoling
on 2023/06/15 09:04
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -30,6 +30,7 @@
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 +
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -40,6 +40,8 @@
40 40  * Downlink to change configure
41 41  * 8500mAh Battery for long term use
42 42  
44 +
45 +
43 43  == 1.3 Specification ==
44 44  
45 45  
... ... @@ -77,6 +77,8 @@
77 77  * Sleep Mode: 5uA @ 3.3v
78 78  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
83 +
84 +
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 82  
... ... @@ -104,6 +104,8 @@
104 104  )))
105 105  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 106  
112 +
113 +
107 107  == 1.6 BLE connection ==
108 108  
109 109  
... ... @@ -122,7 +122,7 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230513102034-2.png]]
132 +[[image:image-20230610163213-1.png||height="404" width="699"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -135,7 +135,7 @@
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
137 137  
138 -== Hole Option ==
145 +== 1.9 Hole Option ==
139 139  
140 140  
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
168 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
217 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,44 +215,44 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
225 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -*0x01: EU868
236 +0x01: EU868
230 230  
231 -*0x02: US915
238 +0x02: US915
232 232  
233 -*0x03: IN865
240 +0x03: IN865
234 234  
235 -*0x04: AU915
242 +0x04: AU915
236 236  
237 -*0x05: KZ865
244 +0x05: KZ865
238 238  
239 -*0x06: RU864
246 +0x06: RU864
240 240  
241 -*0x07: AS923
248 +0x07: AS923
242 242  
243 -*0x08: AS923-1
250 +0x08: AS923-1
244 244  
245 -*0x09: AS923-2
252 +0x09: AS923-2
246 246  
247 -*0x0a: AS923-3
254 +0x0a: AS923-3
248 248  
249 -*0x0b: CN470
256 +0x0b: CN470
250 250  
251 -*0x0c: EU433
258 +0x0c: EU433
252 252  
253 -*0x0d: KR920
260 +0x0d: KR920
254 254  
255 -*0x0e: MA869
262 +0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -276,19 +276,22 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
286 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
290 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
295 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
291 291  
297 +2. All modes share the same Payload Explanation from HERE.
298 +
299 +3. By default, the device will send an uplink message every 20 minutes.
300 +
301 +
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 294  
... ... @@ -295,29 +295,17 @@
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 297  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:191px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:78px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:216px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:308px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:154px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
300 -Temperature(DS18B20)
301 -
302 -(PC13)
308 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
309 +|Value|Bat|(% style="width:191px" %)(((
310 +Temperature(DS18B20)(PC13)
303 303  )))|(% style="width:78px" %)(((
304 -ADC
305 -
306 -(PA4)
312 +ADC(PA4)
307 307  )))|(% style="width:216px" %)(((
308 -Digital in(PB15) &
309 -
310 -Digital Interrupt(PA8)
311 -
312 -
314 +Digital in(PB15)&Digital Interrupt(PA8)
313 313  )))|(% style="width:308px" %)(((
314 -Temperature
315 -
316 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
316 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
317 317  )))|(% style="width:154px" %)(((
318 -Humidity
319 -
320 -(SHT20 or SHT31)
318 +Humidity(SHT20 or SHT31)
321 321  )))
322 322  
323 323  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
... ... @@ -325,108 +325,90 @@
325 325  
326 326  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
327 327  
326 +
328 328  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
329 329  
330 -(% style="width:1011px" %)
331 -|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
332 -|**Value**|BAT|(% style="width:196px" %)(((
333 -Temperature(DS18B20)
334 -
335 -(PC13)
329 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 +|Value|BAT|(% style="width:196px" %)(((
332 +Temperature(DS18B20)(PC13)
336 336  )))|(% style="width:87px" %)(((
337 -ADC
338 -
339 -(PA4)
334 +ADC(PA4)
340 340  )))|(% style="width:189px" %)(((
341 -Digital in(PB15) &
342 -
343 -Digital Interrupt(PA8)
336 +Digital in(PB15) & Digital Interrupt(PA8)
344 344  )))|(% style="width:208px" %)(((
345 -Distance measure by:
346 -1) LIDAR-Lite V3HP
347 -Or
348 -2) Ultrasonic Sensor
338 +Distance measure by: 1) LIDAR-Lite V3HP
339 +Or 2) Ultrasonic Sensor
349 349  )))|(% style="width:117px" %)Reserved
350 350  
351 351  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
352 352  
353 -**Connection of LIDAR-Lite V3HP:**
354 354  
345 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
346 +
355 355  [[image:image-20230512173758-5.png||height="563" width="712"]]
356 356  
357 -**Connection to Ultrasonic Sensor:**
358 358  
359 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
350 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
360 360  
352 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
353 +
361 361  [[image:image-20230512173903-6.png||height="596" width="715"]]
362 362  
356 +
363 363  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
364 364  
365 -(% style="width:1113px" %)
366 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
367 -|**Value**|BAT|(% style="width:183px" %)(((
368 -Temperature(DS18B20)
369 -
370 -(PC13)
359 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
360 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
361 +|Value|BAT|(% style="width:183px" %)(((
362 +Temperature(DS18B20)(PC13)
371 371  )))|(% style="width:173px" %)(((
372 -Digital in(PB15) &
373 -
374 -Digital Interrupt(PA8)
364 +Digital in(PB15) & Digital Interrupt(PA8)
375 375  )))|(% style="width:84px" %)(((
376 -ADC
377 -
378 -(PA4)
366 +ADC(PA4)
379 379  )))|(% style="width:323px" %)(((
380 380  Distance measure by:1)TF-Mini plus LiDAR
381 -Or 
382 -2) TF-Luna LiDAR
369 +Or 2) TF-Luna LiDAR
383 383  )))|(% style="width:188px" %)Distance signal  strength
384 384  
385 385  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
386 386  
374 +
387 387  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
388 388  
389 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
390 390  
391 391  [[image:image-20230512180609-7.png||height="555" width="802"]]
392 392  
381 +
393 393  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
394 394  
395 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
384 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
396 396  
397 -[[image:image-20230513105207-4.png||height="469" width="802"]]
386 +[[image:image-20230610170047-1.png||height="452" width="799"]]
398 398  
399 399  
400 400  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
401 401  
391 +
402 402  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
403 403  
404 -(% style="width:1031px" %)
405 -|=(((
394 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
395 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
406 406  **Size(bytes)**
407 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
408 -|**Value**|(% style="width:68px" %)(((
409 -ADC1
410 -
411 -(PA4)
397 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
398 +|Value|(% style="width:68px" %)(((
399 +ADC1(PA4)
412 412  )))|(% style="width:75px" %)(((
413 -ADC2
414 -
415 -(PA5)
401 +ADC2(PA5)
416 416  )))|(((
417 -ADC3
418 -
419 -(PA8)
403 +ADC3(PA8)
420 420  )))|(((
421 421  Digital Interrupt(PB15)
422 422  )))|(% style="width:304px" %)(((
423 -Temperature
424 -
425 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
407 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
426 426  )))|(% style="width:163px" %)(((
427 -Humidity
428 -
429 -(SHT20 or SHT31)
409 +Humidity(SHT20 or SHT31)
430 430  )))|(% style="width:53px" %)Bat
431 431  
432 432  [[image:image-20230513110214-6.png]]
... ... @@ -437,73 +437,66 @@
437 437  
438 438  This mode has total 11 bytes. As shown below:
439 439  
440 -(% style="width:1017px" %)
441 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
442 -|**Value**|BAT|(% style="width:186px" %)(((
443 -Temperature1(DS18B20)
444 -(PC13)
420 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
421 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
422 +|Value|BAT|(% style="width:186px" %)(((
423 +Temperature1(DS18B20)(PC13)
445 445  )))|(% style="width:82px" %)(((
446 -ADC
447 -
448 -(PA4)
425 +ADC(PA4)
449 449  )))|(% style="width:210px" %)(((
450 -Digital in(PB15) &
451 -
452 -Digital Interrupt(PA8) 
427 +Digital in(PB15) & Digital Interrupt(PA8) 
453 453  )))|(% style="width:191px" %)Temperature2(DS18B20)
454 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
455 -(PB8)
429 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
456 456  
457 457  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
458 458  
433 +
459 459  [[image:image-20230513134006-1.png||height="559" width="736"]]
460 460  
461 461  
462 462  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
463 463  
439 +
464 464  [[image:image-20230512164658-2.png||height="532" width="729"]]
465 465  
466 466  Each HX711 need to be calibrated before used. User need to do below two steps:
467 467  
468 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
469 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
444 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
445 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
470 470  1. (((
471 471  Weight has 4 bytes, the unit is g.
448 +
449 +
450 +
472 472  )))
473 473  
474 474  For example:
475 475  
476 -**AT+GETSENSORVALUE =0**
455 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
477 477  
478 478  Response:  Weight is 401 g
479 479  
480 480  Check the response of this command and adjust the value to match the real value for thing.
481 481  
482 -(% style="width:767px" %)
483 -|=(((
461 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
462 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
484 484  **Size(bytes)**
485 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
486 -|**Value**|BAT|(% style="width:193px" %)(((
487 -Temperature(DS18B20)
488 -
489 -(PC13)
490 -
491 -
464 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
465 +|Value|BAT|(% style="width:193px" %)(((
466 +Temperature(DS18B20)(PC13)
492 492  )))|(% style="width:85px" %)(((
493 -ADC
494 -
495 -(PA4)
468 +ADC(PA4)
496 496  )))|(% style="width:186px" %)(((
497 -Digital in(PB15) &
498 -
499 -Digital Interrupt(PA8)
470 +Digital in(PB15) & Digital Interrupt(PA8)
500 500  )))|(% style="width:100px" %)Weight
501 501  
502 502  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
503 503  
504 504  
476 +
505 505  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
506 506  
479 +
507 507  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
508 508  
509 509  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -510,26 +510,19 @@
510 510  
511 511  [[image:image-20230512181814-9.png||height="543" width="697"]]
512 512  
513 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
514 514  
515 -(% style="width:961px" %)
516 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
517 -|**Value**|BAT|(% style="width:256px" %)(((
518 -Temperature(DS18B20)
487 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
519 519  
520 -(PC13)
489 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
490 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
491 +|Value|BAT|(% style="width:256px" %)(((
492 +Temperature(DS18B20)(PC13)
521 521  )))|(% style="width:108px" %)(((
522 -ADC
523 -
524 -(PA4)
494 +ADC(PA4)
525 525  )))|(% style="width:126px" %)(((
526 -Digital in
527 -
528 -(PB15)
496 +Digital in(PB15)
529 529  )))|(% style="width:145px" %)(((
530 -Count
531 -
532 -(PA8)
498 +Count(PA8)
533 533  )))
534 534  
535 535  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -537,18 +537,16 @@
537 537  
538 538  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
539 539  
540 -(% style="width:1108px" %)
541 -|=(((
506 +
507 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
508 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
542 542  **Size(bytes)**
543 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
544 -|**Value**|BAT|(% style="width:188px" %)(((
510 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
511 +|Value|BAT|(% style="width:188px" %)(((
545 545  Temperature(DS18B20)
546 -
547 547  (PC13)
548 548  )))|(% style="width:83px" %)(((
549 -ADC
550 -
551 -(PA5)
515 +ADC(PA5)
552 552  )))|(% style="width:184px" %)(((
553 553  Digital Interrupt1(PA8)
554 554  )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
... ... @@ -555,30 +555,25 @@
555 555  
556 556  [[image:image-20230513111203-7.png||height="324" width="975"]]
557 557  
522 +
558 558  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
559 559  
560 -(% style="width:922px" %)
561 -|=(((
525 +
526 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
527 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
562 562  **Size(bytes)**
563 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
564 -|**Value**|BAT|(% style="width:207px" %)(((
529 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
530 +|Value|BAT|(% style="width:207px" %)(((
565 565  Temperature(DS18B20)
566 -
567 567  (PC13)
568 568  )))|(% style="width:94px" %)(((
569 -ADC1
570 -
571 -(PA4)
534 +ADC1(PA4)
572 572  )))|(% style="width:198px" %)(((
573 573  Digital Interrupt(PB15)
574 574  )))|(% style="width:84px" %)(((
575 -ADC2
576 -
577 -(PA5)
538 +ADC2(PA5)
578 578  )))|(% style="width:82px" %)(((
579 -ADC3
580 -
581 -(PA8)
540 +ADC3(PA8)
582 582  )))
583 583  
584 584  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -586,56 +586,50 @@
586 586  
587 587  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
588 588  
589 -(% style="width:1010px" %)
590 -|=(((
591 -**Size(bytes)**
592 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
593 -|**Value**|BAT|(((
594 -Temperature1(DS18B20)
595 595  
596 -(PC13)
549 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
550 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
551 +**Size(bytes)**
552 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
553 +|Value|BAT|(((
554 +Temperature
555 +(DS18B20)(PC13)
597 597  )))|(((
598 -Temperature2(DS18B20)
599 -
600 -(PB9)
557 +Temperature2
558 +(DS18B20)(PB9)
601 601  )))|(((
602 602  Digital Interrupt
603 -
604 604  (PB15)
605 605  )))|(% style="width:193px" %)(((
606 -Temperature3(DS18B20)
607 -
608 -(PB8)
563 +Temperature3
564 +(DS18B20)(PB8)
609 609  )))|(% style="width:78px" %)(((
610 -Count1
611 -
612 -(PA8)
566 +Count1(PA8)
613 613  )))|(% style="width:78px" %)(((
614 -Count2
615 -
616 -(PA4)
568 +Count2(PA4)
617 617  )))
618 618  
619 619  [[image:image-20230513111255-9.png||height="341" width="899"]]
620 620  
621 -**The newly added AT command is issued correspondingly:**
573 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
622 622  
623 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
575 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
624 624  
625 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
577 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
626 626  
627 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
579 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
628 628  
629 -**AT+SETCNT=aa,bb** 
630 630  
582 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
583 +
631 631  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
632 632  
633 633  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
634 634  
635 635  
636 -
637 637  === 2.3.3  ​Decode payload ===
638 638  
591 +
639 639  While using TTN V3 network, you can add the payload format to decode the payload.
640 640  
641 641  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -642,13 +642,14 @@
642 642  
643 643  The payload decoder function for TTN V3 are here:
644 644  
645 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
598 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
646 646  
647 647  
648 648  ==== 2.3.3.1 Battery Info ====
649 649  
650 -Check the battery voltage for SN50v3.
651 651  
604 +Check the battery voltage for SN50v3-LB.
605 +
652 652  Ex1: 0x0B45 = 2885mV
653 653  
654 654  Ex2: 0x0B49 = 2889mV
... ... @@ -656,16 +656,18 @@
656 656  
657 657  ==== 2.3.3.2  Temperature (DS18B20) ====
658 658  
613 +
659 659  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
660 660  
661 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
616 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
662 662  
663 -**Connection:**
618 +(% style="color:blue" %)**Connection:**
664 664  
665 665  [[image:image-20230512180718-8.png||height="538" width="647"]]
666 666  
667 -**Example**:
668 668  
623 +(% style="color:blue" %)**Example**:
624 +
669 669  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
670 670  
671 671  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -675,6 +675,7 @@
675 675  
676 676  ==== 2.3.3.3 Digital Input ====
677 677  
634 +
678 678  The digital input for pin PB15,
679 679  
680 680  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -684,7 +684,7 @@
684 684  (((
685 685  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
686 686  
687 -**Note:**The maximum voltage input supports 3.6V.
644 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
688 688  
689 689  
690 690  )))
... ... @@ -691,45 +691,50 @@
691 691  
692 692  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
693 693  
694 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
695 695  
696 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
652 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
697 697  
654 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
655 +
698 698  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
699 699  
700 -**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
701 701  
659 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
702 702  
661 +
703 703  ==== 2.3.3.5 Digital Interrupt ====
704 704  
705 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
706 706  
707 -**~ Interrupt connection method:**
665 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
708 708  
667 +(% style="color:blue" %)** Interrupt connection method:**
668 +
709 709  [[image:image-20230513105351-5.png||height="147" width="485"]]
710 710  
711 -**Example to use with door sensor :**
712 712  
672 +(% style="color:blue" %)**Example to use with door sensor :**
673 +
713 713  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
714 714  
715 715  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
716 716  
717 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
678 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
718 718  
719 -**~ Below is the installation example:**
720 720  
721 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
681 +(% style="color:blue" %)**Below is the installation example:**
722 722  
683 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
684 +
723 723  * (((
724 -One pin to SN50_v3's PA8 pin
686 +One pin to SN50v3-LB's PA8 pin
725 725  )))
726 726  * (((
727 -The other pin to SN50_v3's VDD pin
689 +The other pin to SN50v3-LB's VDD pin
728 728  )))
729 729  
730 730  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
731 731  
732 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
694 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
733 733  
734 734  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
735 735  
... ... @@ -741,29 +741,32 @@
741 741  
742 742  The command is:
743 743  
744 -**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
706 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
745 745  
746 746  Below shows some screen captures in TTN V3:
747 747  
748 748  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
749 749  
750 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
751 751  
713 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
714 +
752 752  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
753 753  
754 754  
755 755  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
756 756  
720 +
757 757  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
758 758  
759 759  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
760 760  
761 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
725 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
762 762  
727 +
763 763  Below is the connection to SHT20/ SHT31. The connection is as below:
764 764  
730 +[[image:image-20230610170152-2.png||height="501" width="846"]]
765 765  
766 -[[image:image-20230513103633-3.png||height="448" width="716"]]
767 767  
768 768  The device will be able to get the I2C sensor data now and upload to IoT Server.
769 769  
... ... @@ -782,23 +782,26 @@
782 782  
783 783  ==== 2.3.3.7  ​Distance Reading ====
784 784  
785 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
786 786  
751 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
787 787  
753 +
788 788  ==== 2.3.3.8 Ultrasonic Sensor ====
789 789  
756 +
790 790  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
791 791  
792 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
759 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
793 793  
794 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
761 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
795 795  
796 796  The picture below shows the connection:
797 797  
798 798  [[image:image-20230512173903-6.png||height="596" width="715"]]
799 799  
800 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
801 801  
768 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
769 +
802 802  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
803 803  
804 804  **Example:**
... ... @@ -806,37 +806,40 @@
806 806  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
807 807  
808 808  
809 -
810 810  ==== 2.3.3.9  Battery Output - BAT pin ====
811 811  
812 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
813 813  
780 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
814 814  
782 +
815 815  ==== 2.3.3.10  +5V Output ====
816 816  
817 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
818 818  
786 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
787 +
819 819  The 5V output time can be controlled by AT Command.
820 820  
821 -**AT+5VT=1000**
790 +(% style="color:blue" %)**AT+5VT=1000**
822 822  
823 823  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
824 824  
825 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
794 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
826 826  
827 827  
828 -
829 829  ==== 2.3.3.11  BH1750 Illumination Sensor ====
830 830  
799 +
831 831  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
832 832  
833 833  [[image:image-20230512172447-4.png||height="416" width="712"]]
834 834  
804 +
835 835  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
836 836  
837 837  
838 838  ==== 2.3.3.12  Working MOD ====
839 839  
810 +
840 840  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
841 841  
842 842  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -853,8 +853,8 @@
853 853  * 7: MOD8
854 854  * 8: MOD9
855 855  
856 -== ==
857 857  
828 +
858 858  == 2.4 Payload Decoder file ==
859 859  
860 860  
... ... @@ -865,7 +865,6 @@
865 865  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
866 866  
867 867  
868 -
869 869  == 2.5 Frequency Plans ==
870 870  
871 871  
... ... @@ -885,6 +885,8 @@
885 885  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
886 886  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
887 887  
858 +
859 +
888 888  == 3.2 General Commands ==
889 889  
890 890  
... ... @@ -901,17 +901,18 @@
901 901  == 3.3 Commands special design for SN50v3-LB ==
902 902  
903 903  
904 -These commands only valid for S31x-LB, as below:
876 +These commands only valid for SN50v3-LB, as below:
905 905  
906 906  
907 907  === 3.3.1 Set Transmit Interval Time ===
908 908  
881 +
909 909  Feature: Change LoRaWAN End Node Transmit Interval.
910 910  
911 911  (% style="color:blue" %)**AT Command: AT+TDC**
912 912  
913 913  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
914 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
887 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
915 915  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
916 916  30000
917 917  OK
... ... @@ -931,25 +931,27 @@
931 931  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
932 932  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
933 933  
934 -=== ===
935 935  
908 +
936 936  === 3.3.2 Get Device Status ===
937 937  
911 +
938 938  Send a LoRaWAN downlink to ask the device to send its status.
939 939  
940 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
914 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
941 941  
942 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
916 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
943 943  
944 944  
945 945  === 3.3.3 Set Interrupt Mode ===
946 946  
921 +
947 947  Feature, Set Interrupt mode for GPIO_EXIT.
948 948  
949 949  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
950 950  
951 951  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
952 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
927 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
953 953  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
954 954  0
955 955  OK
... ... @@ -964,7 +964,6 @@
964 964  )))|(% style="width:157px" %)OK
965 965  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
966 966  Set Transmit Interval
967 -
968 968  trigger by rising edge.
969 969  )))|(% style="width:157px" %)OK
970 970  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -980,10 +980,11 @@
980 980  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
981 981  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
982 982  
983 -=== ===
984 984  
958 +
985 985  === 3.3.4 Set Power Output Duration ===
986 986  
961 +
987 987  Control the output duration 5V . Before each sampling, device will
988 988  
989 989  ~1. first enable the power output to external sensor,
... ... @@ -995,10 +995,9 @@
995 995  (% style="color:blue" %)**AT Command: AT+5VT**
996 996  
997 997  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
998 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
973 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
999 999  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1000 1000  500(default)
1001 -
1002 1002  OK
1003 1003  )))
1004 1004  |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
... ... @@ -1014,16 +1014,17 @@
1014 1014  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1015 1015  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1016 1016  
1017 -=== ===
1018 1018  
992 +
1019 1019  === 3.3.5 Set Weighing parameters ===
1020 1020  
995 +
1021 1021  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1022 1022  
1023 1023  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1024 1024  
1025 1025  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1026 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1001 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1027 1027  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1028 1028  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1029 1029  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1040,10 +1040,11 @@
1040 1040  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1041 1041  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1042 1042  
1043 -=== ===
1044 1044  
1019 +
1045 1045  === 3.3.6 Set Digital pulse count value ===
1046 1046  
1022 +
1047 1047  Feature: Set the pulse count value.
1048 1048  
1049 1049  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1051,7 +1051,7 @@
1051 1051  (% style="color:blue" %)**AT Command: AT+SETCNT**
1052 1052  
1053 1053  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1054 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1030 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1055 1055  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1056 1056  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1057 1057  
... ... @@ -1064,22 +1064,22 @@
1064 1064  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1065 1065  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1066 1066  
1067 -=== ===
1068 1068  
1044 +
1069 1069  === 3.3.7 Set Workmode ===
1070 1070  
1047 +
1071 1071  Feature: Switch working mode.
1072 1072  
1073 1073  (% style="color:blue" %)**AT Command: AT+MOD**
1074 1074  
1075 1075  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1076 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1053 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1077 1077  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1078 1078  OK
1079 1079  )))
1080 1080  |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1081 1081  OK
1082 -
1083 1083  Attention:Take effect after ATZ
1084 1084  )))
1085 1085  
... ... @@ -1090,8 +1090,8 @@
1090 1090  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1091 1091  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1092 1092  
1093 -= =
1094 1094  
1070 +
1095 1095  = 4. Battery & Power Consumption =
1096 1096  
1097 1097  
... ... @@ -1104,27 +1104,31 @@
1104 1104  
1105 1105  
1106 1106  (% class="wikigeneratedid" %)
1107 -User can change firmware SN50v3-LB to:
1083 +**User can change firmware SN50v3-LB to:**
1108 1108  
1109 1109  * Change Frequency band/ region.
1110 1110  * Update with new features.
1111 1111  * Fix bugs.
1112 1112  
1113 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1089 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1114 1114  
1091 +**Methods to Update Firmware:**
1115 1115  
1116 -Methods to Update Firmware:
1093 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1094 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1117 1117  
1118 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1119 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1120 1120  
1097 +
1121 1121  = 6. FAQ =
1122 1122  
1123 1123  == 6.1 Where can i find source code of SN50v3-LB? ==
1124 1124  
1102 +
1125 1125  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1126 1126  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1127 1127  
1106 +
1107 +
1128 1128  = 7. Order Info =
1129 1129  
1130 1130  
... ... @@ -1148,8 +1148,11 @@
1148 1148  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1149 1149  * (% style="color:red" %)**NH**(%%): No Hole
1150 1150  
1131 +
1132 +
1151 1151  = 8. ​Packing Info =
1152 1152  
1135 +
1153 1153  (% style="color:#037691" %)**Package Includes**:
1154 1154  
1155 1155  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1161,8 +1161,11 @@
1161 1161  * Package Size / pcs : cm
1162 1162  * Weight / pcs : g
1163 1163  
1147 +
1148 +
1164 1164  = 9. Support =
1165 1165  
1166 1166  
1167 1167  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1153 +
1168 1168  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0