Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
Uploaded new attachment "image-20230511203450-2.png", version {1}
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 20 removed)
- image-20230512163509-1.png
- image-20230512164658-2.png
- image-20230512170701-3.png
- image-20230512172447-4.png
- image-20230512173758-5.png
- image-20230512173903-6.png
- image-20230512180609-7.png
- image-20230512180718-8.png
- image-20230512181814-9.png
- image-20230513084523-1.png
- image-20230513102034-2.png
- image-20230513103633-3.png
- image-20230513105207-4.png
- image-20230513105351-5.png
- image-20230513110214-6.png
- image-20230513111203-7.png
- image-20230513111231-8.png
- image-20230513111255-9.png
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Edwin - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 ... ... @@ -16,21 +16,23 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 20 + 22 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 30 31 31 == 1.2 Features == 32 32 33 - 34 34 * LoRaWAN 1.0.3 Class A 35 35 * Ultra-low power consumption 36 36 * Open-Source hardware/software ... ... @@ -43,7 +43,6 @@ 43 43 44 44 == 1.3 Specification == 45 45 46 - 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -80,7 +80,6 @@ 80 80 81 81 == 1.4 Sleep mode and working mode == 82 82 83 - 84 84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 85 85 86 86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -123,7 +123,6 @@ 123 123 == 1.7 Pin Definitions == 124 124 125 125 126 -[[image:image-20230513102034-2.png]] 127 127 128 128 129 129 == 1.8 Mechanical == ... ... @@ -138,7 +138,6 @@ 138 138 139 139 == Hole Option == 140 140 141 - 142 142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 143 143 144 144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -146,12 +146,12 @@ 146 146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 147 147 148 148 149 -= 2. Configure S N50v3-LB to connect to LoRaWAN network =146 += 2. Configure S31x-LB to connect to LoRaWAN network = 150 150 151 151 == 2.1 How it works == 152 152 153 153 154 -The S N50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.151 +The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 155 155 156 156 157 157 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -162,11 +162,11 @@ 162 162 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 163 164 164 165 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S N50v3-LB.162 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB. 166 166 167 -Each S N50v3-LB is shipped with a sticker with the default device EUI as below:164 +Each S31x-LB is shipped with a sticker with the default device EUI as below: 168 168 169 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]166 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 170 170 171 171 172 172 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: ... ... @@ -193,10 +193,10 @@ 193 193 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 194 194 195 195 196 -(% style="color:blue" %)**Step 2:**(%%) Activate S N50v3-LB193 +(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB 197 197 198 198 199 -Press the button for 5 seconds to activate the S N50v3-LB.196 +Press the button for 5 seconds to activate the S31x-LB. 200 200 201 201 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 202 202 ... ... @@ -208,7 +208,7 @@ 208 208 === 2.3.1 Device Status, FPORT~=5 === 209 209 210 210 211 -Users can use the downlink command(**0x26 01**) to ask S N50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.208 +Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server. 212 212 213 213 The Payload format is as below. 214 214 ... ... @@ -220,9 +220,11 @@ 220 220 221 221 Example parse in TTNv3 222 222 220 +[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]] 223 223 224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 225 225 223 +(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A 224 + 226 226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 227 227 228 228 (% style="color:#037691" %)**Frequency Band**: ... ... @@ -274,346 +274,41 @@ 274 274 Ex2: 0x0B49 = 2889mV 275 275 276 276 277 -=== 2.3.2 Working Modes &Sensor Data.Uplink viaFPORT~=2 ===276 +=== 2.3.2 Sensor Data. FPORT~=2 === 278 278 279 279 280 -S N50v3 has different workingmode fortheconnectionsof different type of sensors. This sectiondescribes these modes. Use canuse the AT Command AT+MOD to set SN50v3 to different working modes.279 +Sensor Data is uplink via FPORT=2 281 281 282 -For example: 283 - 284 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 285 - 286 - 287 -(% style="color:red" %) **Important Notice:** 288 - 289 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 290 -1. All modes share the same Payload Explanation from HERE. 291 -1. By default, the device will send an uplink message every 20 minutes. 292 - 293 -==== 2.3.2.1 MOD~=1 (Default Mode) ==== 294 - 295 - 296 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 297 - 298 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 299 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 300 -|**Value**|Bat|(% style="width:191px" %)((( 301 -Temperature(DS18B20)(PC13) 302 -)))|(% style="width:78px" %)((( 303 -ADC(PA4) 304 -)))|(% style="width:216px" %)((( 305 -Digital in(PB15)&Digital Interrupt(PA8) 306 -)))|(% style="width:308px" %)((( 307 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 308 -)))|(% style="width:154px" %)((( 309 -Humidity(SHT20 or SHT31) 310 -))) 311 - 312 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 313 - 314 - 315 - 316 -==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 317 - 318 - 319 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 320 - 321 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 322 -|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 323 -|**Value**|BAT|(% style="width:196px" %)((( 324 -Temperature(DS18B20)(PC13) 325 -)))|(% style="width:87px" %)((( 326 -ADC(PA4) 327 -)))|(% style="width:189px" %)((( 328 -Digital in(PB15) & Digital Interrupt(PA8) 329 -)))|(% style="width:208px" %)((( 330 -Distance measure by:1) LIDAR-Lite V3HP 331 -Or 2) Ultrasonic Sensor 332 -)))|(% style="width:117px" %)Reserved 333 - 334 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 335 - 336 - 337 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 338 - 339 -[[image:image-20230512173758-5.png||height="563" width="712"]] 340 - 341 - 342 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 343 - 344 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 345 - 346 -[[image:image-20230512173903-6.png||height="596" width="715"]] 347 - 348 - 349 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 350 - 351 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 352 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 353 -|**Value**|BAT|(% style="width:183px" %)((( 354 -Temperature(DS18B20)(PC13) 355 -)))|(% style="width:173px" %)((( 356 -Digital in(PB15) & Digital Interrupt(PA8) 357 -)))|(% style="width:84px" %)((( 358 -ADC(PA4) 359 -)))|(% style="width:323px" %)((( 360 -Distance measure by:1)TF-Mini plus LiDAR 361 -Or 362 -2) TF-Luna LiDAR 363 -)))|(% style="width:188px" %)Distance signal strength 364 - 365 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 366 - 367 - 368 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 369 - 370 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 371 - 372 -[[image:image-20230512180609-7.png||height="555" width="802"]] 373 - 374 - 375 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 376 - 377 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 378 - 379 -[[image:image-20230513105207-4.png||height="469" width="802"]] 380 - 381 - 382 -==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 383 - 384 - 385 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C 386 - 387 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 388 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 281 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %) 282 +|=(% style="width: 90px;background-color:#D9E2F3" %)((( 389 389 **Size(bytes)** 390 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 391 -|**Value**|(% style="width:68px" %)((( 392 -ADC1(PA4) 393 -)))|(% style="width:75px" %)((( 394 -ADC2(PA5) 395 -)))|((( 396 -ADC3(PA8) 397 -)))|((( 398 -Digital Interrupt(PB15) 399 -)))|(% style="width:304px" %)((( 400 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 401 -)))|(% style="width:163px" %)((( 402 -Humidity(SHT20 or SHT31) 403 -)))|(% style="width:53px" %)Bat 404 - 405 -[[image:image-20230513110214-6.png]] 406 - 407 - 408 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 409 - 410 - 411 -This mode has total 11 bytes. As shown below: 412 - 413 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 414 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 415 -|**Value**|BAT|(% style="width:186px" %)((( 416 -Temperature1(DS18B20)(PC13) 417 -)))|(% style="width:82px" %)((( 418 -ADC(PA4) 419 -)))|(% style="width:210px" %)((( 420 -Digital in(PB15) & Digital Interrupt(PA8) 421 -)))|(% style="width:191px" %)Temperature2(DS18B20) 422 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 423 - 424 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 425 - 426 -[[image:image-20230513134006-1.png||height="559" width="736"]] 427 - 428 - 429 - 430 -==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 431 - 432 - 433 -[[image:image-20230512164658-2.png||height="532" width="729"]] 434 - 435 -Each HX711 need to be calibrated before used. User need to do below two steps: 436 - 437 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 438 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 439 -1. ((( 440 -Weight has 4 bytes, the unit is g. 284 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2 285 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)((( 286 +[[Battery>>||anchor="HBattery:"]] 287 +)))|(% style="width:130px" %)((( 288 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]] 289 +)))|(% style="width:91px" %)((( 290 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]] 291 +)))|(% style="width:103px" %)((( 292 +[[Temperature>>||anchor="HTemperature:"]] 293 +)))|(% style="width:80px" %)((( 294 +[[Humidity>>||anchor="HHumidity:"]] 441 441 ))) 442 442 443 - Forexample:297 +==== (% style="color:#4472c4" %)**Battery**(%%) ==== 444 444 445 - **AT+GETSENSORVALUE=0**299 +Sensor Battery Level. 446 446 447 -Response: Weight is 401 g 448 - 449 -Check the response of this command and adjust the value to match the real value for thing. 450 - 451 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 452 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 453 -**Size(bytes)** 454 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 455 -|**Value**|BAT|(% style="width:193px" %)((( 456 -Temperature(DS18B20) 457 -(PC13) 458 -)))|(% style="width:85px" %)((( 459 -ADC(PA4) 460 -)))|(% style="width:186px" %)((( 461 -Digital in(PB15) & 462 -Digital Interrupt(PA8) 463 -)))|(% style="width:100px" %)Weight 464 - 465 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 466 - 467 - 468 - 469 -==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 470 - 471 - 472 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 473 - 474 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. 475 - 476 -[[image:image-20230512181814-9.png||height="543" width="697"]] 477 - 478 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 479 - 480 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 481 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 482 -|**Value**|BAT|(% style="width:256px" %)((( 483 -Temperature(DS18B20)(PC13) 484 -)))|(% style="width:108px" %)((( 485 -ADC(PA4) 486 -)))|(% style="width:126px" %)((( 487 -Digital in(PB15) 488 -)))|(% style="width:145px" %)((( 489 -Count(PA8) 490 -))) 491 - 492 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 493 - 494 - 495 - 496 -==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 497 - 498 - 499 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 500 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 501 -**Size(bytes)** 502 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 503 -|**Value**|BAT|(% style="width:188px" %)((( 504 -Temperature(DS18B20) 505 -(PC13) 506 -)))|(% style="width:83px" %)((( 507 -ADC(PA5) 508 -)))|(% style="width:184px" %)((( 509 -Digital Interrupt1(PA8) 510 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 511 - 512 -[[image:image-20230513111203-7.png||height="324" width="975"]] 513 - 514 - 515 -==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 516 - 517 - 518 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 519 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 520 -**Size(bytes)** 521 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 522 -|**Value**|BAT|(% style="width:207px" %)((( 523 -Temperature(DS18B20) 524 -(PC13) 525 -)))|(% style="width:94px" %)((( 526 -ADC1(PA4) 527 -)))|(% style="width:198px" %)((( 528 -Digital Interrupt(PB15) 529 -)))|(% style="width:84px" %)((( 530 -ADC2(PA5) 531 -)))|(% style="width:82px" %)((( 532 -ADC3(PA8) 533 -))) 534 - 535 -[[image:image-20230513111231-8.png||height="335" width="900"]] 536 - 537 - 538 -==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 539 - 540 - 541 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 542 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 543 -**Size(bytes)** 544 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 545 -|**Value**|BAT|((( 546 -Temperature1(DS18B20) 547 -(PC13) 548 -)))|((( 549 -Temperature2(DS18B20) 550 -(PB9) 551 -)))|((( 552 -Digital Interrupt 553 -(PB15) 554 -)))|(% style="width:193px" %)((( 555 -Temperature3(DS18B20) 556 -(PB8) 557 -)))|(% style="width:78px" %)((( 558 -Count1(PA8) 559 -)))|(% style="width:78px" %)((( 560 -Count2(PA4) 561 -))) 562 - 563 -[[image:image-20230513111255-9.png||height="341" width="899"]] 564 - 565 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 566 - 567 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 568 - 569 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 570 - 571 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 572 - 573 - 574 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 575 - 576 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 577 - 578 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 579 - 580 - 581 -=== 2.3.3 Decode payload === 582 - 583 - 584 -While using TTN V3 network, you can add the payload format to decode the payload. 585 - 586 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] 587 - 588 -The payload decoder function for TTN V3 are here: 589 - 590 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 591 - 592 - 593 -==== 2.3.3.1 Battery Info ==== 594 - 595 - 596 -Check the battery voltage for SN50v3. 597 - 598 598 Ex1: 0x0B45 = 2885mV 599 599 600 600 Ex2: 0x0B49 = 2889mV 601 601 602 602 603 -==== 2.3.3.2 Temperature (DS18B20) ==== 604 604 307 +==== (% style="color:#4472c4" %)**Temperature**(%%) ==== 605 605 606 - If there isaDS18B20 connected to PC13 pin. The temperature will beuploaded in the payload.309 +**Example**: 607 607 608 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 609 - 610 -(% style="color:blue" %)**Connection:** 611 - 612 -[[image:image-20230512180718-8.png||height="538" width="647"]] 613 - 614 - 615 -(% style="color:blue" %)**Example**: 616 - 617 617 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 618 618 619 619 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -621,232 +621,200 @@ 621 621 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative) 622 622 623 623 624 -==== 2.3.3.3DigitalInput ====318 +==== (% style="color:#4472c4" %)**Humidity**(%%) ==== 625 625 626 626 627 - TheigitalinputforpinPB15,321 +Read:0x(0197)=412 Value: 412 / 10=41.2, So 41.2% 628 628 629 -* When PB15 is high, the bit 1 of payload byte 6 is 1. 630 -* When PB15 is low, the bit 1 of payload byte 6 is 0. 631 631 632 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 633 -((( 634 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 324 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ==== 635 635 636 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 637 637 638 - 639 -))) 327 +**Example:** 640 640 641 - ====2.3.3.4 AnalogueDigitalConverter(ADC)====329 +If payload & 0x01 = 0x01 **~-~->** This is an Alarm Message 642 642 331 +If payload & 0x01 = 0x00 **~-~->** This is a normal uplink message, no alarm 643 643 644 - Themeasuring rangeoftheADCisonlyabout0Vto1.1VThevoltageresolution isabout 0.24mv.333 +If payload >> 2 = 0x00 **~-~->** means MOD=1, This is a sampling uplink message 645 645 646 - Whenthe measuredoutputvoltageofthesensorisnotwithintherangeof 0V and1.1V, the output voltage terminalof theensor shall bedividedTheexamplein the followingfigure isto reduce the output voltage ofthe sensorbythreetimesIf itsnecessary to reducemoretimes,calculate accordingto the formula inthefigureand connecthe corresponding resistancein series.335 +If payload >> 2 = 0x31 **~-~->** means MOD=31, this message is a reply message for polling, this message contains the alarm settings. see [[this link>>path:#HPolltheAlarmsettings:]] for detail. 647 647 648 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 649 649 650 - (%style="color:red"%)**Note: If the ADC typesensor needs to be powered by SN50_v3, it is recommended to use +5V to controlits switch.Only sensorswith low power consumption can be powered with VDD.**338 +== 2.4 Payload Decoder file == 651 651 652 652 653 - ====2.3.3.5DigitalInterrupt====341 +In TTN, use can add a custom payload so it shows friendly reading 654 654 343 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 655 655 656 - Digital Interrupt referspinPA8, andthereare different trigger methods. When there is atrigger, thewillsendpacket totheserver.345 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 657 657 658 -(% style="color:blue" %)** Interrupt connection method:** 659 659 660 - [[image:image-20230513105351-5.png||height="147"width="485"]]348 +== 2.5 Datalog Feature == 661 661 662 662 663 - (%style="color:blue"%)**Exampletousewithdoor sensor:**351 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes. 664 664 665 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 666 666 667 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]354 +=== 2.5.1 Ways to get datalog via LoRaWAN === 668 668 669 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 670 670 357 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 671 671 672 -(% style="color:blue" %)**Below is the installation example:** 359 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server. 360 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages. 673 673 674 - Fix onepieceofthemagnetic sensor to thedoorand connectthe twopinstoSN50_v3as follows:362 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 675 675 676 -* ((( 677 -One pin to SN50_v3's PA8 pin 678 -))) 679 -* ((( 680 -The other pin to SN50_v3's VDD pin 681 -))) 364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 682 682 683 - Installthe other piece to the door.Find a place where the two pieceswill becloseto each other when the door is closed. For this particularmagnetic sensor, when the door is closed, the outputwill be short, and PA8 will be at the VCC voltage.366 +=== 2.5.2 Unix TimeStamp === 684 684 685 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 686 686 687 - Whendoorsensorisshorted, there willextrapower consumptionin the circuit, the extracurrentis 3v3/R14 = 3v3/1Mohm = 3uA which canbeignored.369 +S31x-LB uses Unix TimeStamp format based on 688 688 689 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L SN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]371 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 690 690 691 - The abovephotosshows thetwopartsf the magneticswitchfitted toa door.373 +User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 692 692 693 - Thesoftwareby default usesthefalling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v~-~-> VCC , door close) andthefalling edge (VCC ~-~-> 0v , dooropen)as the interrupt.375 +Below is the converter example 694 694 695 - Thes:377 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]] 696 696 697 - (%style="color:blue"%)**AT+INTMOD1=1** (%%) ~/~/(moreinfoaboutINMOD please refer****[[**ATCommandManual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)379 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 698 698 699 -Below shows some screen captures in TTN V3: 700 700 701 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]382 +=== 2.5.3 Set Device Time === 702 702 703 703 704 - In MOD=1, usercanusebyte6to seethestatus for door open orclose.TTNV3decoderis asbelow:385 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 705 705 706 -door =(bytes[6]&0x80)?"CLOSE":"OPEN";387 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 707 707 389 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 708 708 709 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 710 710 392 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) === 711 711 712 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 713 713 714 - Wehavemadean example to showhowtousetheI2C interface toconnect to the SHT20/ SHT31 TemperatureandHumidity Sensor.395 +The Datalog uplinks will use below payload format. 715 715 716 - Notice: DifferentI2C sensors have different I2C commandsset andinitiate process, if user wantto use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will beagoodreference.397 +**Retrieval data payload:** 717 717 718 -Below is the connection to SHT20/ SHT31. The connection is as below: 399 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 400 +|=(% style="width: 80px;background-color:#D9E2F3" %)((( 401 +**Size(bytes)** 402 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4** 403 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)((( 404 +[[Temp_Black>>||anchor="HTemperatureBlack:"]] 405 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]] 719 719 407 +**Poll message flag & Ext:** 720 720 721 -[[image:image-202 30513103633-3.png||height="448" width="716"]]409 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]] 722 722 723 -The devicewillbebleto get theI2Csensordata nowanduploadtoIoT Server.411 +**No ACK Message**: 1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature) 724 724 725 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]413 +**Poll Message Flag**: 1: This message is a poll message reply. 726 726 727 - Converttheread byteto decimalnddivideitbyten.415 +* Poll Message Flag is set to 1. 728 728 729 -* *Example:**417 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands. 730 730 731 - Temperature:Read:0116(H)= 278(D) Value:278/10=27.8℃;419 +For example, in US915 band, the max payload for different DR is: 732 732 733 - Humidity: Read:0248(H)=584(D)Value:584 / 10=58.4, So58.4%421 +**a) DR0:** max is 11 bytes so one entry of data 734 734 735 - Ifyouwantto useotherI2Cdevice,pleaserefertheSHT20 partsourcecodeasreference.423 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 736 736 425 +**c) DR2:** total payload includes 11 entries of data 737 737 738 - ====2.3.3.7DistanceReading====427 +**d) DR3: **total payload includes 22 entries of data. 739 739 429 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0 740 740 741 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 742 742 743 - 744 -==== 2.3.3.8 Ultrasonic Sensor ==== 745 - 746 - 747 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 748 - 749 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 750 - 751 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 752 - 753 -The picture below shows the connection: 754 - 755 -[[image:image-20230512173903-6.png||height="596" width="715"]] 756 - 757 - 758 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 759 - 760 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 761 - 762 762 **Example:** 763 763 764 - Distance:Read: 0C2D(Hex) =3117(D)Value:3117mm=311.7cm434 +If S31x-LB has below data inside Flash: 765 765 436 +[[image:1682646494051-944.png]] 766 766 767 - ====2.3.3.9 BatteryOutput-BAT pin====438 +If user sends below downlink command: 3160065F9760066DA705 768 768 440 +Where : Start time: 60065F97 = time 21/1/19 04:27:03 769 769 770 - TheBATpinofSN50v3isconnectedtotheBatterydirectly.Ifuserswanttouse BATpinto power an external sensor. User need to make sure the external sensoris of low power consumption. Becausethe BATpin is always open. Ifthe external sensoris of high power consumption. thebatteryof SN50v3-LB will run out very soon.442 + Stop time: 60066DA7= time 21/1/19 05:27:03 771 771 772 772 773 - ==== 2.3.3.10+5VOutput====445 +**S31x-LB will uplink this payload.** 774 774 447 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]] 775 775 776 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 449 +((( 450 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E 451 +))) 777 777 778 -The 5V output time can be controlled by AT Command. 453 +((( 454 +Where the first 11 bytes is for the first entry: 455 +))) 779 779 780 -(% style="color:blue" %)**AT+5VT=1000** 457 +((( 458 +7FFF089801464160065F97 459 +))) 781 781 782 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 461 +((( 462 +**Ext sensor data**=0x7FFF/100=327.67 463 +))) 783 783 784 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 465 +((( 466 +**Temp**=0x088E/100=22.00 467 +))) 785 785 469 +((( 470 +**Hum**=0x014B/10=32.6 471 +))) 786 786 787 -==== 2.3.3.11 BH1750 Illumination Sensor ==== 473 +((( 474 +**poll message flag & Ext**=0x41,means reply data,Ext=1 475 +))) 788 788 477 +((( 478 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03 479 +))) 789 789 790 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 791 791 792 -[[image:image-202 30512172447-4.png||height="416" width="712"]]482 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的 793 793 484 +== 2.6 Temperature Alarm Feature == 794 794 795 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 796 796 487 +S31x-LB work flow with Alarm feature. 797 797 798 -==== 2.3.3.12 Working MOD ==== 799 799 490 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]] 800 800 801 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 802 802 803 - Usercanusethe 3^^rd^^ ~~ 7^^th^^ bit of this bytetoseethe working mod:493 +== 2.7 Frequency Plans == 804 804 805 -Case 7^^th^^ Byte >> 2 & 0x1f: 806 806 807 -* 0: MOD1 808 -* 1: MOD2 809 -* 2: MOD3 810 -* 3: MOD4 811 -* 4: MOD5 812 -* 5: MOD6 813 -* 6: MOD7 814 -* 7: MOD8 815 -* 8: MOD9 496 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 816 816 817 - 818 - 819 -== 2.4 Payload Decoder file == 820 - 821 - 822 -In TTN, use can add a custom payload so it shows friendly reading 823 - 824 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 825 - 826 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 827 - 828 - 829 -== 2.5 Frequency Plans == 830 - 831 - 832 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 833 - 834 834 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 835 835 836 836 837 -= 3. Configure S N50v3-LB =501 += 3. Configure S31x-LB = 838 838 839 839 == 3.1 Configure Methods == 840 840 841 841 842 -S N50v3-LB supports below configure method:506 +S31x-LB supports below configure method: 843 843 844 844 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 845 845 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 846 846 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 847 847 848 - 849 - 850 850 == 3.2 General Commands == 851 851 852 852 ... ... @@ -860,7 +860,7 @@ 860 860 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 861 861 862 862 863 -== 3.3 Commands special design for S N50v3-LB ==525 +== 3.3 Commands special design for S31x-LB == 864 864 865 865 866 866 These commands only valid for S31x-LB, as below: ... ... @@ -894,12 +894,10 @@ 894 894 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 895 895 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 896 896 897 - 898 - 899 899 === 3.3.2 Get Device Status === 900 900 901 901 902 -Send a LoRaWAN downlink to ask thedevicetosenditsstatus.562 +Send a LoRaWAN downlink to ask device send Alarm settings. 903 903 904 904 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 905 905 ... ... @@ -906,163 +906,112 @@ 906 906 Sensor will upload Device Status via FPORT=5. See payload section for detail. 907 907 908 908 909 -=== 3.3.3 Set InterruptMode===569 +=== 3.3.3 Set Temperature Alarm Threshold === 910 910 571 +* (% style="color:blue" %)**AT Command:** 911 911 912 - Feature,SetInterrupt mode forGPIO_EXIT.573 +(% style="color:#037691" %)**AT+SHTEMP=min,max** 913 913 914 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 575 +* When min=0, and max≠0, Alarm higher than max 576 +* When min≠0, and max=0, Alarm lower than min 577 +* When min≠0 and max≠0, Alarm higher than max or lower than min 915 915 916 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 917 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 918 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 919 -0 920 -OK 921 -the mode is 0 =Disable Interrupt 922 -))) 923 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)((( 924 -Set Transmit Interval 925 -0. (Disable Interrupt), 926 -~1. (Trigger by rising and falling edge) 927 -2. (Trigger by falling edge) 928 -3. (Trigger by rising edge) 929 -)))|(% style="width:157px" %)OK 930 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 931 -Set Transmit Interval 579 +Example: 932 932 933 -trigger by rising edge. 934 -)))|(% style="width:157px" %)OK 935 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 581 + AT+SHTEMP=0,30 ~/~/ Alarm when temperature higher than 30. 936 936 937 -(% style="color:blue" %)**Downlink Command:0x06**583 +* (% style="color:blue" %)**Downlink Payload:** 938 938 939 - Format: CommandCode(0x06)followedby3bytes.585 +(% style="color:#037691" %)**0x(0C 01 00 1E)** (%%) ~/~/ Set AT+SHTEMP=0,30 940 940 941 - Thismeanshat theinterrupt mode oftheendnodeis set to0x000003=3(risingedgetrigger),andthetypecodeis06.587 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)** 942 942 943 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 944 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 945 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 946 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 947 947 590 +=== 3.3.4 Set Humidity Alarm Threshold === 948 948 592 +* (% style="color:blue" %)**AT Command:** 949 949 950 - ===3.3.4 SetPowerOutput Duration===594 +(% style="color:#037691" %)**AT+SHHUM=min,max** 951 951 596 +* When min=0, and max≠0, Alarm higher than max 597 +* When min≠0, and max=0, Alarm lower than min 598 +* When min≠0 and max≠0, Alarm higher than max or lower than min 952 952 953 - Control the output duration 5V . Before each sampling, device will600 +Example: 954 954 955 -~ 1.firstenablethepoweroutput to external sensor,602 + AT+SHHUM=70,0 ~/~/ Alarm when humidity lower than 70%. 956 956 957 - 2.keepit on asper duration, read sensorvalueand construct uplinkpayload604 +* (% style="color:blue" %)**Downlink Payload:** 958 958 959 - 3.final,closethepoweroutput.606 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%) ~/~/ Set AT+SHTHUM=70,0 960 960 961 -(% style="color: blue" %)**ATCommand:AT+5VT**608 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))** 962 962 963 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 964 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 965 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 966 -500(default) 967 -OK 968 -))) 969 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 970 -Close after a delay of 1000 milliseconds. 971 -)))|(% style="width:157px" %)OK 972 972 973 - (%style="color:blue"%)**DownlinkCommand: 0x07**611 +=== 3.3.5 Set Alarm Interval === 974 974 975 - Format:Command Code(0x07)followedby 2 bytes.613 +The shortest time of two Alarm packet. (unit: min) 976 976 977 - Thefirstandsecondbytesarethe time toturnon.615 +* (% style="color:blue" %)**AT Command:** 978 978 979 -* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 980 -* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 617 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes. 981 981 619 +* (% style="color:blue" %)**Downlink Payload:** 982 982 621 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%) **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes 983 983 984 -=== 3.3.5 Set Weighing parameters === 985 985 624 +=== 3.3.6 Get Alarm settings === 986 986 987 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 988 988 989 - (% style="color:blue"%)**AT Command:AT+WEIGRE,AT+WEIGAP**627 +Send a LoRaWAN downlink to ask device send Alarm settings. 990 990 991 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 992 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 993 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 994 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 995 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 629 +* (% style="color:#037691" %)**Downlink Payload: **(%%)0x0E 01 996 996 997 - (% style="color:blue" %)**Downlink Command:0x08**631 +**Example:** 998 998 999 - Format:CommandCode(0x08)followedby2bytes4 bytes.633 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]] 1000 1000 1001 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 1002 1002 1003 - The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.636 +**Explain:** 1004 1004 1005 -* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1006 -* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1007 -* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 638 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message. 1008 1008 640 +=== 3.3.7 Set Interrupt Mode === 1009 1009 1010 1010 1011 - ===3.3.6SetDigitalpulsecountvalue===643 +Feature, Set Interrupt mode for GPIO_EXIT. 1012 1012 645 +(% style="color:blue" %)**AT Command: AT+INTMOD** 1013 1013 1014 -Feature: Set the pulse count value. 1015 - 1016 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1017 - 1018 -(% style="color:blue" %)**AT Command: AT+SETCNT** 1019 - 1020 1020 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1021 1021 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1022 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1023 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1024 - 1025 -(% style="color:blue" %)**Downlink Command: 0x09** 1026 - 1027 -Format: Command Code (0x09) followed by 5 bytes. 1028 - 1029 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1030 - 1031 -* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1032 -* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1033 - 1034 - 1035 - 1036 -=== 3.3.7 Set Workmode === 1037 - 1038 - 1039 -Feature: Switch working mode. 1040 - 1041 -(% style="color:blue" %)**AT Command: AT+MOD** 1042 - 1043 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1044 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1045 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 649 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 650 +0 1046 1046 OK 652 +the mode is 0 =Disable Interrupt 1047 1047 ))) 1048 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1049 -OK 1050 -Attention:Take effect after ATZ 1051 -))) 654 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 655 +Set Transmit Interval 656 +0. (Disable Interrupt), 657 +~1. (Trigger by rising and falling edge) 658 +2. (Trigger by falling edge) 659 +3. (Trigger by rising edge) 660 +)))|(% style="width:157px" %)OK 1052 1052 1053 -(% style="color:blue" %)**Downlink Command: 0x0 A**662 +(% style="color:blue" %)**Downlink Command: 0x06** 1054 1054 1055 -Format: Command Code (0x0 A) followed by1bytes.664 +Format: Command Code (0x06) followed by 3 bytes. 1056 1056 1057 -* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1058 -* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 666 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1059 1059 668 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 669 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1060 1060 1061 - 1062 1062 = 4. Battery & Power Consumption = 1063 1063 1064 1064 1065 -S N50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.674 +S31x-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1066 1066 1067 1067 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1068 1068 ... ... @@ -1071,7 +1071,7 @@ 1071 1071 1072 1072 1073 1073 (% class="wikigeneratedid" %) 1074 -User can change firmware S N50v3-LB to:683 +User can change firmware S31x-LB to: 1075 1075 1076 1076 * Change Frequency band/ region. 1077 1077 * Update with new features. ... ... @@ -1085,62 +1085,53 @@ 1085 1085 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1086 1086 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1087 1087 1088 - 1089 - 1090 1090 = 6. FAQ = 1091 1091 1092 -== 6.1 Where can i find source code of SN50v3-LB? == 1093 1093 1094 1094 1095 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1096 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1097 - 1098 - 1099 - 1100 1100 = 7. Order Info = 1101 1101 1102 1102 1103 -Part Number: N50v3-LB-XX-YY**704 +Part Number: (% style="color:blue" %)**S31-LB-XX / S31B-LB-XX** 1104 1104 1105 1105 (% style="color:red" %)**XX**(%%): The default frequency band 1106 1106 1107 1107 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 709 + 1108 1108 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 711 + 1109 1109 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 713 + 1110 1110 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 715 + 1111 1111 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 717 + 1112 1112 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 719 + 1113 1113 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 721 + 1114 1114 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1115 1115 1116 - (% style="color:red"%)**YY:**(%%)Hole Option724 += = 1117 1117 1118 -* (% style="color:red" %)**12**(%%): With M12 waterproof cable hole 1119 -* (% style="color:red" %)**16**(%%): With M16 waterproof cable hole 1120 -* (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1121 -* (% style="color:red" %)**NH**(%%): No Hole 1122 - 1123 - 1124 - 1125 1125 = 8. Packing Info = 1126 1126 1127 - 1128 1128 (% style="color:#037691" %)**Package Includes**: 1129 1129 1130 -* S N50v3-LB LoRaWANGenericNode730 +* S31x-LB LoRaWAN Temperature & Humidity Sensor 1131 1131 1132 1132 (% style="color:#037691" %)**Dimension and weight**: 1133 1133 1134 1134 * Device Size: cm 735 + 1135 1135 * Device Weight: g 737 + 1136 1136 * Package Size / pcs : cm 739 + 1137 1137 * Weight / pcs : g 1138 1138 1139 - 1140 - 1141 1141 = 9. Support = 1142 1142 1143 1143 1144 1144 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1145 - 1146 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 746 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230512163509-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content
- image-20230512164658-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.0 MB - Content
- image-20230512170701-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.5 MB - Content
- image-20230512172447-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.0 MB - Content
- image-20230512173758-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.1 MB - Content
- image-20230512173903-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.3 MB - Content
- image-20230512180609-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.3 MB - Content
- image-20230512180718-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.3 MB - Content
- image-20230512181814-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.2 MB - Content
- image-20230513084523-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -611.3 KB - Content
- image-20230513102034-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -607.1 KB - Content
- image-20230513103633-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -595.5 KB - Content
- image-20230513105207-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -384.7 KB - Content
- image-20230513105351-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.6 KB - Content
- image-20230513110214-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -172.7 KB - Content
- image-20230513111203-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -79.9 KB - Content
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content