<
From version < 43.53 >
edited by Xiaoling
on 2023/05/16 16:13
To version < 35.1 >
edited by Saxer Lin
on 2023/05/13 11:12
>
Change comment: Uploaded new attachment "image-20230513111255-9.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,21 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -41,11 +41,8 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 -
49 49  (% style="color:#037691" %)**Common DC Characteristics:**
50 50  
51 51  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -80,11 +80,8 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 -
88 88  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
89 89  
90 90  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -109,8 +109,6 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 -
113 -
114 114  == 1.6 BLE connection ==
115 115  
116 116  
... ... @@ -129,7 +129,7 @@
129 129  == 1.7 Pin Definitions ==
130 130  
131 131  
132 -[[image:image-20230513102034-2.png]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
133 133  
134 134  
135 135  == 1.8 Mechanical ==
... ... @@ -144,7 +144,6 @@
144 144  
145 145  == Hole Option ==
146 146  
147 -
148 148  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149 149  
150 150  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -296,148 +296,130 @@
296 296  1. All modes share the same Payload Explanation from HERE.
297 297  1. By default, the device will send an uplink message every 20 minutes.
298 298  
299 -
300 -
301 301  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
302 302  
303 -
304 304  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
305 305  
306 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
307 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
308 -|**Value**|Bat|(% style="width:191px" %)(((
309 -Temperature(DS18B20)(PC13)
310 -)))|(% style="width:78px" %)(((
311 -ADC(PA4)
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
297 +Temperature(DS18B20)
298 +
299 +(PC13)
300 +)))|(((
301 +ADC
302 +
303 +(PA4)
312 312  )))|(% style="width:216px" %)(((
313 -Digital in(PB15)&Digital Interrupt(PA8)
314 -)))|(% style="width:308px" %)(((
315 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
316 -)))|(% style="width:154px" %)(((
317 -Humidity(SHT20 or SHT31)
318 -)))
305 +Digital in & Digital Interrupt
319 319  
307 +
308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31)
309 +
320 320  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
321 321  
322 322  
323 -
324 324  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325 325  
326 -
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 -|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 -|**Value**|BAT|(% style="width:196px" %)(((
332 -Temperature(DS18B20)(PC13)
333 -)))|(% style="width:87px" %)(((
334 -ADC(PA4)
335 -)))|(% style="width:189px" %)(((
336 -Digital in(PB15) & Digital Interrupt(PA8)
337 -)))|(% style="width:208px" %)(((
338 -Distance measure by:1) LIDAR-Lite V3HP
339 -Or 2) Ultrasonic Sensor
340 -)))|(% style="width:117px" %)Reserved
317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
318 +|**Value**|BAT|(((
319 +Temperature(DS18B20)
320 +)))|ADC|Digital in & Digital Interrupt|(((
321 +Distance measure by:
322 +1) LIDAR-Lite V3HP
323 +Or
324 +2) Ultrasonic Sensor
325 +)))|Reserved
341 341  
342 342  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
343 343  
329 +**Connection of LIDAR-Lite V3HP:**
344 344  
345 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
346 -
347 347  [[image:image-20230512173758-5.png||height="563" width="712"]]
348 348  
333 +**Connection to Ultrasonic Sensor:**
349 349  
350 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
351 -
352 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
353 -
354 354  [[image:image-20230512173903-6.png||height="596" width="715"]]
355 355  
356 -
357 357  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
358 358  
359 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
360 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
361 -|**Value**|BAT|(% style="width:183px" %)(((
362 -Temperature(DS18B20)(PC13)
363 -)))|(% style="width:173px" %)(((
364 -Digital in(PB15) & Digital Interrupt(PA8)
365 -)))|(% style="width:84px" %)(((
366 -ADC(PA4)
367 -)))|(% style="width:323px" %)(((
339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
340 +|**Value**|BAT|(((
341 +Temperature(DS18B20)
342 +)))|Digital in & Digital Interrupt|ADC|(((
368 368  Distance measure by:1)TF-Mini plus LiDAR
369 369  Or 
370 370  2) TF-Luna LiDAR
371 -)))|(% style="width:188px" %)Distance signal  strength
346 +)))|Distance signal  strength
372 372  
373 373  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
374 374  
375 -
376 376  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
377 377  
378 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
352 +Need to remove R3 and R4 resistors to get low power.
379 379  
380 380  [[image:image-20230512180609-7.png||height="555" width="802"]]
381 381  
382 -
383 383  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
384 384  
385 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
358 +Need to remove R3 and R4 resistors to get low power.
386 386  
387 -[[image:image-20230513105207-4.png||height="469" width="802"]]
360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
388 388  
362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
389 389  
364 +
390 390  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
391 391  
392 -
393 393  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
394 394  
395 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
396 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
369 +|=(((
397 397  **Size(bytes)**
398 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1
399 399  |**Value**|(% style="width:68px" %)(((
400 -ADC1(PA4)
373 +ADC
374 +
375 +(PA0)
401 401  )))|(% style="width:75px" %)(((
402 -ADC2(PA5)
403 -)))|(((
404 -ADC3(PA8)
405 -)))|(((
406 -Digital Interrupt(PB15)
407 -)))|(% style="width:304px" %)(((
408 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
409 -)))|(% style="width:163px" %)(((
410 -Humidity(SHT20 or SHT31)
411 -)))|(% style="width:53px" %)Bat
377 +ADC2
412 412  
413 -[[image:image-20230513110214-6.png]]
379 +(PA1)
380 +)))|ADC3 (PA4)|(((
381 +Digital in(PA12)&Digital Interrupt1(PB14)
382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat
414 414  
384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
415 415  
386 +
416 416  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
417 417  
389 +[[image:image-20230512170701-3.png||height="565" width="743"]]
418 418  
419 419  This mode has total 11 bytes. As shown below:
420 420  
421 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
422 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
393 +(% style="width:1017px" %)
394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
423 423  |**Value**|BAT|(% style="width:186px" %)(((
424 -Temperature1(DS18B20)(PC13)
396 +Temperature1(DS18B20)
397 +(PC13)
425 425  )))|(% style="width:82px" %)(((
426 -ADC(PA4)
399 +ADC
400 +
401 +(PA4)
427 427  )))|(% style="width:210px" %)(((
428 -Digital in(PB15) & Digital Interrupt(PA8) 
403 +Digital in & Digital Interrupt
404 +
405 +(PB15)  &  (PA8) 
429 429  )))|(% style="width:191px" %)Temperature2(DS18B20)
430 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
408 +(PB8)
431 431  
432 432  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
433 433  
434 -[[image:image-20230513134006-1.png||height="559" width="736"]]
435 435  
436 -
437 -
438 438  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
439 439  
440 -
441 441  [[image:image-20230512164658-2.png||height="532" width="729"]]
442 442  
443 443  Each HX711 need to be calibrated before used. User need to do below two steps:
... ... @@ -446,9 +446,6 @@
446 446  1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
447 447  1. (((
448 448  Weight has 4 bytes, the unit is g.
449 -
450 -
451 -
452 452  )))
453 453  
454 454  For example:
... ... @@ -459,27 +459,31 @@
459 459  
460 460  Check the response of this command and adjust the value to match the real value for thing.
461 461  
462 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
463 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
433 +(% style="width:982px" %)
434 +|=(((
464 464  **Size(bytes)**
465 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
466 -|**Value**|BAT|(% style="width:193px" %)(((
467 -Temperature(DS18B20)
436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)(((
438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
439 +
468 468  (PC13)
469 -)))|(% style="width:85px" %)(((
470 -ADC(PA4)
471 -)))|(% style="width:186px" %)(((
472 -Digital in(PB15) &
473 -Digital Interrupt(PA8)
474 -)))|(% style="width:100px" %)Weight
475 475  
476 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
442 +
443 +)))|(% style="width:119px" %)(((
444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]
477 477  
446 +(PA4)
447 +)))|(% style="width:279px" %)(((
448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]
478 478  
450 +(PB15)  &  (PA8)
451 +)))|(% style="width:106px" %)Weight
479 479  
480 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
453 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
481 481  
482 482  
456 +==== 2.3.2.6  MOD~=6 (Counting Mode) ====
457 +
483 483  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
484 484  
485 485  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -486,113 +486,86 @@
486 486  
487 487  [[image:image-20230512181814-9.png||height="543" width="697"]]
488 488  
464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
489 489  
490 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
491 491  
492 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
493 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
494 -|**Value**|BAT|(% style="width:256px" %)(((
495 -Temperature(DS18B20)(PC13)
496 -)))|(% style="width:108px" %)(((
497 -ADC(PA4)
498 -)))|(% style="width:126px" %)(((
499 -Digital in(PB15)
500 -)))|(% style="width:145px" %)(((
501 -Count(PA8)
502 -)))
503 -
504 504  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
505 505  
506 506  
507 -
508 508  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
509 509  
476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
510 510  
511 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
512 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
478 +|=(((
513 513  **Size(bytes)**
514 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
515 -|**Value**|BAT|(% style="width:188px" %)(((
516 -Temperature(DS18B20)
517 -(PC13)
518 -)))|(% style="width:83px" %)(((
519 -ADC(PA5)
520 -)))|(% style="width:184px" %)(((
521 -Digital Interrupt1(PA8)
522 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
481 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
482 +Digital in(PA12)&Digital Interrupt1(PB14)
483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
523 523  
524 -[[image:image-20230513111203-7.png||height="324" width="975"]]
525 -
526 -
527 527  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
528 528  
529 -
530 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
531 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
487 +|=(((
532 532  **Size(bytes)**
533 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
534 -|**Value**|BAT|(% style="width:207px" %)(((
535 -Temperature(DS18B20)
536 -(PC13)
537 -)))|(% style="width:94px" %)(((
538 -ADC1(PA4)
539 -)))|(% style="width:198px" %)(((
540 -Digital Interrupt(PB15)
541 -)))|(% style="width:84px" %)(((
542 -ADC2(PA5)
543 -)))|(% style="width:82px" %)(((
544 -ADC3(PA8)
489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
490 +|**Value**|BAT|Temperature(DS18B20)|(((
491 +ADC1(PA0)
492 +)))|(((
493 +Digital in
494 +& Digital Interrupt(PB14)
495 +)))|(((
496 +ADC2(PA1)
497 +)))|(((
498 +ADC3(PA4)
545 545  )))
546 546  
547 -[[image:image-20230513111231-8.png||height="335" width="900"]]
501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
548 548  
549 549  
550 550  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
551 551  
552 -
553 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
554 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
506 +|=(((
555 555  **Size(bytes)**
556 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
557 557  |**Value**|BAT|(((
558 -Temperature1(DS18B20)
559 -(PC13)
510 +Temperature1(PB3)
560 560  )))|(((
561 -Temperature2(DS18B20)
562 -(PB9)
512 +Temperature2(PA9)
563 563  )))|(((
564 -Digital Interrupt
565 -(PB15)
566 -)))|(% style="width:193px" %)(((
567 -Temperature3(DS18B20)
568 -(PB8)
569 -)))|(% style="width:78px" %)(((
570 -Count1(PA8)
571 -)))|(% style="width:78px" %)(((
572 -Count2(PA4)
514 +Digital in
515 +& Digital Interrupt(PA4)
516 +)))|(((
517 +Temperature3(PA10)
518 +)))|(((
519 +Count1(PB14)
520 +)))|(((
521 +Count2(PB15)
573 573  )))
574 574  
575 -[[image:image-20230513111255-9.png||height="341" width="899"]]
524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
576 576  
577 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
526 +**The newly added AT command is issued correspondingly:**
578 578  
579 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
528 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
580 580  
581 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
530 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
582 582  
583 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
532 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
584 584  
534 +**AT+SETCNT=aa,bb** 
585 585  
586 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
587 587  
588 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
589 589  
590 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
591 591  
592 592  
593 593  === 2.3.3  ​Decode payload ===
594 594  
595 -
596 596  While using TTN V3 network, you can add the payload format to decode the payload.
597 597  
598 598  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -604,7 +604,6 @@
604 604  
605 605  ==== 2.3.3.1 Battery Info ====
606 606  
607 -
608 608  Check the battery voltage for SN50v3.
609 609  
610 610  Ex1: 0x0B45 = 2885mV
... ... @@ -614,18 +614,16 @@
614 614  
615 615  ==== 2.3.3.2  Temperature (DS18B20) ====
616 616  
564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
617 617  
618 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
619 619  
620 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
568 +**Connection:**
621 621  
622 -(% style="color:blue" %)**Connection:**
623 -
624 624  [[image:image-20230512180718-8.png||height="538" width="647"]]
625 625  
572 +**Example**:
626 626  
627 -(% style="color:blue" %)**Example**:
628 -
629 629  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
630 630  
631 631  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -635,7 +635,6 @@
635 635  
636 636  ==== 2.3.3.3 Digital Input ====
637 637  
638 -
639 639  The digital input for pin PB15,
640 640  
641 641  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -643,60 +643,51 @@
643 643  
644 644  (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
645 645  (((
646 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
647 -
648 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
649 -
650 -
590 +Note:The maximum voltage input supports 3.6V.
651 651  )))
652 652  
593 +(% class="wikigeneratedid" %)
653 653  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
654 654  
596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
655 655  
656 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
598 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
657 657  
658 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
659 -
660 660  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
661 661  
662 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
663 663  
664 -
665 665  ==== 2.3.3.5 Digital Interrupt ====
666 666  
605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
667 667  
668 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
607 +**~ Interrupt connection method:**
669 669  
670 -(% style="color:blue" %)** Interrupt connection method:**
609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
671 671  
672 -[[image:image-20230513105351-5.png||height="147" width="485"]]
611 +**Example to use with door sensor :**
673 673  
674 -
675 -(% style="color:blue" %)**Example to use with door sensor :**
676 -
677 677  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
678 678  
679 679  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
680 680  
681 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
682 682  
619 +**~ Below is the installation example:**
683 683  
684 -(% style="color:blue" %)**Below is the installation example:**
621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
685 685  
686 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
687 -
688 688  * (((
689 -One pin to SN50_v3's PA8 pin
624 +One pin to LSN50's PB14 pin
690 690  )))
691 691  * (((
692 -The other pin to SN50_v3's VDD pin
627 +The other pin to LSN50's VCC pin
693 693  )))
694 694  
695 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
696 696  
697 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
698 698  
699 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
700 700  
701 701  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
702 702  
... ... @@ -706,13 +706,12 @@
706 706  
707 707  The command is:
708 708  
709 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
644 +**AT+INTMOD=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
710 710  
711 711  Below shows some screen captures in TTN V3:
712 712  
713 713  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
714 714  
715 -
716 716  In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
717 717  
718 718  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
... ... @@ -720,18 +720,16 @@
720 720  
721 721  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
722 722  
723 -
724 724  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
725 725  
726 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
727 727  
728 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
729 729  
730 730  Below is the connection to SHT20/ SHT31. The connection is as below:
731 731  
665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
732 732  
733 -[[image:image-20230513103633-3.png||height="448" width="716"]]
734 -
735 735  The device will be able to get the I2C sensor data now and upload to IoT Server.
736 736  
737 737  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -749,26 +749,20 @@
749 749  
750 750  ==== 2.3.3.7  ​Distance Reading ====
751 751  
684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
752 752  
753 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
754 754  
755 -
756 756  ==== 2.3.3.8 Ultrasonic Sensor ====
757 757  
758 -
759 759  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
760 760  
761 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
762 762  
763 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
764 -
765 765  The picture below shows the connection:
766 766  
767 -[[image:image-20230512173903-6.png||height="596" width="715"]]
768 768  
696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
769 769  
770 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
771 -
772 772  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
773 773  
774 774  **Example:**
... ... @@ -775,21 +775,32 @@
775 775  
776 776  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
777 777  
704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
778 778  
779 -==== 2.3.3.9  Battery Output - BAT pin ====
706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
780 780  
708 +You can see the serial output in ULT mode as below:
781 781  
710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
711 +
712 +**In TTN V3 server:**
713 +
714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
715 +
716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
717 +
718 +==== 2.3.3.9  Battery Output - BAT pin ====
719 +
782 782  The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
783 783  
784 784  
785 785  ==== 2.3.3.10  +5V Output ====
786 786  
787 -
788 788  SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
789 789  
790 790  The 5V output time can be controlled by AT Command.
791 791  
792 -(% style="color:blue" %)**AT+5VT=1000**
729 +**AT+5VT=1000**
793 793  
794 794  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
795 795  
... ... @@ -796,20 +796,18 @@
796 796  By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
797 797  
798 798  
736 +
799 799  ==== 2.3.3.11  BH1750 Illumination Sensor ====
800 800  
801 -
802 802  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
803 803  
804 -[[image:image-20230512172447-4.png||height="416" width="712"]]
741 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
805 805  
743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
806 806  
807 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
808 808  
809 -
810 810  ==== 2.3.3.12  Working MOD ====
811 811  
812 -
813 813  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
814 814  
815 815  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -822,12 +822,7 @@
822 822  * 3: MOD4
823 823  * 4: MOD5
824 824  * 5: MOD6
825 -* 6: MOD7
826 -* 7: MOD8
827 -* 8: MOD9
828 828  
829 -
830 -
831 831  == 2.4 Payload Decoder file ==
832 832  
833 833  
... ... @@ -835,9 +835,10 @@
835 835  
836 836  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
837 837  
838 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
839 839  
840 840  
771 +
841 841  == 2.5 Frequency Plans ==
842 842  
843 843  
... ... @@ -857,8 +857,6 @@
857 857  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
858 858  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
859 859  
860 -
861 -
862 862  == 3.2 General Commands ==
863 863  
864 864  
... ... @@ -906,33 +906,30 @@
906 906  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
907 907  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
908 908  
909 -
910 -
911 911  === 3.3.2 Get Device Status ===
912 912  
840 +Send a LoRaWAN downlink to ask device send Alarm settings.
913 913  
914 -Send a LoRaWAN downlink to ask the device to send its status.
915 -
916 916  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
917 917  
918 918  Sensor will upload Device Status via FPORT=5. See payload section for detail.
919 919  
920 920  
921 -=== 3.3.3 Set Interrupt Mode ===
847 +=== 3.3.7 Set Interrupt Mode ===
922 922  
923 923  
924 924  Feature, Set Interrupt mode for GPIO_EXIT.
925 925  
926 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
852 +(% style="color:blue" %)**AT Command: AT+INTMOD**
927 927  
928 928  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
929 929  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
930 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
931 931  0
932 932  OK
933 933  the mode is 0 =Disable Interrupt
934 934  )))
935 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
936 936  Set Transmit Interval
937 937  0. (Disable Interrupt),
938 938  ~1. (Trigger by rising and falling edge)
... ... @@ -939,13 +939,7 @@
939 939  2. (Trigger by falling edge)
940 940  3. (Trigger by rising edge)
941 941  )))|(% style="width:157px" %)OK
942 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
943 -Set Transmit Interval
944 944  
945 -trigger by rising edge.
946 -)))|(% style="width:157px" %)OK
947 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
948 -
949 949  (% style="color:blue" %)**Downlink Command: 0x06**
950 950  
951 951  Format: Command Code (0x06) followed by 3 bytes.
... ... @@ -952,125 +952,9 @@
952 952  
953 953  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
954 954  
955 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
956 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
957 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
958 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
875 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
876 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
959 959  
960 -
961 -
962 -=== 3.3.4 Set Power Output Duration ===
963 -
964 -
965 -Control the output duration 5V . Before each sampling, device will
966 -
967 -~1. first enable the power output to external sensor,
968 -
969 -2. keep it on as per duration, read sensor value and construct uplink payload
970 -
971 -3. final, close the power output.
972 -
973 -(% style="color:blue" %)**AT Command: AT+5VT**
974 -
975 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
976 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
977 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
978 -500(default)
979 -OK
980 -)))
981 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
982 -Close after a delay of 1000 milliseconds.
983 -)))|(% style="width:157px" %)OK
984 -
985 -(% style="color:blue" %)**Downlink Command: 0x07**
986 -
987 -Format: Command Code (0x07) followed by 2 bytes.
988 -
989 -The first and second bytes are the time to turn on.
990 -
991 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
992 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
993 -
994 -
995 -
996 -=== 3.3.5 Set Weighing parameters ===
997 -
998 -
999 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1000 -
1001 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1002 -
1003 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1004 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1005 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1006 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1007 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1008 -
1009 -(% style="color:blue" %)**Downlink Command: 0x08**
1010 -
1011 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1012 -
1013 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1014 -
1015 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1016 -
1017 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1018 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1019 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1020 -
1021 -
1022 -
1023 -=== 3.3.6 Set Digital pulse count value ===
1024 -
1025 -
1026 -Feature: Set the pulse count value.
1027 -
1028 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1029 -
1030 -(% style="color:blue" %)**AT Command: AT+SETCNT**
1031 -
1032 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1033 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1034 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1035 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1036 -
1037 -(% style="color:blue" %)**Downlink Command: 0x09**
1038 -
1039 -Format: Command Code (0x09) followed by 5 bytes.
1040 -
1041 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1042 -
1043 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1044 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1045 -
1046 -
1047 -
1048 -=== 3.3.7 Set Workmode ===
1049 -
1050 -
1051 -Feature: Switch working mode.
1052 -
1053 -(% style="color:blue" %)**AT Command: AT+MOD**
1054 -
1055 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1056 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1057 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1058 -OK
1059 -)))
1060 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1061 -OK
1062 -Attention:Take effect after ATZ
1063 -)))
1064 -
1065 -(% style="color:blue" %)**Downlink Command: 0x0A**
1066 -
1067 -Format: Command Code (0x0A) followed by 1 bytes.
1068 -
1069 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1070 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1071 -
1072 -
1073 -
1074 1074  = 4. Battery & Power Consumption =
1075 1075  
1076 1076  
... ... @@ -1097,18 +1097,14 @@
1097 1097  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1098 1098  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1099 1099  
1100 -
1101 -
1102 1102  = 6. FAQ =
1103 1103  
1104 1104  == 6.1 Where can i find source code of SN50v3-LB? ==
1105 1105  
1106 -
1107 1107  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1108 1108  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1109 1109  
1110 1110  
1111 -
1112 1112  = 7. Order Info =
1113 1113  
1114 1114  
... ... @@ -1132,11 +1132,8 @@
1132 1132  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1133 1133  * (% style="color:red" %)**NH**(%%): No Hole
1134 1134  
1135 -
1136 -
1137 1137  = 8. ​Packing Info =
1138 1138  
1139 -
1140 1140  (% style="color:#037691" %)**Package Includes**:
1141 1141  
1142 1142  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1148,11 +1148,8 @@
1148 1148  * Package Size / pcs : cm
1149 1149  * Weight / pcs : g
1150 1150  
1151 -
1152 -
1153 1153  = 9. Support =
1154 1154  
1155 1155  
1156 1156  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1157 -
1158 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0