<
From version < 43.53 >
edited by Xiaoling
on 2023/05/16 16:13
To version < 87.10 >
edited by Xiaoling
on 2024/01/03 13:52
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,20 +14,19 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -39,16 +39,15 @@
39 39  * Support wireless OTA update firmware
40 40  * Uplink on periodically
41 41  * Downlink to change configure
42 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 48  
49 49  (% style="color:#037691" %)**Common DC Characteristics:**
50 50  
51 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v
52 52  * Operating Temperature: -40 ~~ 85°C
53 53  
54 54  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -80,8 +80,6 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -93,7 +93,7 @@
93 93  == 1.5 Button & LEDs ==
94 94  
95 95  
96 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
97 97  
98 98  
99 99  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -109,12 +109,10 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 -
113 -
114 114  == 1.6 BLE connection ==
115 115  
116 116  
117 -SN50v3-LB supports BLE remote configure.
116 +SN50v3-LB/LS supports BLE remote configure.
118 118  
119 119  
120 120  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -129,35 +129,40 @@
129 129  == 1.7 Pin Definitions ==
130 130  
131 131  
132 -[[image:image-20230513102034-2.png]]
131 +[[image:image-20230610163213-1.png||height="404" width="699"]]
133 133  
134 134  
135 135  == 1.8 Mechanical ==
136 136  
136 +=== 1.8.1 for LB version ===
137 137  
138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
139 139  
140 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
141 141  
141 +
142 142  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143 143  
144 +=== 1.8.2 for LS version ===
144 144  
145 -== Hole Option ==
146 +[[image:image-20231231203439-3.png||height="385" width="886"]]
146 146  
147 147  
148 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149 +== 1.9 Hole Option ==
149 149  
151 +
152 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
153 +
150 150  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
151 151  
152 152  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
153 153  
154 154  
155 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
159 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
156 156  
157 157  == 2.1 How it works ==
158 158  
159 159  
160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161 161  
162 162  
163 163  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -165,12 +165,12 @@
165 165  
166 166  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
167 167  
168 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
172 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
169 169  
170 170  
171 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
175 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
172 172  
173 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
177 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
174 174  
175 175  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
176 176  
... ... @@ -199,10 +199,10 @@
199 199  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
200 200  
201 201  
202 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
206 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
203 203  
204 204  
205 -Press the button for 5 seconds to activate the SN50v3-LB.
209 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
206 206  
207 207  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208 208  
... ... @@ -214,7 +214,7 @@
214 214  === 2.3.1 Device Status, FPORT~=5 ===
215 215  
216 216  
217 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
221 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
218 218  
219 219  The Payload format is as below.
220 220  
... ... @@ -222,44 +222,44 @@
222 222  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
223 223  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
224 224  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
225 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
229 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
226 226  
227 227  Example parse in TTNv3
228 228  
229 229  
230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
234 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
231 231  
232 232  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233 233  
234 234  (% style="color:#037691" %)**Frequency Band**:
235 235  
236 -*0x01: EU868
240 +0x01: EU868
237 237  
238 -*0x02: US915
242 +0x02: US915
239 239  
240 -*0x03: IN865
244 +0x03: IN865
241 241  
242 -*0x04: AU915
246 +0x04: AU915
243 243  
244 -*0x05: KZ865
248 +0x05: KZ865
245 245  
246 -*0x06: RU864
250 +0x06: RU864
247 247  
248 -*0x07: AS923
252 +0x07: AS923
249 249  
250 -*0x08: AS923-1
254 +0x08: AS923-1
251 251  
252 -*0x09: AS923-2
256 +0x09: AS923-2
253 253  
254 -*0x0a: AS923-3
258 +0x0a: AS923-3
255 255  
256 -*0x0b: CN470
260 +0x0b: CN470
257 257  
258 -*0x0c: EU433
262 +0x0c: EU433
259 259  
260 -*0x0d: KR920
264 +0x0d: KR920
261 261  
262 -*0x0e: MA869
266 +0x0e: MA869
263 263  
264 264  
265 265  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -283,21 +283,22 @@
283 283  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284 284  
285 285  
286 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
290 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
287 287  
288 288  For example:
289 289  
290 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
294 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
291 291  
292 292  
293 293  (% style="color:red" %) **Important Notice:**
294 294  
295 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
296 -1. All modes share the same Payload Explanation from HERE.
297 -1. By default, the device will send an uplink message every 20 minutes.
299 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
298 298  
301 +2. All modes share the same Payload Explanation from HERE.
299 299  
303 +3. By default, the device will send an uplink message every 20 minutes.
300 300  
305 +
301 301  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
302 302  
303 303  
... ... @@ -304,8 +304,8 @@
304 304  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
305 305  
306 306  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
307 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
308 -|**Value**|Bat|(% style="width:191px" %)(((
312 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
313 +|Value|Bat|(% style="width:191px" %)(((
309 309  Temperature(DS18B20)(PC13)
310 310  )))|(% style="width:78px" %)(((
311 311  ADC(PA4)
... ... @@ -320,7 +320,6 @@
320 320  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
321 321  
322 322  
323 -
324 324  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325 325  
326 326  
... ... @@ -327,8 +327,8 @@
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 329  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 -|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 -|**Value**|BAT|(% style="width:196px" %)(((
334 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
335 +|Value|BAT|(% style="width:196px" %)(((
332 332  Temperature(DS18B20)(PC13)
333 333  )))|(% style="width:87px" %)(((
334 334  ADC(PA4)
... ... @@ -335,7 +335,7 @@
335 335  )))|(% style="width:189px" %)(((
336 336  Digital in(PB15) & Digital Interrupt(PA8)
337 337  )))|(% style="width:208px" %)(((
338 -Distance measure by:1) LIDAR-Lite V3HP
342 +Distance measure by: 1) LIDAR-Lite V3HP
339 339  Or 2) Ultrasonic Sensor
340 340  )))|(% style="width:117px" %)Reserved
341 341  
... ... @@ -349,7 +349,7 @@
349 349  
350 350  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
351 351  
352 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
356 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
353 353  
354 354  [[image:image-20230512173903-6.png||height="596" width="715"]]
355 355  
... ... @@ -358,7 +358,7 @@
358 358  
359 359  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
360 360  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
361 -|**Value**|BAT|(% style="width:183px" %)(((
365 +|Value|BAT|(% style="width:183px" %)(((
362 362  Temperature(DS18B20)(PC13)
363 363  )))|(% style="width:173px" %)(((
364 364  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -366,8 +366,7 @@
366 366  ADC(PA4)
367 367  )))|(% style="width:323px" %)(((
368 368  Distance measure by:1)TF-Mini plus LiDAR
369 -Or 
370 -2) TF-Luna LiDAR
373 +Or 2) TF-Luna LiDAR
371 371  )))|(% style="width:188px" %)Distance signal  strength
372 372  
373 373  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -375,7 +375,7 @@
375 375  
376 376  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
377 377  
378 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
379 379  
380 380  [[image:image-20230512180609-7.png||height="555" width="802"]]
381 381  
... ... @@ -382,9 +382,9 @@
382 382  
383 383  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
384 384  
385 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
388 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
386 386  
387 -[[image:image-20230513105207-4.png||height="469" width="802"]]
390 +[[image:image-20230610170047-1.png||height="452" width="799"]]
388 388  
389 389  
390 390  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
... ... @@ -395,8 +395,8 @@
395 395  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
396 396  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
397 397  **Size(bytes)**
398 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
399 -|**Value**|(% style="width:68px" %)(((
401 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
402 +|Value|(% style="width:68px" %)(((
400 400  ADC1(PA4)
401 401  )))|(% style="width:75px" %)(((
402 402  ADC2(PA5)
... ... @@ -420,7 +420,7 @@
420 420  
421 421  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
422 422  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
423 -|**Value**|BAT|(% style="width:186px" %)(((
426 +|Value|BAT|(% style="width:186px" %)(((
424 424  Temperature1(DS18B20)(PC13)
425 425  )))|(% style="width:82px" %)(((
426 426  ADC(PA4)
... ... @@ -431,10 +431,10 @@
431 431  
432 432  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
433 433  
437 +
434 434  [[image:image-20230513134006-1.png||height="559" width="736"]]
435 435  
436 436  
437 -
438 438  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
439 439  
440 440  
... ... @@ -442,8 +442,8 @@
442 442  
443 443  Each HX711 need to be calibrated before used. User need to do below two steps:
444 444  
445 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
446 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
448 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
449 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
447 447  1. (((
448 448  Weight has 4 bytes, the unit is g.
449 449  
... ... @@ -453,7 +453,7 @@
453 453  
454 454  For example:
455 455  
456 -**AT+GETSENSORVALUE =0**
459 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
457 457  
458 458  Response:  Weight is 401 g
459 459  
... ... @@ -463,20 +463,17 @@
463 463  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
464 464  **Size(bytes)**
465 465  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
466 -|**Value**|BAT|(% style="width:193px" %)(((
467 -Temperature(DS18B20)
468 -(PC13)
469 +|Value|BAT|(% style="width:193px" %)(((
470 +Temperature(DS18B20)(PC13)
469 469  )))|(% style="width:85px" %)(((
470 470  ADC(PA4)
471 471  )))|(% style="width:186px" %)(((
472 -Digital in(PB15) &
473 -Digital Interrupt(PA8)
474 +Digital in(PB15) & Digital Interrupt(PA8)
474 474  )))|(% style="width:100px" %)Weight
475 475  
476 476  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
477 477  
478 478  
479 -
480 480  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
481 481  
482 482  
... ... @@ -490,8 +490,8 @@
490 490  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
491 491  
492 492  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
493 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
494 -|**Value**|BAT|(% style="width:256px" %)(((
493 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
494 +|Value|BAT|(% style="width:256px" %)(((
495 495  Temperature(DS18B20)(PC13)
496 496  )))|(% style="width:108px" %)(((
497 497  ADC(PA4)
... ... @@ -504,7 +504,6 @@
504 504  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
505 505  
506 506  
507 -
508 508  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
509 509  
510 510  
... ... @@ -512,7 +512,7 @@
512 512  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
513 513  **Size(bytes)**
514 514  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
515 -|**Value**|BAT|(% style="width:188px" %)(((
514 +|Value|BAT|(% style="width:188px" %)(((
516 516  Temperature(DS18B20)
517 517  (PC13)
518 518  )))|(% style="width:83px" %)(((
... ... @@ -530,8 +530,8 @@
530 530  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
531 531  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
532 532  **Size(bytes)**
533 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
534 -|**Value**|BAT|(% style="width:207px" %)(((
532 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
533 +|Value|BAT|(% style="width:207px" %)(((
535 535  Temperature(DS18B20)
536 536  (PC13)
537 537  )))|(% style="width:94px" %)(((
... ... @@ -553,19 +553,19 @@
553 553  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
554 554  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
555 555  **Size(bytes)**
556 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
557 -|**Value**|BAT|(((
558 -Temperature1(DS18B20)
559 -(PC13)
555 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
556 +|Value|BAT|(((
557 +Temperature
558 +(DS18B20)(PC13)
560 560  )))|(((
561 -Temperature2(DS18B20)
562 -(PB9)
560 +Temperature2
561 +(DS18B20)(PB9)
563 563  )))|(((
564 564  Digital Interrupt
565 565  (PB15)
566 566  )))|(% style="width:193px" %)(((
567 -Temperature3(DS18B20)
568 -(PB8)
566 +Temperature3
567 +(DS18B20)(PB8)
569 569  )))|(% style="width:78px" %)(((
570 570  Count1(PA8)
571 571  )))|(% style="width:78px" %)(((
... ... @@ -590,6 +590,108 @@
590 590  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
591 591  
592 592  
592 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
593 +
594 +
595 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
596 +
597 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
598 +
599 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
600 +
601 +
602 +===== 2.3.2.10.a  Uplink, PWM input capture =====
603 +
604 +
605 +[[image:image-20230817172209-2.png||height="439" width="683"]]
606 +
607 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
608 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
609 +|Value|Bat|(% style="width:191px" %)(((
610 +Temperature(DS18B20)(PC13)
611 +)))|(% style="width:78px" %)(((
612 +ADC(PA4)
613 +)))|(% style="width:135px" %)(((
614 +PWM_Setting
615 +&Digital Interrupt(PA8)
616 +)))|(% style="width:70px" %)(((
617 +Pulse period
618 +)))|(% style="width:89px" %)(((
619 +Duration of high level
620 +)))
621 +
622 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
623 +
624 +
625 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
626 +
627 +**Frequency:**
628 +
629 +(% class="MsoNormal" %)
630 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
631 +
632 +(% class="MsoNormal" %)
633 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
634 +
635 +
636 +(% class="MsoNormal" %)
637 +**Duty cycle:**
638 +
639 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
640 +
641 +[[image:image-20230818092200-1.png||height="344" width="627"]]
642 +
643 +
644 +===== 2.3.2.10.b  Uplink, PWM output =====
645 +
646 +
647 +[[image:image-20230817172209-2.png||height="439" width="683"]]
648 +
649 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
650 +
651 +a is the time delay of the output, the unit is ms.
652 +
653 +b is the output frequency, the unit is HZ.
654 +
655 +c is the duty cycle of the output, the unit is %.
656 +
657 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
658 +
659 +aa is the time delay of the output, the unit is ms.
660 +
661 +bb is the output frequency, the unit is HZ.
662 +
663 +cc is the duty cycle of the output, the unit is %.
664 +
665 +
666 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
667 +
668 +The oscilloscope displays as follows:
669 +
670 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
671 +
672 +
673 +===== 2.3.2.10.c  Downlink, PWM output =====
674 +
675 +
676 +[[image:image-20230817173800-3.png||height="412" width="685"]]
677 +
678 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
679 +
680 + xx xx xx is the output frequency, the unit is HZ.
681 +
682 + yy is the duty cycle of the output, the unit is %.
683 +
684 + zz zz is the time delay of the output, the unit is ms.
685 +
686 +
687 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
688 +
689 +The oscilloscope displays as follows:
690 +
691 +[[image:image-20230817173858-5.png||height="634" width="843"]]
692 +
693 +
593 593  === 2.3.3  ​Decode payload ===
594 594  
595 595  
... ... @@ -599,13 +599,13 @@
599 599  
600 600  The payload decoder function for TTN V3 are here:
601 601  
602 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
703 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
603 603  
604 604  
605 605  ==== 2.3.3.1 Battery Info ====
606 606  
607 607  
608 -Check the battery voltage for SN50v3.
709 +Check the battery voltage for SN50v3-LB/LS.
609 609  
610 610  Ex1: 0x0B45 = 2885mV
611 611  
... ... @@ -653,19 +653,26 @@
653 653  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
654 654  
655 655  
656 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
757 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
657 657  
658 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
759 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
659 659  
660 660  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
661 661  
763 +
662 662  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
663 663  
664 664  
767 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
768 +
769 +[[image:image-20230811113449-1.png||height="370" width="608"]]
770 +
771 +
772 +
665 665  ==== 2.3.3.5 Digital Interrupt ====
666 666  
667 667  
668 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
776 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
669 669  
670 670  (% style="color:blue" %)** Interrupt connection method:**
671 671  
... ... @@ -678,18 +678,18 @@
678 678  
679 679  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
680 680  
681 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
789 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
682 682  
683 683  
684 684  (% style="color:blue" %)**Below is the installation example:**
685 685  
686 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
794 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
687 687  
688 688  * (((
689 -One pin to SN50_v3's PA8 pin
797 +One pin to SN50v3-LB/LS's PA8 pin
690 690  )))
691 691  * (((
692 -The other pin to SN50_v3's VDD pin
800 +The other pin to SN50v3-LB/LS's VDD pin
693 693  )))
694 694  
695 695  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -706,7 +706,7 @@
706 706  
707 707  The command is:
708 708  
709 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
817 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
710 710  
711 711  Below shows some screen captures in TTN V3:
712 712  
... ... @@ -713,7 +713,7 @@
713 713  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
714 714  
715 715  
716 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
824 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
717 717  
718 718  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
719 719  
... ... @@ -725,12 +725,13 @@
725 725  
726 726  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
727 727  
728 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
836 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
729 729  
838 +
730 730  Below is the connection to SHT20/ SHT31. The connection is as below:
731 731  
841 +[[image:image-20230610170152-2.png||height="501" width="846"]]
732 732  
733 -[[image:image-20230513103633-3.png||height="448" width="716"]]
734 734  
735 735  The device will be able to get the I2C sensor data now and upload to IoT Server.
736 736  
... ... @@ -758,7 +758,7 @@
758 758  
759 759  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
760 760  
761 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
870 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
762 762  
763 763  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
764 764  
... ... @@ -767,7 +767,7 @@
767 767  [[image:image-20230512173903-6.png||height="596" width="715"]]
768 768  
769 769  
770 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
879 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
771 771  
772 772  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
773 773  
... ... @@ -779,13 +779,13 @@
779 779  ==== 2.3.3.9  Battery Output - BAT pin ====
780 780  
781 781  
782 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
891 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
783 783  
784 784  
785 785  ==== 2.3.3.10  +5V Output ====
786 786  
787 787  
788 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
897 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
789 789  
790 790  The 5V output time can be controlled by AT Command.
791 791  
... ... @@ -793,7 +793,7 @@
793 793  
794 794  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
795 795  
796 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
905 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
797 797  
798 798  
799 799  ==== 2.3.3.11  BH1750 Illumination Sensor ====
... ... @@ -807,9 +807,38 @@
807 807  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
808 808  
809 809  
810 -==== 2.3.3.12  Working MOD ====
919 +==== 2.3.3.12  PWM MOD ====
811 811  
812 812  
922 +* (((
923 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
924 +)))
925 +* (((
926 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
927 +)))
928 +
929 + [[image:image-20230817183249-3.png||height="320" width="417"]]
930 +
931 +* (((
932 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
933 +)))
934 +* (((
935 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
936 +)))
937 +* (((
938 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
939 +
940 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
941 +
942 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
943 +
944 +b) If the output duration is more than 30 seconds, better to use external power source. 
945 +)))
946 +
947 +
948 +==== 2.3.3.13  Working MOD ====
949 +
950 +
813 813  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
814 814  
815 815  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -825,9 +825,8 @@
825 825  * 6: MOD7
826 826  * 7: MOD8
827 827  * 8: MOD9
966 +* 9: MOD10
828 828  
829 -
830 -
831 831  == 2.4 Payload Decoder file ==
832 832  
833 833  
... ... @@ -841,24 +841,22 @@
841 841  == 2.5 Frequency Plans ==
842 842  
843 843  
844 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
981 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
845 845  
846 846  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
847 847  
848 848  
849 -= 3. Configure SN50v3-LB =
986 += 3. Configure SN50v3-LB/LS =
850 850  
851 851  == 3.1 Configure Methods ==
852 852  
853 853  
854 -SN50v3-LB supports below configure method:
991 +SN50v3-LB/LS supports below configure method:
855 855  
856 856  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
857 857  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
858 858  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
859 859  
860 -
861 -
862 862  == 3.2 General Commands ==
863 863  
864 864  
... ... @@ -872,10 +872,10 @@
872 872  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
873 873  
874 874  
875 -== 3.3 Commands special design for SN50v3-LB ==
1010 +== 3.3 Commands special design for SN50v3-LB/LS ==
876 876  
877 877  
878 -These commands only valid for S31x-LB, as below:
1013 +These commands only valid for SN50v3-LB/LS, as below:
879 879  
880 880  
881 881  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -886,7 +886,7 @@
886 886  (% style="color:blue" %)**AT Command: AT+TDC**
887 887  
888 888  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
889 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1024 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
890 890  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
891 891  30000
892 892  OK
... ... @@ -906,16 +906,14 @@
906 906  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
907 907  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
908 908  
909 -
910 -
911 911  === 3.3.2 Get Device Status ===
912 912  
913 913  
914 914  Send a LoRaWAN downlink to ask the device to send its status.
915 915  
916 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1049 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
917 917  
918 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
1051 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
919 919  
920 920  
921 921  === 3.3.3 Set Interrupt Mode ===
... ... @@ -926,7 +926,7 @@
926 926  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
927 927  
928 928  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
929 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1062 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
930 930  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
931 931  0
932 932  OK
... ... @@ -941,7 +941,6 @@
941 941  )))|(% style="width:157px" %)OK
942 942  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
943 943  Set Transmit Interval
944 -
945 945  trigger by rising edge.
946 946  )))|(% style="width:157px" %)OK
947 947  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -957,8 +957,6 @@
957 957  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
958 958  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
959 959  
960 -
961 -
962 962  === 3.3.4 Set Power Output Duration ===
963 963  
964 964  
... ... @@ -973,7 +973,7 @@
973 973  (% style="color:blue" %)**AT Command: AT+5VT**
974 974  
975 975  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
976 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1106 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
977 977  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
978 978  500(default)
979 979  OK
... ... @@ -991,8 +991,6 @@
991 991  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
992 992  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
993 993  
994 -
995 -
996 996  === 3.3.5 Set Weighing parameters ===
997 997  
998 998  
... ... @@ -1001,7 +1001,7 @@
1001 1001  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1002 1002  
1003 1003  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1004 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1132 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1005 1005  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1006 1006  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1007 1007  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1018,8 +1018,6 @@
1018 1018  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1019 1019  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1020 1020  
1021 -
1022 -
1023 1023  === 3.3.6 Set Digital pulse count value ===
1024 1024  
1025 1025  
... ... @@ -1030,7 +1030,7 @@
1030 1030  (% style="color:blue" %)**AT Command: AT+SETCNT**
1031 1031  
1032 1032  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1033 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1159 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1034 1034  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1035 1035  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1036 1036  
... ... @@ -1043,8 +1043,6 @@
1043 1043  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1044 1044  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1045 1045  
1046 -
1047 -
1048 1048  === 3.3.7 Set Workmode ===
1049 1049  
1050 1050  
... ... @@ -1053,7 +1053,7 @@
1053 1053  (% style="color:blue" %)**AT Command: AT+MOD**
1054 1054  
1055 1055  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1056 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1180 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1057 1057  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1058 1058  OK
1059 1059  )))
... ... @@ -1069,13 +1069,103 @@
1069 1069  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1070 1070  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1071 1071  
1196 +(% id="H3.3.8PWMsetting" %)
1197 +=== 3.3.8 PWM setting ===
1072 1072  
1073 1073  
1074 -= 4. Battery & Power Consumption =
1200 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1075 1075  
1202 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1076 1076  
1077 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1204 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1205 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1206 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1207 +0(default)
1078 1078  
1209 +OK
1210 +)))
1211 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1212 +OK
1213 +
1214 +)))
1215 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1216 +
1217 +(% style="color:blue" %)**Downlink Command: 0x0C**
1218 +
1219 +Format: Command Code (0x0C) followed by 1 bytes.
1220 +
1221 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1222 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1223 +
1224 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1225 +
1226 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1227 +
1228 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1229 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1230 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1231 +0,0,0(default)
1232 +
1233 +OK
1234 +)))
1235 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1236 +OK
1237 +
1238 +)))
1239 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1240 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1241 +
1242 +
1243 +)))|(% style="width:137px" %)(((
1244 +OK
1245 +)))
1246 +
1247 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1248 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1249 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1250 +AT+PWMOUT=a,b,c
1251 +
1252 +
1253 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1254 +Set PWM output time, output frequency and output duty cycle.
1255 +
1256 +(((
1257 +
1258 +)))
1259 +
1260 +(((
1261 +
1262 +)))
1263 +)))|(% style="width:242px" %)(((
1264 +a: Output time (unit: seconds)
1265 +
1266 +The value ranges from 0 to 65535.
1267 +
1268 +When a=65535, PWM will always output.
1269 +)))
1270 +|(% style="width:242px" %)(((
1271 +b: Output frequency (unit: HZ)
1272 +)))
1273 +|(% style="width:242px" %)(((
1274 +c: Output duty cycle (unit: %)
1275 +
1276 +The value ranges from 0 to 100.
1277 +)))
1278 +
1279 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1280 +
1281 +Format: Command Code (0x0B01) followed by 6 bytes.
1282 +
1283 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1284 +
1285 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1286 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1287 +
1288 += 4. Battery & Power Cons =
1289 +
1290 +
1291 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1292 +
1079 1079  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1080 1080  
1081 1081  
... ... @@ -1083,36 +1083,47 @@
1083 1083  
1084 1084  
1085 1085  (% class="wikigeneratedid" %)
1086 -User can change firmware SN50v3-LB to:
1300 +**User can change firmware SN50v3-LB/LS to:**
1087 1087  
1088 1088  * Change Frequency band/ region.
1089 1089  * Update with new features.
1090 1090  * Fix bugs.
1091 1091  
1092 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1306 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1093 1093  
1308 +**Methods to Update Firmware:**
1094 1094  
1095 -Methods to Update Firmware:
1310 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1311 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1096 1096  
1097 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1098 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1099 -
1100 -
1101 -
1102 1102  = 6. FAQ =
1103 1103  
1104 -== 6.1 Where can i find source code of SN50v3-LB? ==
1315 +== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1105 1105  
1106 1106  
1107 1107  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1108 1108  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1109 1109  
1321 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1110 1110  
1111 1111  
1324 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1325 +
1326 +
1327 +== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1328 +
1329 +
1330 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1331 +
1332 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1333 +
1334 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1335 +
1336 +
1112 1112  = 7. Order Info =
1113 1113  
1114 1114  
1115 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1340 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1116 1116  
1117 1117  (% style="color:red" %)**XX**(%%): The default frequency band
1118 1118  
... ... @@ -1132,14 +1132,12 @@
1132 1132  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1133 1133  * (% style="color:red" %)**NH**(%%): No Hole
1134 1134  
1135 -
1136 -
1137 1137  = 8. ​Packing Info =
1138 1138  
1139 1139  
1140 1140  (% style="color:#037691" %)**Package Includes**:
1141 1141  
1142 -* SN50v3-LB LoRaWAN Generic Node
1365 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1143 1143  
1144 1144  (% style="color:#037691" %)**Dimension and weight**:
1145 1145  
... ... @@ -1148,8 +1148,6 @@
1148 1148  * Package Size / pcs : cm
1149 1149  * Weight / pcs : g
1150 1150  
1151 -
1152 -
1153 1153  = 9. Support =
1154 1154  
1155 1155  
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0