Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 ... ... @@ -16,21 +16,23 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 20 + 22 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 30 31 31 == 1.2 Features == 32 32 33 - 34 34 * LoRaWAN 1.0.3 Class A 35 35 * Ultra-low power consumption 36 36 * Open-Source hardware/software ... ... @@ -41,11 +41,8 @@ 41 41 * Downlink to change configure 42 42 * 8500mAh Battery for long term use 43 43 44 - 45 - 46 46 == 1.3 Specification == 47 47 48 - 49 49 (% style="color:#037691" %)**Common DC Characteristics:** 50 50 51 51 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -80,11 +80,8 @@ 80 80 * Sleep Mode: 5uA @ 3.3v 81 81 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 82 82 83 - 84 - 85 85 == 1.4 Sleep mode and working mode == 86 86 87 - 88 88 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 89 89 90 90 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -109,8 +109,6 @@ 109 109 ))) 110 110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 111 111 112 - 113 - 114 114 == 1.6 BLE connection == 115 115 116 116 ... ... @@ -144,7 +144,6 @@ 144 144 145 145 == Hole Option == 146 146 147 - 148 148 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 149 149 150 150 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -296,83 +296,97 @@ 296 296 1. All modes share the same Payload Explanation from HERE. 297 297 1. By default, the device will send an uplink message every 20 minutes. 298 298 299 - 300 - 301 301 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 302 302 303 - 304 304 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 305 305 306 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 307 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 308 -|**Value**|Bat|(% style="width:191px" %)((( 309 -Temperature(DS18B20)(PC13) 310 -)))|(% style="width:78px" %)((( 311 -ADC(PA4) 295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 +|**Value**|Bat|((( 297 +Temperature(DS18B20) 298 + 299 +(PC13) 300 +)))|((( 301 +ADC 302 + 303 +(PA4) 312 312 )))|(% style="width:216px" %)((( 313 -Digital in(PB15)&Digital Interrupt(PA8) 314 -)))|(% style="width:308px" %)((( 315 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 316 -)))|(% style="width:154px" %)((( 317 -Humidity(SHT20 or SHT31) 305 +Digital in(PB15) & 306 + 307 +Digital Interrupt(PA8) 308 + 309 + 310 +)))|(% style="width:342px" %)((( 311 +Temperature 312 + 313 +(SHT20 or SHT31 or BH1750 Illumination Sensor) 314 +)))|(% style="width:171px" %)((( 315 +Humidity 316 + 317 +(SHT20 or SHT31) 318 318 ))) 319 319 320 320 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 321 321 322 322 323 - 324 324 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 325 325 326 - 327 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 328 328 329 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 330 -|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 -|**Value**|BAT|(% style="width:196px" %)((( 332 -Temperature(DS18B20)(PC13) 333 -)))|(% style="width:87px" %)((( 334 -ADC(PA4) 335 -)))|(% style="width:189px" %)((( 336 -Digital in(PB15) & Digital Interrupt(PA8) 337 -)))|(% style="width:208px" %)((( 338 -Distance measure by:1) LIDAR-Lite V3HP 339 -Or 2) Ultrasonic Sensor 340 -)))|(% style="width:117px" %)Reserved 327 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 328 +|**Value**|BAT|((( 329 +Temperature(DS18B20) 341 341 342 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 331 +(PC13) 332 +)))|((( 333 +ADC 343 343 335 +(PA4) 336 +)))|((( 337 +Digital in(PB15) & 344 344 345 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 339 +Digital Interrupt(PA8) 340 +)))|((( 341 +Distance measure by: 342 +1) LIDAR-Lite V3HP 343 +Or 344 +2) Ultrasonic Sensor 345 +)))|Reserved 346 346 347 -[[image:i mage-20230512173758-5.png||height="563" width="712"]]347 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 348 348 349 +**Connection of LIDAR-Lite V3HP:** 349 349 350 - (% style="color:blue" %)**ConnectiontoUltrasonic Sensor:**351 +[[image:image-20230512173758-5.png||height="563" width="712"]] 351 351 353 +**Connection to Ultrasonic Sensor:** 354 + 352 352 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 353 353 354 354 [[image:image-20230512173903-6.png||height="596" width="715"]] 355 355 356 - 357 357 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 358 358 359 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 360 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 361 -|**Value**|BAT|(% style="width:183px" %)((( 362 -Temperature(DS18B20)(PC13) 363 -)))|(% style="width:173px" %)((( 364 -Digital in(PB15) & Digital Interrupt(PA8) 365 -)))|(% style="width:84px" %)((( 366 -ADC(PA4) 367 -)))|(% style="width:323px" %)((( 361 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 362 +|**Value**|BAT|((( 363 +Temperature(DS18B20) 364 + 365 +(PC13) 366 +)))|((( 367 +Digital in(PB15) & 368 + 369 +Digital Interrupt(PA8) 370 +)))|((( 371 +ADC 372 + 373 +(PA4) 374 +)))|((( 368 368 Distance measure by:1)TF-Mini plus LiDAR 369 369 Or 370 370 2) TF-Luna LiDAR 371 -)))| (% style="width:188px" %)Distance signal strength378 +)))|Distance signal strength 372 372 373 373 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 374 374 375 - 376 376 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 377 377 378 378 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. ... ... @@ -379,7 +379,6 @@ 379 379 380 380 [[image:image-20230512180609-7.png||height="555" width="802"]] 381 381 382 - 383 383 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 384 384 385 385 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. ... ... @@ -389,25 +389,34 @@ 389 389 390 390 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 391 391 392 - 393 393 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 394 394 395 -(% border="1" cellspacing="4" style="background-color:#f2f2f2;width:520px" %)396 -|=( % style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((399 +(% style="width:1031px" %) 400 +|=((( 397 397 **Size(bytes)** 398 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)1402 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1 399 399 |**Value**|(% style="width:68px" %)((( 400 -ADC1(PA4) 404 +ADC1 405 + 406 +(PA4) 401 401 )))|(% style="width:75px" %)((( 402 -ADC2(PA5) 408 +ADC2 409 + 410 +(PA5) 403 403 )))|((( 404 -ADC3(PA8) 412 +ADC3 413 + 414 +(PA8) 405 405 )))|((( 406 406 Digital Interrupt(PB15) 407 407 )))|(% style="width:304px" %)((( 408 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 418 +Temperature 419 + 420 +(SHT20 or SHT31 or BH1750 Illumination Sensor) 409 409 )))|(% style="width:163px" %)((( 410 -Humidity(SHT20 or SHT31) 422 +Humidity 423 + 424 +(SHT20 or SHT31) 411 411 )))|(% style="width:53px" %)Bat 412 412 413 413 [[image:image-20230513110214-6.png]] ... ... @@ -418,26 +418,30 @@ 418 418 419 419 This mode has total 11 bytes. As shown below: 420 420 421 -(% border="1" cellspacing="4" style="background-color:#f2f2f2;width:520px" %)422 -| (% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0;width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0;width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0;width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0;width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0;width:100px" %)**2**435 +(% style="width:1017px" %) 436 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 423 423 |**Value**|BAT|(% style="width:186px" %)((( 424 -Temperature1(DS18B20)(PC13) 438 +Temperature1(DS18B20) 439 +(PC13) 425 425 )))|(% style="width:82px" %)((( 426 -ADC(PA4) 441 +ADC 442 + 443 +(PA4) 427 427 )))|(% style="width:210px" %)((( 428 -Digital in(PB15) & Digital Interrupt(PA8) 445 +Digital in(PB15) & 446 + 447 +Digital Interrupt(PA8) 429 429 )))|(% style="width:191px" %)Temperature2(DS18B20) 430 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 449 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 450 +(PB8) 431 431 432 432 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 433 433 434 -[[image:image-20230513134006-1.png||height=" 559" width="736"]]454 +[[image:image-20230513134006-1.png||height="743" width="978"]] 435 435 436 436 437 - 438 438 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 439 439 440 - 441 441 [[image:image-20230512164658-2.png||height="532" width="729"]] 442 442 443 443 Each HX711 need to be calibrated before used. User need to do below two steps: ... ... @@ -446,9 +446,6 @@ 446 446 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 447 447 1. ((( 448 448 Weight has 4 bytes, the unit is g. 449 - 450 - 451 - 452 452 ))) 453 453 454 454 For example: ... ... @@ -459,27 +459,31 @@ 459 459 460 460 Check the response of this command and adjust the value to match the real value for thing. 461 461 462 -(% border="1" cellspacing="4" style="background-color:#f2f2f2;width:520px" %)463 -|=( % style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((477 +(% style="width:982px" %) 478 +|=((( 464 464 **Size(bytes)** 465 -)))|= (% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**4**466 -|**Value**|BAT|(% style="width: 193px" %)(((480 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4** 481 +|**Value**|BAT|(% style="width:282px" %)((( 467 467 Temperature(DS18B20) 483 + 468 468 (PC13) 469 -)))|(% style="width:85px" %)((( 470 -ADC(PA4) 471 -)))|(% style="width:186px" %)((( 485 + 486 + 487 +)))|(% style="width:119px" %)((( 488 +ADC 489 + 490 +(PA4) 491 +)))|(% style="width:279px" %)((( 472 472 Digital in(PB15) & 493 + 473 473 Digital Interrupt(PA8) 474 -)))|(% style="width:10 0px" %)Weight495 +)))|(% style="width:106px" %)Weight 475 475 476 476 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 477 477 478 478 479 - 480 480 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 481 481 482 - 483 483 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 484 484 485 485 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -486,62 +486,74 @@ 486 486 487 487 [[image:image-20230512181814-9.png||height="543" width="697"]] 488 488 508 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 489 489 490 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 491 - 492 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 493 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 510 +(% style="width:961px" %) 511 +|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 494 494 |**Value**|BAT|(% style="width:256px" %)((( 495 -Temperature(DS18B20)(PC13) 513 +Temperature(DS18B20) 514 + 515 +(PC13) 496 496 )))|(% style="width:108px" %)((( 497 -ADC(PA4) 517 +ADC 518 + 519 +(PA4) 498 498 )))|(% style="width:126px" %)((( 499 -Digital in(PB15) 521 +Digital in 522 + 523 +(PB15) 500 500 )))|(% style="width:145px" %)((( 501 -Count(PA8) 525 +Count 526 + 527 +(PA8) 502 502 ))) 503 503 504 504 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 505 505 506 506 507 - 508 508 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 509 509 510 - 511 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 512 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 535 +|=((( 513 513 **Size(bytes)** 514 -)))|= (% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2515 -|**Value**|BAT|( % style="width:188px" %)(((537 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 538 +|**Value**|BAT|((( 516 516 Temperature(DS18B20) 540 + 517 517 (PC13) 518 -)))|(% style="width:83px" %)((( 519 -ADC(PA5) 520 -)))|(% style="width:184px" %)((( 542 +)))|((( 543 +ADC 544 + 545 +(PA5) 546 +)))|((( 521 521 Digital Interrupt1(PA8) 522 -)))| (% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved548 +)))|Digital Interrupt2(PA4)|Digital Interrupt3(PB15)|Reserved 523 523 524 524 [[image:image-20230513111203-7.png||height="324" width="975"]] 525 525 526 - 527 527 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 528 528 529 - 530 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 531 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 554 +(% style="width:917px" %) 555 +|=((( 532 532 **Size(bytes)** 533 -)))|= (% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2557 +)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 79px;" %)2 534 534 |**Value**|BAT|(% style="width:207px" %)((( 535 535 Temperature(DS18B20) 560 + 536 536 (PC13) 537 537 )))|(% style="width:94px" %)((( 538 -ADC1(PA4) 563 +ADC1 564 + 565 +(PA4) 539 539 )))|(% style="width:198px" %)((( 540 540 Digital Interrupt(PB15) 541 541 )))|(% style="width:84px" %)((( 542 -ADC2(PA5) 543 -)))|(% style="width:82px" %)((( 544 -ADC3(PA8) 569 +ADC2 570 + 571 +(PA5) 572 +)))|(% style="width:79px" %)((( 573 +ADC3 574 + 575 +(PA8) 545 545 ))) 546 546 547 547 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -549,50 +549,56 @@ 549 549 550 550 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 551 551 552 - 553 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 554 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 583 +(% style="width:1010px" %) 584 +|=((( 555 555 **Size(bytes)** 556 -)))|= (% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)4586 +)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4 557 557 |**Value**|BAT|((( 558 558 Temperature1(DS18B20) 589 + 559 559 (PC13) 560 560 )))|((( 561 561 Temperature2(DS18B20) 593 + 562 562 (PB9) 563 563 )))|((( 564 564 Digital Interrupt 597 + 565 565 (PB15) 566 566 )))|(% style="width:193px" %)((( 567 567 Temperature3(DS18B20) 601 + 568 568 (PB8) 569 569 )))|(% style="width:78px" %)((( 570 -Count1(PA8) 604 +Count1 605 + 606 +(PA8) 571 571 )))|(% style="width:78px" %)((( 572 -Count2(PA4) 608 +Count2 609 + 610 +(PA4) 573 573 ))) 574 574 575 575 [[image:image-20230513111255-9.png||height="341" width="899"]] 576 576 577 - (% style="color:blue" %)**The newly added AT command is issued correspondingly:**615 +**The newly added AT command is issued correspondingly:** 578 578 579 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**617 +**~ AT+INTMOD1** ** PA8** pin: Corresponding downlink: **06 00 00 xx** 580 580 581 - (% style="color:#037691" %)** AT+INTMOD2(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**619 +**~ AT+INTMOD2** **PA4** pin: Corresponding downlink:** 06 00 01 xx** 582 582 583 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**621 +**~ AT+INTMOD3** **PB15** pin: Corresponding downlink: ** 06 00 02 xx** 584 584 623 +**AT+SETCNT=aa,bb** 585 585 586 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 587 - 588 588 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 589 589 590 590 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 591 591 592 592 630 + 593 593 === 2.3.3 Decode payload === 594 594 595 - 596 596 While using TTN V3 network, you can add the payload format to decode the payload. 597 597 598 598 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -604,7 +604,6 @@ 604 604 605 605 ==== 2.3.3.1 Battery Info ==== 606 606 607 - 608 608 Check the battery voltage for SN50v3. 609 609 610 610 Ex1: 0x0B45 = 2885mV ... ... @@ -614,18 +614,16 @@ 614 614 615 615 ==== 2.3.3.2 Temperature (DS18B20) ==== 616 616 653 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 617 617 618 - If thereis aDS18B20 connectedtoPC13pin. The temperaturewillbeploadedin thepayload.655 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 619 619 620 - More DS18B20 cancheckthe [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]657 +**Connection:** 621 621 622 -(% style="color:blue" %)**Connection:** 623 - 624 624 [[image:image-20230512180718-8.png||height="538" width="647"]] 625 625 661 +**Example**: 626 626 627 -(% style="color:blue" %)**Example**: 628 - 629 629 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 630 630 631 631 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -635,7 +635,6 @@ 635 635 636 636 ==== 2.3.3.3 Digital Input ==== 637 637 638 - 639 639 The digital input for pin PB15, 640 640 641 641 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -645,14 +645,11 @@ 645 645 ((( 646 646 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 647 647 648 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 649 - 650 - 681 +**Note:**The maximum voltage input supports 3.6V. 651 651 ))) 652 652 653 653 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 654 654 655 - 656 656 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 657 657 658 658 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -659,21 +659,18 @@ 659 659 660 660 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 661 661 662 - (% style="color:red" %)**Note:**692 +**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 663 663 664 - 665 665 ==== 2.3.3.5 Digital Interrupt ==== 666 666 667 - 668 668 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 669 669 670 - (% style="color:blue" %)** Interrupt connection method:**698 +**~ Interrupt connection method:** 671 671 672 672 [[image:image-20230513105351-5.png||height="147" width="485"]] 673 673 702 +**Example to use with door sensor :** 674 674 675 -(% style="color:blue" %)**Example to use with door sensor :** 676 - 677 677 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 678 678 679 679 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] ... ... @@ -680,9 +680,8 @@ 680 680 681 681 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 682 682 710 +**~ Below is the installation example:** 683 683 684 -(% style="color:blue" %)**Below is the installation example:** 685 - 686 686 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 687 687 688 688 * ((( ... ... @@ -694,7 +694,7 @@ 694 694 695 695 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 696 696 697 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.723 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 698 698 699 699 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 700 700 ... ... @@ -706,13 +706,12 @@ 706 706 707 707 The command is: 708 708 709 - (% style="color:blue" %)**AT+INTMOD1=1 **(%%)~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)735 +**AT+INTMOD1=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 710 710 711 711 Below shows some screen captures in TTN V3: 712 712 713 713 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 714 714 715 - 716 716 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 717 717 718 718 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; ... ... @@ -720,17 +720,16 @@ 720 720 721 721 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 722 722 723 - 724 724 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 725 725 726 -We have made an example to show how to use the I2C interface to connect to the SHT20 /SHT31 Temperature and Humidity Sensor.750 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 727 727 728 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 /SHT31code in SN50_v3 will be a good reference.752 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference. 729 729 730 730 Below is the connection to SHT20/ SHT31. The connection is as below: 731 731 732 732 733 -[[image:image-20230513103633-3.png||height=" 448" width="716"]]757 +[[image:image-20230513103633-3.png||height="636" width="1017"]] 734 734 735 735 The device will be able to get the I2C sensor data now and upload to IoT Server. 736 736 ... ... @@ -749,26 +749,23 @@ 749 749 750 750 ==== 2.3.3.7 Distance Reading ==== 751 751 776 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 752 752 753 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 754 754 755 - 756 756 ==== 2.3.3.8 Ultrasonic Sensor ==== 757 757 758 - 759 759 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 760 760 761 761 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 762 762 763 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%)ultrasonic sensor.785 +The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 764 764 765 765 The picture below shows the connection: 766 766 767 767 [[image:image-20230512173903-6.png||height="596" width="715"]] 768 768 791 +Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 769 769 770 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 771 - 772 772 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 773 773 774 774 **Example:** ... ... @@ -776,20 +776,19 @@ 776 776 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 777 777 778 778 800 + 779 779 ==== 2.3.3.9 Battery Output - BAT pin ==== 780 780 781 - 782 782 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 783 783 784 784 785 785 ==== 2.3.3.10 +5V Output ==== 786 786 787 - 788 788 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 789 789 790 790 The 5V output time can be controlled by AT Command. 791 791 792 - (% style="color:blue" %)**AT+5VT=1000**812 +**AT+5VT=1000** 793 793 794 794 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 795 795 ... ... @@ -796,20 +796,18 @@ 796 796 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 797 797 798 798 819 + 799 799 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 800 800 801 - 802 802 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 803 803 804 -[[image:image-20230512172447-4.png||height=" 416" width="712"]]824 +[[image:image-20230512172447-4.png||height="593" width="1015"]] 805 805 826 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 806 806 807 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 808 808 809 - 810 810 ==== 2.3.3.12 Working MOD ==== 811 811 812 - 813 813 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 814 814 815 815 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -826,8 +826,6 @@ 826 826 * 7: MOD8 827 827 * 8: MOD9 828 828 829 - 830 - 831 831 == 2.4 Payload Decoder file == 832 832 833 833 ... ... @@ -835,9 +835,10 @@ 835 835 836 836 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 837 837 838 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50 _v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]854 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 839 839 840 840 857 + 841 841 == 2.5 Frequency Plans == 842 842 843 843 ... ... @@ -857,8 +857,6 @@ 857 857 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 858 858 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 859 859 860 - 861 - 862 862 == 3.2 General Commands == 863 863 864 864 ... ... @@ -906,13 +906,10 @@ 906 906 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 907 907 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 908 908 909 - 910 - 911 911 === 3.3.2 Get Device Status === 912 912 926 +Send a LoRaWAN downlink to ask device send Alarm settings. 913 913 914 -Send a LoRaWAN downlink to ask the device to send its status. 915 - 916 916 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 917 917 918 918 Sensor will upload Device Status via FPORT=5. See payload section for detail. ... ... @@ -957,11 +957,8 @@ 957 957 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 958 958 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 959 959 960 - 961 - 962 962 === 3.3.4 Set Power Output Duration === 963 963 964 - 965 965 Control the output duration 5V . Before each sampling, device will 966 966 967 967 ~1. first enable the power output to external sensor, ... ... @@ -976,6 +976,7 @@ 976 976 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 977 977 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 978 978 500(default) 988 + 979 979 OK 980 980 ))) 981 981 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( ... ... @@ -988,14 +988,11 @@ 988 988 989 989 The first and second bytes are the time to turn on. 990 990 991 -* Example 1: Downlink Payload: 070000 992 -* Example 2: Downlink Payload: 0701F4 1001 +* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1002 +* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 993 993 994 - 995 - 996 996 === 3.3.5 Set Weighing parameters === 997 997 998 - 999 999 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1000 1000 1001 1001 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -1008,6 +1008,7 @@ 1008 1008 1009 1009 (% style="color:blue" %)**Downlink Command: 0x08** 1010 1010 1018 + 1011 1011 Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1012 1012 1013 1013 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. ... ... @@ -1018,11 +1018,8 @@ 1018 1018 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1019 1019 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1020 1020 1021 - 1022 - 1023 1023 === 3.3.6 Set Digital pulse count value === 1024 1024 1025 - 1026 1026 Feature: Set the pulse count value. 1027 1027 1028 1028 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1036,6 +1036,7 @@ 1036 1036 1037 1037 (% style="color:blue" %)**Downlink Command: 0x09** 1038 1038 1044 + 1039 1039 Format: Command Code (0x09) followed by 5 bytes. 1040 1040 1041 1041 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. ... ... @@ -1043,11 +1043,8 @@ 1043 1043 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1044 1044 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1045 1045 1046 - 1047 - 1048 1048 === 3.3.7 Set Workmode === 1049 1049 1050 - 1051 1051 Feature: Switch working mode. 1052 1052 1053 1053 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1059,18 +1059,18 @@ 1059 1059 ))) 1060 1060 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1061 1061 OK 1065 + 1062 1062 Attention:Take effect after ATZ 1063 1063 ))) 1064 1064 1065 1065 (% style="color:blue" %)**Downlink Command: 0x0A** 1066 1066 1071 + 1067 1067 Format: Command Code (0x0A) followed by 1 bytes. 1068 1068 1069 1069 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1070 1070 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1071 1071 1072 - 1073 - 1074 1074 = 4. Battery & Power Consumption = 1075 1075 1076 1076 ... ... @@ -1097,18 +1097,13 @@ 1097 1097 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1098 1098 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1099 1099 1100 - 1101 - 1102 1102 = 6. FAQ = 1103 1103 1104 1104 == 6.1 Where can i find source code of SN50v3-LB? == 1105 1105 1106 - 1107 1107 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1108 1108 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1109 1109 1110 - 1111 - 1112 1112 = 7. Order Info = 1113 1113 1114 1114 ... ... @@ -1132,11 +1132,8 @@ 1132 1132 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1133 1133 * (% style="color:red" %)**NH**(%%): No Hole 1134 1134 1135 - 1136 - 1137 1137 = 8. Packing Info = 1138 1138 1139 - 1140 1140 (% style="color:#037691" %)**Package Includes**: 1141 1141 1142 1142 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1148,11 +1148,8 @@ 1148 1148 * Package Size / pcs : cm 1149 1149 * Weight / pcs : g 1150 1150 1151 - 1152 - 1153 1153 = 9. Support = 1154 1154 1155 1155 1156 1156 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1157 - 1158 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 1150 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content