Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -304,7 +304,7 @@ 304 304 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 305 305 306 306 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 307 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width: 50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**307 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 308 308 |**Value**|Bat|(% style="width:191px" %)((( 309 309 Temperature(DS18B20)(PC13) 310 310 )))|(% style="width:78px" %)((( ... ... @@ -327,7 +327,7 @@ 327 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 328 328 329 329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 330 -|(% style="background-color:#d9e2f3; color:#0070c0; width: 50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 331 |**Value**|BAT|(% style="width:196px" %)((( 332 332 Temperature(DS18B20)(PC13) 333 333 )))|(% style="width:87px" %)((( ... ... @@ -336,8 +336,7 @@ 336 336 Digital in(PB15) & Digital Interrupt(PA8) 337 337 )))|(% style="width:208px" %)((( 338 338 Distance measure by:1) LIDAR-Lite V3HP 339 -Or 340 -2) Ultrasonic Sensor 339 +Or 2) Ultrasonic Sensor 341 341 )))|(% style="width:117px" %)Reserved 342 342 343 343 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -396,7 +396,7 @@ 396 396 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 397 397 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 398 398 **Size(bytes)** 399 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1398 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 400 400 |**Value**|(% style="width:68px" %)((( 401 401 ADC1(PA4) 402 402 )))|(% style="width:75px" %)((( ... ... @@ -447,9 +447,6 @@ 447 447 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 448 448 1. ((( 449 449 Weight has 4 bytes, the unit is g. 450 - 451 - 452 - 453 453 ))) 454 454 455 455 For example: ... ... @@ -487,7 +487,6 @@ 487 487 488 488 [[image:image-20230512181814-9.png||height="543" width="697"]] 489 489 490 - 491 491 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 492 492 493 493 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) ... ... @@ -624,7 +624,6 @@ 624 624 625 625 [[image:image-20230512180718-8.png||height="538" width="647"]] 626 626 627 - 628 628 (% style="color:blue" %)**Example**: 629 629 630 630 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree ... ... @@ -636,7 +636,6 @@ 636 636 637 637 ==== 2.3.3.3 Digital Input ==== 638 638 639 - 640 640 The digital input for pin PB15, 641 641 642 642 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -646,14 +646,11 @@ 646 646 ((( 647 647 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 648 648 649 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 650 - 651 - 642 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 652 652 ))) 653 653 654 654 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 655 655 656 - 657 657 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 658 658 659 659 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -660,12 +660,11 @@ 660 660 661 661 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 662 662 663 -(% style="color:red" %)**Note: **653 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 664 664 665 665 666 666 ==== 2.3.3.5 Digital Interrupt ==== 667 667 668 - 669 669 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 670 670 671 671 (% style="color:blue" %)** Interrupt connection method:** ... ... @@ -672,7 +672,6 @@ 672 672 673 673 [[image:image-20230513105351-5.png||height="147" width="485"]] 674 674 675 - 676 676 (% style="color:blue" %)**Example to use with door sensor :** 677 677 678 678 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -681,9 +681,8 @@ 681 681 682 682 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 683 683 672 +(% style="color:blue" %)** Below is the installation example:** 684 684 685 -(% style="color:blue" %)**Below is the installation example:** 686 - 687 687 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 688 688 689 689 * ((( ... ... @@ -695,7 +695,7 @@ 695 695 696 696 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 697 697 698 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.685 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 699 699 700 700 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 701 701 ... ... @@ -713,7 +713,6 @@ 713 713 714 714 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 715 715 716 - 717 717 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 718 718 719 719 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; ... ... @@ -721,7 +721,6 @@ 721 721 722 722 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 723 723 724 - 725 725 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 726 726 727 727 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. ... ... @@ -750,13 +750,11 @@ 750 750 751 751 ==== 2.3.3.7 Distance Reading ==== 752 752 753 - 754 754 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 755 755 756 756 757 757 ==== 2.3.3.8 Ultrasonic Sensor ==== 758 758 759 - 760 760 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 761 761 762 762 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. ... ... @@ -767,7 +767,6 @@ 767 767 768 768 [[image:image-20230512173903-6.png||height="596" width="715"]] 769 769 770 - 771 771 Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 772 772 773 773 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. ... ... @@ -777,15 +777,14 @@ 777 777 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 778 778 779 779 762 + 780 780 ==== 2.3.3.9 Battery Output - BAT pin ==== 781 781 782 - 783 783 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 784 784 785 785 786 786 ==== 2.3.3.10 +5V Output ==== 787 787 788 - 789 789 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 790 790 791 791 The 5V output time can be controlled by AT Command. ... ... @@ -797,20 +797,18 @@ 797 797 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 798 798 799 799 781 + 800 800 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 801 801 802 - 803 803 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 804 804 805 805 [[image:image-20230512172447-4.png||height="416" width="712"]] 806 806 807 - 808 808 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 809 809 810 810 811 811 ==== 2.3.3.12 Working MOD ==== 812 812 813 - 814 814 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 815 815 816 816 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -828,7 +828,6 @@ 828 828 * 8: MOD9 829 829 830 830 831 - 832 832 == 2.4 Payload Decoder file == 833 833 834 834 ... ... @@ -839,6 +839,7 @@ 839 839 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 840 840 841 841 820 + 842 842 == 2.5 Frequency Plans == 843 843 844 844 ... ... @@ -858,8 +858,6 @@ 858 858 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 859 859 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 860 860 861 - 862 - 863 863 == 3.2 General Commands == 864 864 865 865 ... ... @@ -881,7 +881,6 @@ 881 881 882 882 === 3.3.1 Set Transmit Interval Time === 883 883 884 - 885 885 Feature: Change LoRaWAN End Node Transmit Interval. 886 886 887 887 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -908,10 +908,8 @@ 908 908 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 909 909 910 910 911 - 912 912 === 3.3.2 Get Device Status === 913 913 914 - 915 915 Send a LoRaWAN downlink to ask the device to send its status. 916 916 917 917 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 ... ... @@ -921,7 +921,6 @@ 921 921 922 922 === 3.3.3 Set Interrupt Mode === 923 923 924 - 925 925 Feature, Set Interrupt mode for GPIO_EXIT. 926 926 927 927 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -959,10 +959,8 @@ 959 959 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 960 960 961 961 962 - 963 963 === 3.3.4 Set Power Output Duration === 964 964 965 - 966 966 Control the output duration 5V . Before each sampling, device will 967 967 968 968 ~1. first enable the power output to external sensor, ... ... @@ -993,10 +993,8 @@ 993 993 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 994 994 995 995 996 - 997 997 === 3.3.5 Set Weighing parameters === 998 998 999 - 1000 1000 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1001 1001 1002 1002 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -1020,10 +1020,8 @@ 1020 1020 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1021 1021 1022 1022 1023 - 1024 1024 === 3.3.6 Set Digital pulse count value === 1025 1025 1026 - 1027 1027 Feature: Set the pulse count value. 1028 1028 1029 1029 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1045,10 +1045,8 @@ 1045 1045 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1046 1046 1047 1047 1048 - 1049 1049 === 3.3.7 Set Workmode === 1050 1050 1051 - 1052 1052 Feature: Switch working mode. 1053 1053 1054 1054 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1071,7 +1071,6 @@ 1071 1071 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1072 1072 1073 1073 1074 - 1075 1075 = 4. Battery & Power Consumption = 1076 1076 1077 1077 ... ... @@ -1098,18 +1098,13 @@ 1098 1098 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1099 1099 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1100 1100 1101 - 1102 - 1103 1103 = 6. FAQ = 1104 1104 1105 1105 == 6.1 Where can i find source code of SN50v3-LB? == 1106 1106 1107 - 1108 1108 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1109 1109 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1110 1110 1111 - 1112 - 1113 1113 = 7. Order Info = 1114 1114 1115 1115 ... ... @@ -1133,11 +1133,8 @@ 1133 1133 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1134 1134 * (% style="color:red" %)**NH**(%%): No Hole 1135 1135 1136 - 1137 - 1138 1138 = 8. Packing Info = 1139 1139 1140 - 1141 1141 (% style="color:#037691" %)**Package Includes**: 1142 1142 1143 1143 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1149,8 +1149,6 @@ 1149 1149 * Package Size / pcs : cm 1150 1150 * Weight / pcs : g 1151 1151 1152 - 1153 - 1154 1154 = 9. Support = 1155 1155 1156 1156