<
From version < 43.56 >
edited by Xiaoling
on 2023/05/16 16:29
To version < 10.1 >
edited by Edwin Chen
on 2023/05/11 20:41
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,21 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -41,11 +41,8 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 -
49 49  (% style="color:#037691" %)**Common DC Characteristics:**
50 50  
51 51  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -80,11 +80,8 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 -
88 88  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
89 89  
90 90  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -109,8 +109,6 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 -
113 -
114 114  == 1.6 BLE connection ==
115 115  
116 116  
... ... @@ -129,7 +129,7 @@
129 129  == 1.7 Pin Definitions ==
130 130  
131 131  
132 -[[image:image-20230513102034-2.png]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
133 133  
134 134  
135 135  == 1.8 Mechanical ==
... ... @@ -144,7 +144,6 @@
144 144  
145 145  == Hole Option ==
146 146  
147 -
148 148  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149 149  
150 150  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -157,7 +157,7 @@
157 157  == 2.1 How it works ==
158 158  
159 159  
160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161 161  
162 162  
163 163  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -168,11 +168,11 @@
168 168  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
169 169  
170 170  
171 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
172 172  
173 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
165 +Each S31x-LB is shipped with a sticker with the default device EUI as below:
174 174  
175 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
167 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
176 176  
177 177  
178 178  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -199,10 +199,10 @@
199 199  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
200 200  
201 201  
202 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
194 +(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
203 203  
204 204  
205 -Press the button for 5 seconds to activate the SN50v3-LB.
197 +Press the button for 5 seconds to activate the S31x-LB.
206 206  
207 207  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208 208  
... ... @@ -214,7 +214,7 @@
214 214  === 2.3.1 Device Status, FPORT~=5 ===
215 215  
216 216  
217 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
218 218  
219 219  The Payload format is as below.
220 220  
... ... @@ -226,9 +226,11 @@
226 226  
227 227  Example parse in TTNv3
228 228  
221 +[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
229 229  
230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
231 231  
224 +(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
225 +
232 232  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233 233  
234 234  (% style="color:#037691" %)**Frequency Band**:
... ... @@ -280,351 +280,41 @@
280 280  Ex2: 0x0B49 = 2889mV
281 281  
282 282  
283 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 +=== 2.3.2  Sensor Data. FPORT~=2 ===
284 284  
285 285  
286 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 +Sensor Data is uplink via FPORT=2
287 287  
288 -For example:
289 -
290 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
291 -
292 -
293 -(% style="color:red" %) **Important Notice:**
294 -
295 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
296 -1. All modes share the same Payload Explanation from HERE.
297 -1. By default, the device will send an uplink message every 20 minutes.
298 -
299 -
300 -
301 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
302 -
303 -
304 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
305 -
306 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
307 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
308 -|**Value**|Bat|(% style="width:191px" %)(((
309 -Temperature(DS18B20)(PC13)
310 -)))|(% style="width:78px" %)(((
311 -ADC(PA4)
312 -)))|(% style="width:216px" %)(((
313 -Digital in(PB15)&Digital Interrupt(PA8)
314 -)))|(% style="width:308px" %)(((
315 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
316 -)))|(% style="width:154px" %)(((
317 -Humidity(SHT20 or SHT31)
318 -)))
319 -
320 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
321 -
322 -
323 -
324 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325 -
326 -
327 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 -
329 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 -|**Value**|BAT|(% style="width:196px" %)(((
332 -Temperature(DS18B20)(PC13)
333 -)))|(% style="width:87px" %)(((
334 -ADC(PA4)
335 -)))|(% style="width:189px" %)(((
336 -Digital in(PB15) & Digital Interrupt(PA8)
337 -)))|(% style="width:208px" %)(((
338 -Distance measure by:1) LIDAR-Lite V3HP
339 -Or
340 -2) Ultrasonic Sensor
341 -)))|(% style="width:117px" %)Reserved
342 -
343 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
344 -
345 -
346 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
347 -
348 -[[image:image-20230512173758-5.png||height="563" width="712"]]
349 -
350 -
351 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
352 -
353 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
354 -
355 -[[image:image-20230512173903-6.png||height="596" width="715"]]
356 -
357 -
358 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
359 -
360 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
361 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
362 -|**Value**|BAT|(% style="width:183px" %)(((
363 -Temperature(DS18B20)(PC13)
364 -)))|(% style="width:173px" %)(((
365 -Digital in(PB15) & Digital Interrupt(PA8)
366 -)))|(% style="width:84px" %)(((
367 -ADC(PA4)
368 -)))|(% style="width:323px" %)(((
369 -Distance measure by:1)TF-Mini plus LiDAR
370 -Or 
371 -2) TF-Luna LiDAR
372 -)))|(% style="width:188px" %)Distance signal  strength
373 -
374 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
375 -
376 -
377 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
378 -
379 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
380 -
381 -[[image:image-20230512180609-7.png||height="555" width="802"]]
382 -
383 -
384 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
385 -
386 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
387 -
388 -[[image:image-20230513105207-4.png||height="469" width="802"]]
389 -
390 -
391 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
392 -
393 -
394 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
395 -
396 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
397 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
282 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
283 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
398 398  **Size(bytes)**
399 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
400 -|**Value**|(% style="width:68px" %)(((
401 -ADC1(PA4)
402 -)))|(% style="width:75px" %)(((
403 -ADC2(PA5)
404 -)))|(((
405 -ADC3(PA8)
406 -)))|(((
407 -Digital Interrupt(PB15)
408 -)))|(% style="width:304px" %)(((
409 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
410 -)))|(% style="width:163px" %)(((
411 -Humidity(SHT20 or SHT31)
412 -)))|(% style="width:53px" %)Bat
413 -
414 -[[image:image-20230513110214-6.png]]
415 -
416 -
417 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
418 -
419 -
420 -This mode has total 11 bytes. As shown below:
421 -
422 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
423 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
424 -|**Value**|BAT|(% style="width:186px" %)(((
425 -Temperature1(DS18B20)(PC13)
426 -)))|(% style="width:82px" %)(((
427 -ADC(PA4)
428 -)))|(% style="width:210px" %)(((
429 -Digital in(PB15) & Digital Interrupt(PA8) 
430 -)))|(% style="width:191px" %)Temperature2(DS18B20)
431 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
432 -
433 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
434 -
435 -[[image:image-20230513134006-1.png||height="559" width="736"]]
436 -
437 -
438 -
439 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
440 -
441 -
442 -[[image:image-20230512164658-2.png||height="532" width="729"]]
443 -
444 -Each HX711 need to be calibrated before used. User need to do below two steps:
445 -
446 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
447 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
448 -1. (((
449 -Weight has 4 bytes, the unit is g.
450 -
451 -
452 -
285 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
286 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
287 +[[Battery>>||anchor="HBattery:"]]
288 +)))|(% style="width:130px" %)(((
289 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
290 +)))|(% style="width:91px" %)(((
291 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
292 +)))|(% style="width:103px" %)(((
293 +[[Temperature>>||anchor="HTemperature:"]]
294 +)))|(% style="width:80px" %)(((
295 +[[Humidity>>||anchor="HHumidity:"]]
453 453  )))
454 454  
455 -For example:
298 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
456 456  
457 -**AT+GETSENSORVALUE =0**
300 +Sensor Battery Level.
458 458  
459 -Response:  Weight is 401 g
460 -
461 -Check the response of this command and adjust the value to match the real value for thing.
462 -
463 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
464 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
465 -**Size(bytes)**
466 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
467 -|**Value**|BAT|(% style="width:193px" %)(((
468 -Temperature(DS18B20)(PC13)
469 -)))|(% style="width:85px" %)(((
470 -ADC(PA4)
471 -)))|(% style="width:186px" %)(((
472 -Digital in(PB15) & Digital Interrupt(PA8)
473 -)))|(% style="width:100px" %)Weight
474 -
475 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
476 -
477 -
478 -
479 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
480 -
481 -
482 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
483 -
484 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
485 -
486 -[[image:image-20230512181814-9.png||height="543" width="697"]]
487 -
488 -
489 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
490 -
491 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
492 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
493 -|**Value**|BAT|(% style="width:256px" %)(((
494 -Temperature(DS18B20)(PC13)
495 -)))|(% style="width:108px" %)(((
496 -ADC(PA4)
497 -)))|(% style="width:126px" %)(((
498 -Digital in(PB15)
499 -)))|(% style="width:145px" %)(((
500 -Count(PA8)
501 -)))
502 -
503 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
504 -
505 -
506 -
507 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
508 -
509 -
510 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
511 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
512 -**Size(bytes)**
513 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
514 -|**Value**|BAT|(% style="width:188px" %)(((
515 -Temperature(DS18B20)
516 -(PC13)
517 -)))|(% style="width:83px" %)(((
518 -ADC(PA5)
519 -)))|(% style="width:184px" %)(((
520 -Digital Interrupt1(PA8)
521 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
522 -
523 -[[image:image-20230513111203-7.png||height="324" width="975"]]
524 -
525 -
526 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
527 -
528 -
529 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
530 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
531 -**Size(bytes)**
532 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
533 -|**Value**|BAT|(% style="width:207px" %)(((
534 -Temperature(DS18B20)
535 -(PC13)
536 -)))|(% style="width:94px" %)(((
537 -ADC1(PA4)
538 -)))|(% style="width:198px" %)(((
539 -Digital Interrupt(PB15)
540 -)))|(% style="width:84px" %)(((
541 -ADC2(PA5)
542 -)))|(% style="width:82px" %)(((
543 -ADC3(PA8)
544 -)))
545 -
546 -[[image:image-20230513111231-8.png||height="335" width="900"]]
547 -
548 -
549 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
550 -
551 -
552 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
553 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
554 -**Size(bytes)**
555 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
556 -|**Value**|BAT|(((
557 -Temperature1(DS18B20)
558 -(PC13)
559 -)))|(((
560 -Temperature2(DS18B20)
561 -(PB9)
562 -)))|(((
563 -Digital Interrupt
564 -(PB15)
565 -)))|(% style="width:193px" %)(((
566 -Temperature3(DS18B20)
567 -(PB8)
568 -)))|(% style="width:78px" %)(((
569 -Count1(PA8)
570 -)))|(% style="width:78px" %)(((
571 -Count2(PA4)
572 -)))
573 -
574 -[[image:image-20230513111255-9.png||height="341" width="899"]]
575 -
576 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
577 -
578 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
579 -
580 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
581 -
582 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
583 -
584 -
585 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
586 -
587 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
588 -
589 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
590 -
591 -
592 -=== 2.3.3  ​Decode payload ===
593 -
594 -
595 -While using TTN V3 network, you can add the payload format to decode the payload.
596 -
597 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
598 -
599 -The payload decoder function for TTN V3 are here:
600 -
601 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
602 -
603 -
604 -==== 2.3.3.1 Battery Info ====
605 -
606 -
607 -Check the battery voltage for SN50v3.
608 -
609 609  Ex1: 0x0B45 = 2885mV
610 610  
611 611  Ex2: 0x0B49 = 2889mV
612 612  
613 613  
614 -==== 2.3.3.2  Temperature (DS18B20) ====
615 615  
308 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
616 616  
617 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
310 +**Example**:
618 618  
619 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
620 -
621 -(% style="color:blue" %)**Connection:**
622 -
623 -[[image:image-20230512180718-8.png||height="538" width="647"]]
624 -
625 -
626 -(% style="color:blue" %)**Example**:
627 -
628 628  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
629 629  
630 630  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -632,232 +632,200 @@
632 632  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
633 633  
634 634  
635 -==== 2.3.3.3 Digital Input ====
319 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
636 636  
637 637  
638 -The digital input for pin PB15,
322 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
639 639  
640 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
641 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
642 642  
643 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
644 -(((
645 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
325 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
646 646  
647 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
648 648  
649 -
650 -)))
328 +**Example:**
651 651  
652 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
330 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
653 653  
332 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
654 654  
655 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
334 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
656 656  
657 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
336 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
658 658  
659 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
660 660  
661 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
339 +== 2.4 Payload Decoder file ==
662 662  
663 663  
664 -==== 2.3.3.5 Digital Interrupt ====
342 +In TTN, use can add a custom payload so it shows friendly reading
665 665  
344 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
666 666  
667 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
346 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
668 668  
669 -(% style="color:blue" %)** Interrupt connection method:**
670 670  
671 -[[image:image-20230513105351-5.png||height="147" width="485"]]
349 +== 2.5 Datalog Feature ==
672 672  
673 673  
674 -(% style="color:blue" %)**Example to use with door sensor :**
352 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
675 675  
676 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
677 677  
678 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
355 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
679 679  
680 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
681 681  
358 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
682 682  
683 -(% style="color:blue" %)**Below is the installation example:**
360 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
361 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
684 684  
685 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
363 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
686 686  
687 -* (((
688 -One pin to SN50_v3's PA8 pin
689 -)))
690 -* (((
691 -The other pin to SN50_v3's VDD pin
692 -)))
365 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
693 693  
694 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
367 +=== 2.5.2 Unix TimeStamp ===
695 695  
696 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
697 697  
698 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
370 +S31x-LB uses Unix TimeStamp format based on
699 699  
700 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
372 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
701 701  
702 -The above photos shows the two parts of the magnetic switch fitted to a door.
374 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
703 703  
704 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
376 +Below is the converter example
705 705  
706 -The command is:
378 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
707 707  
708 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
380 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 Jan ~-~- 29 Friday 03:03:25
709 709  
710 -Below shows some screen captures in TTN V3:
711 711  
712 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
383 +=== 2.5.3 Set Device Time ===
713 713  
714 714  
715 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
386 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
716 716  
717 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
388 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
718 718  
390 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
719 719  
720 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
721 721  
393 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
722 722  
723 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
724 724  
725 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
396 +The Datalog uplinks will use below payload format.
726 726  
727 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
398 +**Retrieval data payload:**
728 728  
729 -Below is the connection to SHT20/ SHT31. The connection is as below:
400 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
401 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
402 +**Size(bytes)**
403 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
404 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
405 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
406 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
730 730  
408 +**Poll message flag & Ext:**
731 731  
732 -[[image:image-20230513103633-3.png||height="448" width="716"]]
410 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
733 733  
734 -The device will be able to get the I2C sensor data now and upload to IoT Server.
412 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
735 735  
736 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
414 +**Poll Message Flag**: 1: This message is a poll message reply.
737 737  
738 -Convert the read byte to decimal and divide it by ten.
416 +* Poll Message Flag is set to 1.
739 739  
740 -**Example:**
418 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
741 741  
742 -Temperature Read:0116(H) = 278(D)  Value 278 /10=27.8℃;
420 +For example, in US915 band, the max payload for different DR is:
743 743  
744 -Humidity:    Read:0248(H)=584(D)  Value 584 / 10=58.4, So 58.4%
422 +**a) DR0:** max is 11 bytes so one entry of data
745 745  
746 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
424 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
747 747  
426 +**c) DR2:** total payload includes 11 entries of data
748 748  
749 -==== 2.3.3.7  ​Distance Reading ====
428 +**d) DR3: **total payload includes 22 entries of data.
750 750  
430 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
751 751  
752 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
753 753  
754 -
755 -==== 2.3.3.8 Ultrasonic Sensor ====
756 -
757 -
758 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
759 -
760 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
761 -
762 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
763 -
764 -The picture below shows the connection:
765 -
766 -[[image:image-20230512173903-6.png||height="596" width="715"]]
767 -
768 -
769 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
770 -
771 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
772 -
773 773  **Example:**
774 774  
775 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
435 +If S31x-LB has below data inside Flash:
776 776  
437 +[[image:1682646494051-944.png]]
777 777  
778 -==== 2.3.3.9  Battery Output - BAT pin ====
439 +If user sends below downlink command: 3160065F9760066DA705
779 779  
441 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
780 780  
781 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
443 + Stop time: 60066DA7= time 21/1/19 05:27:03
782 782  
783 783  
784 -==== 2.3.3.1 +5V Output ====
446 +**S31x-LB will uplink this payload.**
785 785  
448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
786 786  
787 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
450 +(((
451 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
452 +)))
788 788  
789 -The 5V output time can be controlled by AT Command.
454 +(((
455 +Where the first 11 bytes is for the first entry:
456 +)))
790 790  
791 -(% style="color:blue" %)**AT+5VT=1000**
458 +(((
459 +7FFF089801464160065F97
460 +)))
792 792  
793 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
462 +(((
463 +**Ext sensor data**=0x7FFF/100=327.67
464 +)))
794 794  
795 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
466 +(((
467 +**Temp**=0x088E/100=22.00
468 +)))
796 796  
470 +(((
471 +**Hum**=0x014B/10=32.6
472 +)))
797 797  
798 -==== 2.3.3.11  BH1750 Illumination Sensor ====
474 +(((
475 +**poll message flag & Ext**=0x41,means reply data,Ext=1
476 +)))
799 799  
478 +(((
479 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
480 +)))
800 800  
801 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
802 802  
803 -[[image:image-20230512172447-4.png||height="416" width="712"]]
483 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
804 804  
485 +== 2.6 Temperature Alarm Feature ==
805 805  
806 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
807 807  
488 +S31x-LB work flow with Alarm feature.
808 808  
809 -==== 2.3.3.12  Working MOD ====
810 810  
491 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
811 811  
812 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
813 813  
814 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
494 +== 2.7 Frequency Plans ==
815 815  
816 -Case 7^^th^^ Byte >> 2 & 0x1f:
817 817  
818 -* 0: MOD1
819 -* 1: MOD2
820 -* 2: MOD3
821 -* 3: MOD4
822 -* 4: MOD5
823 -* 5: MOD6
824 -* 6: MOD7
825 -* 7: MOD8
826 -* 8: MOD9
497 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
827 827  
828 -
829 -
830 -== 2.4 Payload Decoder file ==
831 -
832 -
833 -In TTN, use can add a custom payload so it shows friendly reading
834 -
835 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
836 -
837 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
838 -
839 -
840 -== 2.5 Frequency Plans ==
841 -
842 -
843 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
844 -
845 845  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
846 846  
847 847  
848 -= 3. Configure SN50v3-LB =
502 += 3. Configure S31x-LB =
849 849  
850 850  == 3.1 Configure Methods ==
851 851  
852 852  
853 -SN50v3-LB supports below configure method:
507 +S31x-LB supports below configure method:
854 854  
855 855  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
856 856  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
857 857  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
858 858  
859 -
860 -
861 861  == 3.2 General Commands ==
862 862  
863 863  
... ... @@ -871,7 +871,7 @@
871 871  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
872 872  
873 873  
874 -== 3.3 Commands special design for SN50v3-LB ==
526 +== 3.3 Commands special design for S31x-LB ==
875 875  
876 876  
877 877  These commands only valid for S31x-LB, as below:
... ... @@ -905,12 +905,10 @@
905 905  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
906 906  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
907 907  
908 -
909 -
910 910  === 3.3.2 Get Device Status ===
911 911  
912 912  
913 -Send a LoRaWAN downlink to ask the device to send its status.
563 +Send a LoRaWAN downlink to ask device send Alarm settings.
914 914  
915 915  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
916 916  
... ... @@ -917,163 +917,112 @@
917 917  Sensor will upload Device Status via FPORT=5. See payload section for detail.
918 918  
919 919  
920 -=== 3.3.3 Set Interrupt Mode ===
570 +=== 3.3.3 Set Temperature Alarm Threshold ===
921 921  
572 +* (% style="color:blue" %)**AT Command:**
922 922  
923 -Feature, Set Interrupt mode for GPIO_EXIT.
574 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
924 924  
925 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
576 +* When min=0, and max≠0, Alarm higher than max
577 +* When min≠0, and max=0, Alarm lower than min
578 +* When min≠0 and max≠0, Alarm higher than max or lower than min
926 926  
927 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
928 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
929 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
930 -0
931 -OK
932 -the mode is 0 =Disable Interrupt
933 -)))
934 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
935 -Set Transmit Interval
936 -0. (Disable Interrupt),
937 -~1. (Trigger by rising and falling edge)
938 -2. (Trigger by falling edge)
939 -3. (Trigger by rising edge)
940 -)))|(% style="width:157px" %)OK
941 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
942 -Set Transmit Interval
580 +Example:
943 943  
944 -trigger by rising edge.
945 -)))|(% style="width:157px" %)OK
946 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
582 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
947 947  
948 -(% style="color:blue" %)**Downlink Command: 0x06**
584 +* (% style="color:blue" %)**Downlink Payload:**
949 949  
950 -Format: Command Code (0x06) followed by 3 bytes.
586 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
951 951  
952 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
588 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
953 953  
954 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
955 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
956 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
957 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
958 958  
591 +=== 3.3.4 Set Humidity Alarm Threshold ===
959 959  
593 +* (% style="color:blue" %)**AT Command:**
960 960  
961 -=== 3.3.4 Set Power Output Duration ===
595 +(% style="color:#037691" %)**AT+SHHUM=min,max**
962 962  
597 +* When min=0, and max≠0, Alarm higher than max
598 +* When min≠0, and max=0, Alarm lower than min
599 +* When min≠0 and max≠0, Alarm higher than max or lower than min
963 963  
964 -Control the output duration 5V . Before each sampling, device will
601 +Example:
965 965  
966 -~1. first enable the power output to external sensor,
603 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
967 967  
968 -2. keep it on as per duration, read sensor value and construct uplink payload
605 +* (% style="color:blue" %)**Downlink Payload:**
969 969  
970 -3. final, close the power output.
607 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
971 971  
972 -(% style="color:blue" %)**AT Command: AT+5VT**
609 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
973 973  
974 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
975 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
976 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
977 -500(default)
978 -OK
979 -)))
980 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
981 -Close after a delay of 1000 milliseconds.
982 -)))|(% style="width:157px" %)OK
983 983  
984 -(% style="color:blue" %)**Downlink Command: 0x07**
612 +=== 3.3.5 Set Alarm Interval ===
985 985  
986 -Format: Command Code (0x07) followed by 2 bytes.
614 +The shortest time of two Alarm packet. (unit: min)
987 987  
988 -The first and second bytes are the time to turn on.
616 +* (% style="color:blue" %)**AT Command:**
989 989  
990 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
991 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
618 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
992 992  
620 +* (% style="color:blue" %)**Downlink Payload:**
993 993  
622 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
994 994  
995 -=== 3.3.5 Set Weighing parameters ===
996 996  
625 +=== 3.3.6 Get Alarm settings ===
997 997  
998 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
999 999  
1000 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
628 +Send a LoRaWAN downlink to ask device send Alarm settings.
1001 1001  
1002 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1003 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1004 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1005 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1006 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
630 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1007 1007  
1008 -(% style="color:blue" %)**Downlink Command: 0x08**
632 +**Example:**
1009 1009  
1010 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
634 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1011 1011  
1012 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1013 1013  
1014 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
637 +**Explain:**
1015 1015  
1016 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1017 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1018 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
639 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1019 1019  
641 +=== 3.3.7 Set Interrupt Mode ===
1020 1020  
1021 1021  
1022 -=== 3.3.6 Set Digital pulse count value ===
644 +Feature, Set Interrupt mode for GPIO_EXIT.
1023 1023  
646 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1024 1024  
1025 -Feature: Set the pulse count value.
1026 -
1027 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1028 -
1029 -(% style="color:blue" %)**AT Command: AT+SETCNT**
1030 -
1031 1031  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1032 1032  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1033 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1034 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1035 -
1036 -(% style="color:blue" %)**Downlink Command: 0x09**
1037 -
1038 -Format: Command Code (0x09) followed by 5 bytes.
1039 -
1040 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1041 -
1042 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1043 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1044 -
1045 -
1046 -
1047 -=== 3.3.7 Set Workmode ===
1048 -
1049 -
1050 -Feature: Switch working mode.
1051 -
1052 -(% style="color:blue" %)**AT Command: AT+MOD**
1053 -
1054 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1055 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1056 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
650 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
651 +0
1057 1057  OK
653 +the mode is 0 =Disable Interrupt
1058 1058  )))
1059 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1060 -OK
1061 -Attention:Take effect after ATZ
1062 -)))
655 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
656 +Set Transmit Interval
657 +0. (Disable Interrupt),
658 +~1. (Trigger by rising and falling edge)
659 +2. (Trigger by falling edge)
660 +3. (Trigger by rising edge)
661 +)))|(% style="width:157px" %)OK
1063 1063  
1064 -(% style="color:blue" %)**Downlink Command: 0x0A**
663 +(% style="color:blue" %)**Downlink Command: 0x06**
1065 1065  
1066 -Format: Command Code (0x0A) followed by 1 bytes.
665 +Format: Command Code (0x06) followed by 3 bytes.
1067 1067  
1068 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1069 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
667 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1070 1070  
669 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
670 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1071 1071  
1072 -
1073 1073  = 4. Battery & Power Consumption =
1074 1074  
1075 1075  
1076 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
675 +S31x-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1077 1077  
1078 1078  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1079 1079  
... ... @@ -1082,7 +1082,7 @@
1082 1082  
1083 1083  
1084 1084  (% class="wikigeneratedid" %)
1085 -User can change firmware SN50v3-LB to:
684 +User can change firmware S31x-LB to:
1086 1086  
1087 1087  * Change Frequency band/ region.
1088 1088  * Update with new features.
... ... @@ -1096,18 +1096,10 @@
1096 1096  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1097 1097  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1098 1098  
1099 -
1100 -
1101 1101  = 6. FAQ =
1102 1102  
1103 -== 6.1 Where can i find source code of SN50v3-LB? ==
1104 1104  
1105 1105  
1106 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1107 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1108 -
1109 -
1110 -
1111 1111  = 7. Order Info =
1112 1112  
1113 1113  
... ... @@ -1114,7 +1114,6 @@
1114 1114  Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1115 1115  
1116 1116  (% style="color:red" %)**XX**(%%): The default frequency band
1117 -
1118 1118  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1119 1119  * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1120 1120  * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
... ... @@ -1131,11 +1131,8 @@
1131 1131  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1132 1132  * (% style="color:red" %)**NH**(%%): No Hole
1133 1133  
1134 -
1135 -
1136 1136  = 8. ​Packing Info =
1137 1137  
1138 -
1139 1139  (% style="color:#037691" %)**Package Includes**:
1140 1140  
1141 1141  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1147,11 +1147,8 @@
1147 1147  * Package Size / pcs : cm
1148 1148  * Weight / pcs : g
1149 1149  
1150 -
1151 -
1152 1152  = 9. Support =
1153 1153  
1154 1154  
1155 1155  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1156 -
1157 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
741 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0