<
From version < 43.52 >
edited by Xiaoling
on 2023/05/16 16:10
To version < 9.1 >
edited by Edwin Chen
on 2023/05/11 20:37
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,21 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -43,7 +43,6 @@
43 43  
44 44  == 1.3 Specification ==
45 45  
46 -
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 49  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -80,7 +80,6 @@
80 80  
81 81  == 1.4 Sleep mode and working mode ==
82 82  
83 -
84 84  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85 85  
86 86  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -123,7 +123,7 @@
123 123  == 1.7 Pin Definitions ==
124 124  
125 125  
126 -[[image:image-20230513102034-2.png]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
127 127  
128 128  
129 129  == 1.8 Mechanical ==
... ... @@ -138,7 +138,6 @@
138 138  
139 139  == Hole Option ==
140 140  
141 -
142 142  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
143 143  
144 144  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -146,12 +146,12 @@
146 146  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147 147  
148 148  
149 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
147 += 2. Configure S31x-LB to connect to LoRaWAN network =
150 150  
151 151  == 2.1 How it works ==
152 152  
153 153  
154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155 155  
156 156  
157 157  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -162,11 +162,11 @@
162 162  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163 163  
164 164  
165 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
166 166  
167 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
165 +Each S31x-LB is shipped with a sticker with the default device EUI as below:
168 168  
169 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
167 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
170 170  
171 171  
172 172  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -193,10 +193,10 @@
193 193  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
194 194  
195 195  
196 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
194 +(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
197 197  
198 198  
199 -Press the button for 5 seconds to activate the SN50v3-LB.
197 +Press the button for 5 seconds to activate the S31x-LB.
200 200  
201 201  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
202 202  
... ... @@ -208,7 +208,7 @@
208 208  === 2.3.1 Device Status, FPORT~=5 ===
209 209  
210 210  
211 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
212 212  
213 213  The Payload format is as below.
214 214  
... ... @@ -220,9 +220,11 @@
220 220  
221 221  Example parse in TTNv3
222 222  
221 +[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
223 223  
224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
225 225  
224 +(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
225 +
226 226  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227 227  
228 228  (% style="color:#037691" %)**Frequency Band**:
... ... @@ -274,346 +274,41 @@
274 274  Ex2: 0x0B49 = 2889mV
275 275  
276 276  
277 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 +=== 2.3.2  Sensor Data. FPORT~=2 ===
278 278  
279 279  
280 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 +Sensor Data is uplink via FPORT=2
281 281  
282 -For example:
283 -
284 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
285 -
286 -
287 -(% style="color:red" %) **Important Notice:**
288 -
289 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
290 -1. All modes share the same Payload Explanation from HERE.
291 -1. By default, the device will send an uplink message every 20 minutes.
292 -
293 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
294 -
295 -
296 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
297 -
298 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
299 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
300 -|**Value**|Bat|(% style="width:191px" %)(((
301 -Temperature(DS18B20)(PC13)
302 -)))|(% style="width:78px" %)(((
303 -ADC(PA4)
304 -)))|(% style="width:216px" %)(((
305 -Digital in(PB15)&Digital Interrupt(PA8)
306 -)))|(% style="width:308px" %)(((
307 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
308 -)))|(% style="width:154px" %)(((
309 -Humidity(SHT20 or SHT31)
310 -)))
311 -
312 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
313 -
314 -
315 -
316 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
317 -
318 -
319 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
320 -
321 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
322 -|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
323 -|**Value**|BAT|(% style="width:196px" %)(((
324 -Temperature(DS18B20)(PC13)
325 -)))|(% style="width:87px" %)(((
326 -ADC(PA4)
327 -)))|(% style="width:189px" %)(((
328 -Digital in(PB15) & Digital Interrupt(PA8)
329 -)))|(% style="width:208px" %)(((
330 -Distance measure by:1) LIDAR-Lite V3HP
331 -Or 2) Ultrasonic Sensor
332 -)))|(% style="width:117px" %)Reserved
333 -
334 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
335 -
336 -
337 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
338 -
339 -[[image:image-20230512173758-5.png||height="563" width="712"]]
340 -
341 -
342 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
343 -
344 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
345 -
346 -[[image:image-20230512173903-6.png||height="596" width="715"]]
347 -
348 -
349 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
350 -
351 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
352 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
353 -|**Value**|BAT|(% style="width:183px" %)(((
354 -Temperature(DS18B20)(PC13)
355 -)))|(% style="width:173px" %)(((
356 -Digital in(PB15) & Digital Interrupt(PA8)
357 -)))|(% style="width:84px" %)(((
358 -ADC(PA4)
359 -)))|(% style="width:323px" %)(((
360 -Distance measure by:1)TF-Mini plus LiDAR
361 -Or 
362 -2) TF-Luna LiDAR
363 -)))|(% style="width:188px" %)Distance signal  strength
364 -
365 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
366 -
367 -
368 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
369 -
370 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
371 -
372 -[[image:image-20230512180609-7.png||height="555" width="802"]]
373 -
374 -
375 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
376 -
377 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
378 -
379 -[[image:image-20230513105207-4.png||height="469" width="802"]]
380 -
381 -
382 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
383 -
384 -
385 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
386 -
387 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
388 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
282 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
283 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
389 389  **Size(bytes)**
390 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
391 -|**Value**|(% style="width:68px" %)(((
392 -ADC1(PA4)
393 -)))|(% style="width:75px" %)(((
394 -ADC2(PA5)
395 -)))|(((
396 -ADC3(PA8)
397 -)))|(((
398 -Digital Interrupt(PB15)
399 -)))|(% style="width:304px" %)(((
400 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
401 -)))|(% style="width:163px" %)(((
402 -Humidity(SHT20 or SHT31)
403 -)))|(% style="width:53px" %)Bat
404 -
405 -[[image:image-20230513110214-6.png]]
406 -
407 -
408 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
409 -
410 -
411 -This mode has total 11 bytes. As shown below:
412 -
413 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
414 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
415 -|**Value**|BAT|(% style="width:186px" %)(((
416 -Temperature1(DS18B20)(PC13)
417 -)))|(% style="width:82px" %)(((
418 -ADC(PA4)
419 -)))|(% style="width:210px" %)(((
420 -Digital in(PB15) & Digital Interrupt(PA8) 
421 -)))|(% style="width:191px" %)Temperature2(DS18B20)
422 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
423 -
424 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
425 -
426 -[[image:image-20230513134006-1.png||height="559" width="736"]]
427 -
428 -
429 -
430 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
431 -
432 -
433 -[[image:image-20230512164658-2.png||height="532" width="729"]]
434 -
435 -Each HX711 need to be calibrated before used. User need to do below two steps:
436 -
437 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
438 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
439 -1. (((
440 -Weight has 4 bytes, the unit is g.
285 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
286 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
287 +[[Battery>>||anchor="HBattery:"]]
288 +)))|(% style="width:130px" %)(((
289 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
290 +)))|(% style="width:91px" %)(((
291 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
292 +)))|(% style="width:103px" %)(((
293 +[[Temperature>>||anchor="HTemperature:"]]
294 +)))|(% style="width:80px" %)(((
295 +[[Humidity>>||anchor="HHumidity:"]]
441 441  )))
442 442  
443 -For example:
298 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
444 444  
445 -**AT+GETSENSORVALUE =0**
300 +Sensor Battery Level.
446 446  
447 -Response:  Weight is 401 g
448 -
449 -Check the response of this command and adjust the value to match the real value for thing.
450 -
451 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
452 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
453 -**Size(bytes)**
454 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
455 -|**Value**|BAT|(% style="width:193px" %)(((
456 -Temperature(DS18B20)
457 -(PC13)
458 -)))|(% style="width:85px" %)(((
459 -ADC(PA4)
460 -)))|(% style="width:186px" %)(((
461 -Digital in(PB15) &
462 -Digital Interrupt(PA8)
463 -)))|(% style="width:100px" %)Weight
464 -
465 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
466 -
467 -
468 -
469 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470 -
471 -
472 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
473 -
474 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
475 -
476 -[[image:image-20230512181814-9.png||height="543" width="697"]]
477 -
478 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
479 -
480 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
481 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
482 -|**Value**|BAT|(% style="width:256px" %)(((
483 -Temperature(DS18B20)(PC13)
484 -)))|(% style="width:108px" %)(((
485 -ADC(PA4)
486 -)))|(% style="width:126px" %)(((
487 -Digital in(PB15)
488 -)))|(% style="width:145px" %)(((
489 -Count(PA8)
490 -)))
491 -
492 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
493 -
494 -
495 -
496 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
497 -
498 -
499 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
500 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
501 -**Size(bytes)**
502 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
503 -|**Value**|BAT|(% style="width:188px" %)(((
504 -Temperature(DS18B20)
505 -(PC13)
506 -)))|(% style="width:83px" %)(((
507 -ADC(PA5)
508 -)))|(% style="width:184px" %)(((
509 -Digital Interrupt1(PA8)
510 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
511 -
512 -[[image:image-20230513111203-7.png||height="324" width="975"]]
513 -
514 -
515 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
516 -
517 -
518 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
519 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
520 -**Size(bytes)**
521 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
522 -|**Value**|BAT|(% style="width:207px" %)(((
523 -Temperature(DS18B20)
524 -(PC13)
525 -)))|(% style="width:94px" %)(((
526 -ADC1(PA4)
527 -)))|(% style="width:198px" %)(((
528 -Digital Interrupt(PB15)
529 -)))|(% style="width:84px" %)(((
530 -ADC2(PA5)
531 -)))|(% style="width:82px" %)(((
532 -ADC3(PA8)
533 -)))
534 -
535 -[[image:image-20230513111231-8.png||height="335" width="900"]]
536 -
537 -
538 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
539 -
540 -
541 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
543 -**Size(bytes)**
544 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
545 -|**Value**|BAT|(((
546 -Temperature1(DS18B20)
547 -(PC13)
548 -)))|(((
549 -Temperature2(DS18B20)
550 -(PB9)
551 -)))|(((
552 -Digital Interrupt
553 -(PB15)
554 -)))|(% style="width:193px" %)(((
555 -Temperature3(DS18B20)
556 -(PB8)
557 -)))|(% style="width:78px" %)(((
558 -Count1(PA8)
559 -)))|(% style="width:78px" %)(((
560 -Count2(PA4)
561 -)))
562 -
563 -[[image:image-20230513111255-9.png||height="341" width="899"]]
564 -
565 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
566 -
567 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
568 -
569 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
570 -
571 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
572 -
573 -
574 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
575 -
576 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
577 -
578 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
579 -
580 -
581 -=== 2.3.3  ​Decode payload ===
582 -
583 -
584 -While using TTN V3 network, you can add the payload format to decode the payload.
585 -
586 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
587 -
588 -The payload decoder function for TTN V3 are here:
589 -
590 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
591 -
592 -
593 -==== 2.3.3.1 Battery Info ====
594 -
595 -
596 -Check the battery voltage for SN50v3.
597 -
598 598  Ex1: 0x0B45 = 2885mV
599 599  
600 600  Ex2: 0x0B49 = 2889mV
601 601  
602 602  
603 -==== 2.3.3.2  Temperature (DS18B20) ====
604 604  
308 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
605 605  
606 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
310 +**Example**:
607 607  
608 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
609 -
610 -(% style="color:blue" %)**Connection:**
611 -
612 -[[image:image-20230512180718-8.png||height="538" width="647"]]
613 -
614 -
615 -(% style="color:blue" %)**Example**:
616 -
617 617  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
618 618  
619 619  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -621,232 +621,200 @@
621 621  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
622 622  
623 623  
624 -==== 2.3.3.3 Digital Input ====
319 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
625 625  
626 626  
627 -The digital input for pin PB15,
322 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
628 628  
629 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
630 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
631 631  
632 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
633 -(((
634 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
325 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
635 635  
636 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
637 637  
638 -
639 -)))
328 +**Example:**
640 640  
641 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
330 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
642 642  
332 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
643 643  
644 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
334 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
645 645  
646 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
336 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
647 647  
648 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
649 649  
650 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
339 +== 2.4 Payload Decoder file ==
651 651  
652 652  
653 -==== 2.3.3.5 Digital Interrupt ====
342 +In TTN, use can add a custom payload so it shows friendly reading
654 654  
344 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
655 655  
656 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
346 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
657 657  
658 -(% style="color:blue" %)** Interrupt connection method:**
659 659  
660 -[[image:image-20230513105351-5.png||height="147" width="485"]]
349 +== 2.5 Datalog Feature ==
661 661  
662 662  
663 -(% style="color:blue" %)**Example to use with door sensor :**
352 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
664 664  
665 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
666 666  
667 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
355 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
668 668  
669 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
670 670  
358 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
671 671  
672 -(% style="color:blue" %)**Below is the installation example:**
360 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
361 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
673 673  
674 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
363 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
675 675  
676 -* (((
677 -One pin to SN50_v3's PA8 pin
678 -)))
679 -* (((
680 -The other pin to SN50_v3's VDD pin
681 -)))
365 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
682 682  
683 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
367 +=== 2.5.2 Unix TimeStamp ===
684 684  
685 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
686 686  
687 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
370 +S31x-LB uses Unix TimeStamp format based on
688 688  
689 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
372 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
690 690  
691 -The above photos shows the two parts of the magnetic switch fitted to a door.
374 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
692 692  
693 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
376 +Below is the converter example
694 694  
695 -The command is:
378 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
696 696  
697 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
380 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 Jan ~-~- 29 Friday 03:03:25
698 698  
699 -Below shows some screen captures in TTN V3:
700 700  
701 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
383 +=== 2.5.3 Set Device Time ===
702 702  
703 703  
704 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
386 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
705 705  
706 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
388 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
707 707  
390 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
708 708  
709 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
710 710  
393 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
711 711  
712 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
713 713  
714 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
396 +The Datalog uplinks will use below payload format.
715 715  
716 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
398 +**Retrieval data payload:**
717 717  
718 -Below is the connection to SHT20/ SHT31. The connection is as below:
400 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
401 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
402 +**Size(bytes)**
403 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
404 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
405 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
406 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
719 719  
408 +**Poll message flag & Ext:**
720 720  
721 -[[image:image-20230513103633-3.png||height="448" width="716"]]
410 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
722 722  
723 -The device will be able to get the I2C sensor data now and upload to IoT Server.
412 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
724 724  
725 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
414 +**Poll Message Flag**: 1: This message is a poll message reply.
726 726  
727 -Convert the read byte to decimal and divide it by ten.
416 +* Poll Message Flag is set to 1.
728 728  
729 -**Example:**
418 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
730 730  
731 -Temperature Read:0116(H) = 278(D)  Value 278 /10=27.8℃;
420 +For example, in US915 band, the max payload for different DR is:
732 732  
733 -Humidity:    Read:0248(H)=584(D)  Value 584 / 10=58.4, So 58.4%
422 +**a) DR0:** max is 11 bytes so one entry of data
734 734  
735 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
424 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
736 736  
426 +**c) DR2:** total payload includes 11 entries of data
737 737  
738 -==== 2.3.3.7  ​Distance Reading ====
428 +**d) DR3: **total payload includes 22 entries of data.
739 739  
430 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
740 740  
741 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
742 742  
743 -
744 -==== 2.3.3.8 Ultrasonic Sensor ====
745 -
746 -
747 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
748 -
749 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
750 -
751 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
752 -
753 -The picture below shows the connection:
754 -
755 -[[image:image-20230512173903-6.png||height="596" width="715"]]
756 -
757 -
758 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
759 -
760 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
761 -
762 762  **Example:**
763 763  
764 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
435 +If S31x-LB has below data inside Flash:
765 765  
437 +[[image:1682646494051-944.png]]
766 766  
767 -==== 2.3.3.9  Battery Output - BAT pin ====
439 +If user sends below downlink command: 3160065F9760066DA705
768 768  
441 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
769 769  
770 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
443 + Stop time: 60066DA7= time 21/1/19 05:27:03
771 771  
772 772  
773 -==== 2.3.3.1 +5V Output ====
446 +**S31x-LB will uplink this payload.**
774 774  
448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
775 775  
776 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
450 +(((
451 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
452 +)))
777 777  
778 -The 5V output time can be controlled by AT Command.
454 +(((
455 +Where the first 11 bytes is for the first entry:
456 +)))
779 779  
780 -(% style="color:blue" %)**AT+5VT=1000**
458 +(((
459 +7FFF089801464160065F97
460 +)))
781 781  
782 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
462 +(((
463 +**Ext sensor data**=0x7FFF/100=327.67
464 +)))
783 783  
784 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
466 +(((
467 +**Temp**=0x088E/100=22.00
468 +)))
785 785  
470 +(((
471 +**Hum**=0x014B/10=32.6
472 +)))
786 786  
787 -==== 2.3.3.11  BH1750 Illumination Sensor ====
474 +(((
475 +**poll message flag & Ext**=0x41,means reply data,Ext=1
476 +)))
788 788  
478 +(((
479 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
480 +)))
789 789  
790 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
791 791  
792 -[[image:image-20230512172447-4.png||height="416" width="712"]]
483 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
793 793  
485 +== 2.6 Temperature Alarm Feature ==
794 794  
795 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
796 796  
488 +S31x-LB work flow with Alarm feature.
797 797  
798 -==== 2.3.3.12  Working MOD ====
799 799  
491 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
800 800  
801 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
802 802  
803 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
494 +== 2.7 Frequency Plans ==
804 804  
805 -Case 7^^th^^ Byte >> 2 & 0x1f:
806 806  
807 -* 0: MOD1
808 -* 1: MOD2
809 -* 2: MOD3
810 -* 3: MOD4
811 -* 4: MOD5
812 -* 5: MOD6
813 -* 6: MOD7
814 -* 7: MOD8
815 -* 8: MOD9
497 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
816 816  
817 -
818 -
819 -== 2.4 Payload Decoder file ==
820 -
821 -
822 -In TTN, use can add a custom payload so it shows friendly reading
823 -
824 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
825 -
826 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
827 -
828 -
829 -== 2.5 Frequency Plans ==
830 -
831 -
832 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
833 -
834 834  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
835 835  
836 836  
837 -= 3. Configure SN50v3-LB =
502 += 3. Configure S31x-LB =
838 838  
839 839  == 3.1 Configure Methods ==
840 840  
841 841  
842 -SN50v3-LB supports below configure method:
507 +S31x-LB supports below configure method:
843 843  
844 844  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
845 845  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
846 846  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
847 847  
848 -
849 -
850 850  == 3.2 General Commands ==
851 851  
852 852  
... ... @@ -860,7 +860,7 @@
860 860  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
861 861  
862 862  
863 -== 3.3 Commands special design for SN50v3-LB ==
526 +== 3.3 Commands special design for S31x-LB ==
864 864  
865 865  
866 866  These commands only valid for S31x-LB, as below:
... ... @@ -894,12 +894,10 @@
894 894  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
895 895  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
896 896  
897 -
898 -
899 899  === 3.3.2 Get Device Status ===
900 900  
901 901  
902 -Send a LoRaWAN downlink to ask the device to send its status.
563 +Send a LoRaWAN downlink to ask device send Alarm settings.
903 903  
904 904  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
905 905  
... ... @@ -906,163 +906,112 @@
906 906  Sensor will upload Device Status via FPORT=5. See payload section for detail.
907 907  
908 908  
909 -=== 3.3.3 Set Interrupt Mode ===
570 +=== 3.3.3 Set Temperature Alarm Threshold ===
910 910  
572 +* (% style="color:blue" %)**AT Command:**
911 911  
912 -Feature, Set Interrupt mode for GPIO_EXIT.
574 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
913 913  
914 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
576 +* When min=0, and max≠0, Alarm higher than max
577 +* When min≠0, and max=0, Alarm lower than min
578 +* When min≠0 and max≠0, Alarm higher than max or lower than min
915 915  
916 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
917 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
918 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
919 -0
920 -OK
921 -the mode is 0 =Disable Interrupt
922 -)))
923 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
924 -Set Transmit Interval
925 -0. (Disable Interrupt),
926 -~1. (Trigger by rising and falling edge)
927 -2. (Trigger by falling edge)
928 -3. (Trigger by rising edge)
929 -)))|(% style="width:157px" %)OK
930 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
931 -Set Transmit Interval
580 +Example:
932 932  
933 -trigger by rising edge.
934 -)))|(% style="width:157px" %)OK
935 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
582 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
936 936  
937 -(% style="color:blue" %)**Downlink Command: 0x06**
584 +* (% style="color:blue" %)**Downlink Payload:**
938 938  
939 -Format: Command Code (0x06) followed by 3 bytes.
586 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
940 940  
941 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
588 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
942 942  
943 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
944 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
945 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
946 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
947 947  
591 +=== 3.3.4 Set Humidity Alarm Threshold ===
948 948  
593 +* (% style="color:blue" %)**AT Command:**
949 949  
950 -=== 3.3.4 Set Power Output Duration ===
595 +(% style="color:#037691" %)**AT+SHHUM=min,max**
951 951  
597 +* When min=0, and max≠0, Alarm higher than max
598 +* When min≠0, and max=0, Alarm lower than min
599 +* When min≠0 and max≠0, Alarm higher than max or lower than min
952 952  
953 -Control the output duration 5V . Before each sampling, device will
601 +Example:
954 954  
955 -~1. first enable the power output to external sensor,
603 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
956 956  
957 -2. keep it on as per duration, read sensor value and construct uplink payload
605 +* (% style="color:blue" %)**Downlink Payload:**
958 958  
959 -3. final, close the power output.
607 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
960 960  
961 -(% style="color:blue" %)**AT Command: AT+5VT**
609 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
962 962  
963 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
964 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
965 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
966 -500(default)
967 -OK
968 -)))
969 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
970 -Close after a delay of 1000 milliseconds.
971 -)))|(% style="width:157px" %)OK
972 972  
973 -(% style="color:blue" %)**Downlink Command: 0x07**
612 +=== 3.3.5 Set Alarm Interval ===
974 974  
975 -Format: Command Code (0x07) followed by 2 bytes.
614 +The shortest time of two Alarm packet. (unit: min)
976 976  
977 -The first and second bytes are the time to turn on.
616 +* (% style="color:blue" %)**AT Command:**
978 978  
979 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
980 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
618 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
981 981  
620 +* (% style="color:blue" %)**Downlink Payload:**
982 982  
622 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
983 983  
984 -=== 3.3.5 Set Weighing parameters ===
985 985  
625 +=== 3.3.6 Get Alarm settings ===
986 986  
987 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
988 988  
989 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
628 +Send a LoRaWAN downlink to ask device send Alarm settings.
990 990  
991 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
992 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
993 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
994 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
995 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
630 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
996 996  
997 -(% style="color:blue" %)**Downlink Command: 0x08**
632 +**Example:**
998 998  
999 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
634 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1000 1000  
1001 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1002 1002  
1003 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
637 +**Explain:**
1004 1004  
1005 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1006 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1007 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
639 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1008 1008  
641 +=== 3.3.7 Set Interrupt Mode ===
1009 1009  
1010 1010  
1011 -=== 3.3.6 Set Digital pulse count value ===
644 +Feature, Set Interrupt mode for GPIO_EXIT.
1012 1012  
646 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1013 1013  
1014 -Feature: Set the pulse count value.
1015 -
1016 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1017 -
1018 -(% style="color:blue" %)**AT Command: AT+SETCNT**
1019 -
1020 1020  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1021 1021  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1022 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1023 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1024 -
1025 -(% style="color:blue" %)**Downlink Command: 0x09**
1026 -
1027 -Format: Command Code (0x09) followed by 5 bytes.
1028 -
1029 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1030 -
1031 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1032 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1033 -
1034 -
1035 -
1036 -=== 3.3.7 Set Workmode ===
1037 -
1038 -
1039 -Feature: Switch working mode.
1040 -
1041 -(% style="color:blue" %)**AT Command: AT+MOD**
1042 -
1043 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1044 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1045 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
650 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
651 +0
1046 1046  OK
653 +the mode is 0 =Disable Interrupt
1047 1047  )))
1048 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1049 -OK
1050 -Attention:Take effect after ATZ
1051 -)))
655 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
656 +Set Transmit Interval
657 +0. (Disable Interrupt),
658 +~1. (Trigger by rising and falling edge)
659 +2. (Trigger by falling edge)
660 +3. (Trigger by rising edge)
661 +)))|(% style="width:157px" %)OK
1052 1052  
1053 -(% style="color:blue" %)**Downlink Command: 0x0A**
663 +(% style="color:blue" %)**Downlink Command: 0x06**
1054 1054  
1055 -Format: Command Code (0x0A) followed by 1 bytes.
665 +Format: Command Code (0x06) followed by 3 bytes.
1056 1056  
1057 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1058 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
667 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1059 1059  
669 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
670 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1060 1060  
1061 -
1062 1062  = 4. Battery & Power Consumption =
1063 1063  
1064 1064  
1065 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
675 +S31x-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1066 1066  
1067 1067  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1068 1068  
... ... @@ -1071,7 +1071,7 @@
1071 1071  
1072 1072  
1073 1073  (% class="wikigeneratedid" %)
1074 -User can change firmware SN50v3-LB to:
684 +User can change firmware S31x-LB to:
1075 1075  
1076 1076  * Change Frequency band/ region.
1077 1077  * Update with new features.
... ... @@ -1085,62 +1085,53 @@
1085 1085  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1086 1086  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1087 1087  
1088 -
1089 -
1090 1090  = 6. FAQ =
1091 1091  
1092 -== 6.1 Where can i find source code of SN50v3-LB? ==
1093 1093  
1094 1094  
1095 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1096 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1097 -
1098 -
1099 -
1100 1100  = 7. Order Info =
1101 1101  
1102 1102  
1103 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
705 +Part Number: (% style="color:blue" %)**S31-LB-XX  / S31B-LB-XX**
1104 1104  
1105 1105  (% style="color:red" %)**XX**(%%): The default frequency band
1106 1106  
1107 1107  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
710 +
1108 1108  * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
712 +
1109 1109  * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
714 +
1110 1110  * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
716 +
1111 1111  * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
718 +
1112 1112  * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
720 +
1113 1113  * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
722 +
1114 1114  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1115 1115  
1116 -(% style="color:red" %)**YY: ** (%%)Hole Option
725 += =
1117 1117  
1118 -* (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1119 -* (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1120 -* (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1121 -* (% style="color:red" %)**NH**(%%): No Hole
1122 -
1123 -
1124 -
1125 1125  = 8. ​Packing Info =
1126 1126  
1127 -
1128 1128  (% style="color:#037691" %)**Package Includes**:
1129 1129  
1130 -* SN50v3-LB LoRaWAN Generic Node
731 +* S31x-LB LoRaWAN Temperature & Humidity Sensor
1131 1131  
1132 1132  (% style="color:#037691" %)**Dimension and weight**:
1133 1133  
1134 1134  * Device Size: cm
736 +
1135 1135  * Device Weight: g
738 +
1136 1136  * Package Size / pcs : cm
740 +
1137 1137  * Weight / pcs : g
1138 1138  
1139 -
1140 -
1141 1141  = 9. Support =
1142 1142  
1143 1143  
1144 1144  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1145 -
1146 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
747 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0