<
From version < 43.50 >
edited by Xiaoling
on 2023/05/16 15:50
To version < 8.1 >
edited by Edwin Chen
on 2023/05/11 20:37
>
Change comment: Uploaded new attachment "image-20230511203450-2.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,21 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -43,7 +43,6 @@
43 43  
44 44  == 1.3 Specification ==
45 45  
46 -
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 49  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -80,7 +80,6 @@
80 80  
81 81  == 1.4 Sleep mode and working mode ==
82 82  
83 -
84 84  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85 85  
86 86  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -123,7 +123,6 @@
123 123  == 1.7 Pin Definitions ==
124 124  
125 125  
126 -[[image:image-20230513102034-2.png]]
127 127  
128 128  
129 129  == 1.8 Mechanical ==
... ... @@ -138,7 +138,6 @@
138 138  
139 139  == Hole Option ==
140 140  
141 -
142 142  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
143 143  
144 144  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -146,12 +146,12 @@
146 146  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147 147  
148 148  
149 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
146 += 2. Configure S31x-LB to connect to LoRaWAN network =
150 150  
151 151  == 2.1 How it works ==
152 152  
153 153  
154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
151 +The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155 155  
156 156  
157 157  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -162,11 +162,11 @@
162 162  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163 163  
164 164  
165 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
162 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
166 166  
167 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
164 +Each S31x-LB is shipped with a sticker with the default device EUI as below:
168 168  
169 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
166 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
170 170  
171 171  
172 172  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -193,10 +193,10 @@
193 193  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
194 194  
195 195  
196 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
193 +(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
197 197  
198 198  
199 -Press the button for 5 seconds to activate the SN50v3-LB.
196 +Press the button for 5 seconds to activate the S31x-LB.
200 200  
201 201  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
202 202  
... ... @@ -208,7 +208,7 @@
208 208  === 2.3.1 Device Status, FPORT~=5 ===
209 209  
210 210  
211 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
208 +Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
212 212  
213 213  The Payload format is as below.
214 214  
... ... @@ -220,9 +220,11 @@
220 220  
221 221  Example parse in TTNv3
222 222  
220 +[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
223 223  
224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
225 225  
223 +(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
224 +
226 226  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227 227  
228 228  (% style="color:#037691" %)**Frequency Band**:
... ... @@ -274,346 +274,41 @@
274 274  Ex2: 0x0B49 = 2889mV
275 275  
276 276  
277 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
276 +=== 2.3.2  Sensor Data. FPORT~=2 ===
278 278  
279 279  
280 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
279 +Sensor Data is uplink via FPORT=2
281 281  
282 -For example:
283 -
284 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
285 -
286 -
287 -(% style="color:red" %) **Important Notice:**
288 -
289 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
290 -1. All modes share the same Payload Explanation from HERE.
291 -1. By default, the device will send an uplink message every 20 minutes.
292 -
293 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
294 -
295 -
296 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
297 -
298 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
299 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
300 -|**Value**|Bat|(% style="width:191px" %)(((
301 -Temperature(DS18B20)(PC13)
302 -)))|(% style="width:78px" %)(((
303 -ADC(PA4)
304 -)))|(% style="width:216px" %)(((
305 -Digital in(PB15)&Digital Interrupt(PA8)
306 -)))|(% style="width:308px" %)(((
307 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
308 -)))|(% style="width:154px" %)(((
309 -Humidity(SHT20 or SHT31)
310 -)))
311 -
312 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
313 -
314 -
315 -
316 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
317 -
318 -
319 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
320 -
321 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
322 -|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
323 -|**Value**|BAT|(% style="width:196px" %)(((
324 -Temperature(DS18B20)(PC13)
325 -)))|(% style="width:87px" %)(((
326 -ADC(PA4)
327 -)))|(% style="width:189px" %)(((
328 -Digital in(PB15) & Digital Interrupt(PA8)
329 -)))|(% style="width:208px" %)(((
330 -Distance measure by:1) LIDAR-Lite V3HP
331 -Or 2) Ultrasonic Sensor
332 -)))|(% style="width:117px" %)Reserved
333 -
334 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
335 -
336 -
337 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
338 -
339 -[[image:image-20230512173758-5.png||height="563" width="712"]]
340 -
341 -
342 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
343 -
344 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
345 -
346 -[[image:image-20230512173903-6.png||height="596" width="715"]]
347 -
348 -
349 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
350 -
351 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
352 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
353 -|**Value**|BAT|(% style="width:183px" %)(((
354 -Temperature(DS18B20)(PC13)
355 -)))|(% style="width:173px" %)(((
356 -Digital in(PB15) & Digital Interrupt(PA8)
357 -)))|(% style="width:84px" %)(((
358 -ADC(PA4)
359 -)))|(% style="width:323px" %)(((
360 -Distance measure by:1)TF-Mini plus LiDAR
361 -Or 
362 -2) TF-Luna LiDAR
363 -)))|(% style="width:188px" %)Distance signal  strength
364 -
365 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
366 -
367 -
368 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
369 -
370 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
371 -
372 -[[image:image-20230512180609-7.png||height="555" width="802"]]
373 -
374 -
375 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
376 -
377 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
378 -
379 -[[image:image-20230513105207-4.png||height="469" width="802"]]
380 -
381 -
382 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
383 -
384 -
385 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
386 -
387 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
388 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
281 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
282 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
389 389  **Size(bytes)**
390 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
391 -|**Value**|(% style="width:68px" %)(((
392 -ADC1(PA4)
393 -)))|(% style="width:75px" %)(((
394 -ADC2(PA5)
395 -)))|(((
396 -ADC3(PA8)
397 -)))|(((
398 -Digital Interrupt(PB15)
399 -)))|(% style="width:304px" %)(((
400 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
401 -)))|(% style="width:163px" %)(((
402 -Humidity(SHT20 or SHT31)
403 -)))|(% style="width:53px" %)Bat
404 -
405 -[[image:image-20230513110214-6.png]]
406 -
407 -
408 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
409 -
410 -
411 -This mode has total 11 bytes. As shown below:
412 -
413 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
414 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
415 -|**Value**|BAT|(% style="width:186px" %)(((
416 -Temperature1(DS18B20)(PC13)
417 -)))|(% style="width:82px" %)(((
418 -ADC(PA4)
419 -)))|(% style="width:210px" %)(((
420 -Digital in(PB15) & Digital Interrupt(PA8) 
421 -)))|(% style="width:191px" %)Temperature2(DS18B20)
422 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
423 -
424 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
425 -
426 -[[image:image-20230513134006-1.png||height="559" width="736"]]
427 -
428 -
429 -
430 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
431 -
432 -
433 -[[image:image-20230512164658-2.png||height="532" width="729"]]
434 -
435 -Each HX711 need to be calibrated before used. User need to do below two steps:
436 -
437 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
438 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
439 -1. (((
440 -Weight has 4 bytes, the unit is g.
284 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
285 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
286 +[[Battery>>||anchor="HBattery:"]]
287 +)))|(% style="width:130px" %)(((
288 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
289 +)))|(% style="width:91px" %)(((
290 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
291 +)))|(% style="width:103px" %)(((
292 +[[Temperature>>||anchor="HTemperature:"]]
293 +)))|(% style="width:80px" %)(((
294 +[[Humidity>>||anchor="HHumidity:"]]
441 441  )))
442 442  
443 -For example:
297 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
444 444  
445 -**AT+GETSENSORVALUE =0**
299 +Sensor Battery Level.
446 446  
447 -Response:  Weight is 401 g
448 -
449 -Check the response of this command and adjust the value to match the real value for thing.
450 -
451 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
452 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
453 -**Size(bytes)**
454 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
455 -|**Value**|BAT|(% style="width:193px" %)(((
456 -Temperature(DS18B20)
457 -(PC13)
458 -)))|(% style="width:85px" %)(((
459 -ADC(PA4)
460 -)))|(% style="width:186px" %)(((
461 -Digital in(PB15) &
462 -Digital Interrupt(PA8)
463 -)))|(% style="width:100px" %)Weight
464 -
465 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
466 -
467 -
468 -
469 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470 -
471 -
472 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
473 -
474 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
475 -
476 -[[image:image-20230512181814-9.png||height="543" width="697"]]
477 -
478 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
479 -
480 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
481 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
482 -|**Value**|BAT|(% style="width:256px" %)(((
483 -Temperature(DS18B20)(PC13)
484 -)))|(% style="width:108px" %)(((
485 -ADC(PA4)
486 -)))|(% style="width:126px" %)(((
487 -Digital in(PB15)
488 -)))|(% style="width:145px" %)(((
489 -Count(PA8)
490 -)))
491 -
492 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
493 -
494 -
495 -
496 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
497 -
498 -
499 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
500 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
501 -**Size(bytes)**
502 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
503 -|**Value**|BAT|(% style="width:188px" %)(((
504 -Temperature(DS18B20)
505 -(PC13)
506 -)))|(% style="width:83px" %)(((
507 -ADC(PA5)
508 -)))|(% style="width:184px" %)(((
509 -Digital Interrupt1(PA8)
510 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
511 -
512 -[[image:image-20230513111203-7.png||height="324" width="975"]]
513 -
514 -
515 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
516 -
517 -
518 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
519 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
520 -**Size(bytes)**
521 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
522 -|**Value**|BAT|(% style="width:207px" %)(((
523 -Temperature(DS18B20)
524 -(PC13)
525 -)))|(% style="width:94px" %)(((
526 -ADC1(PA4)
527 -)))|(% style="width:198px" %)(((
528 -Digital Interrupt(PB15)
529 -)))|(% style="width:84px" %)(((
530 -ADC2(PA5)
531 -)))|(% style="width:82px" %)(((
532 -ADC3(PA8)
533 -)))
534 -
535 -[[image:image-20230513111231-8.png||height="335" width="900"]]
536 -
537 -
538 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
539 -
540 -
541 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
543 -**Size(bytes)**
544 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
545 -|**Value**|BAT|(((
546 -Temperature1(DS18B20)
547 -(PC13)
548 -)))|(((
549 -Temperature2(DS18B20)
550 -(PB9)
551 -)))|(((
552 -Digital Interrupt
553 -(PB15)
554 -)))|(% style="width:193px" %)(((
555 -Temperature3(DS18B20)
556 -(PB8)
557 -)))|(% style="width:78px" %)(((
558 -Count1(PA8)
559 -)))|(% style="width:78px" %)(((
560 -Count2(PA4)
561 -)))
562 -
563 -[[image:image-20230513111255-9.png||height="341" width="899"]]
564 -
565 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
566 -
567 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
568 -
569 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
570 -
571 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
572 -
573 -
574 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
575 -
576 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
577 -
578 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
579 -
580 -
581 -=== 2.3.3  ​Decode payload ===
582 -
583 -
584 -While using TTN V3 network, you can add the payload format to decode the payload.
585 -
586 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
587 -
588 -The payload decoder function for TTN V3 are here:
589 -
590 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
591 -
592 -
593 -==== 2.3.3.1 Battery Info ====
594 -
595 -
596 -Check the battery voltage for SN50v3.
597 -
598 598  Ex1: 0x0B45 = 2885mV
599 599  
600 600  Ex2: 0x0B49 = 2889mV
601 601  
602 602  
603 -==== 2.3.3.2  Temperature (DS18B20) ====
604 604  
307 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
605 605  
606 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
309 +**Example**:
607 607  
608 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
609 -
610 -(% style="color:blue" %)**Connection:**
611 -
612 -[[image:image-20230512180718-8.png||height="538" width="647"]]
613 -
614 -
615 -(% style="color:blue" %)**Example**:
616 -
617 617  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
618 618  
619 619  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -621,224 +621,195 @@
621 621  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
622 622  
623 623  
624 -==== 2.3.3.3 Digital Input ====
318 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
625 625  
626 626  
627 -The digital input for pin PB15,
321 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
628 628  
629 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
630 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
631 631  
632 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
633 -(((
634 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
324 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
635 635  
636 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
637 637  
638 -
639 -)))
327 +**Example:**
640 640  
641 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
329 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
642 642  
331 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
643 643  
644 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
333 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
645 645  
646 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
335 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
647 647  
648 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
649 649  
650 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
338 +== 2.4 Payload Decoder file ==
651 651  
652 652  
653 -==== 2.3.3.5 Digital Interrupt ====
341 +In TTN, use can add a custom payload so it shows friendly reading
654 654  
343 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
655 655  
656 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
345 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
657 657  
658 -(% style="color:blue" %)** Interrupt connection method:**
659 659  
660 -[[image:image-20230513105351-5.png||height="147" width="485"]]
348 +== 2.5 Datalog Feature ==
661 661  
662 662  
663 -(% style="color:blue" %)**Example to use with door sensor :**
351 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
664 664  
665 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
666 666  
667 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
354 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
668 668  
669 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
670 670  
357 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
671 671  
672 -(% style="color:blue" %)**Below is the installation example:**
359 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
360 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
673 673  
674 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
362 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
675 675  
676 -* (((
677 -One pin to SN50_v3's PA8 pin
678 -)))
679 -* (((
680 -The other pin to SN50_v3's VDD pin
681 -)))
364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
682 682  
683 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
366 +=== 2.5.2 Unix TimeStamp ===
684 684  
685 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
686 686  
687 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
369 +S31x-LB uses Unix TimeStamp format based on
688 688  
689 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
371 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
690 690  
691 -The above photos shows the two parts of the magnetic switch fitted to a door.
373 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
692 692  
693 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
375 +Below is the converter example
694 694  
695 -The command is:
377 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
696 696  
697 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
379 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 Jan ~-~- 29 Friday 03:03:25
698 698  
699 -Below shows some screen captures in TTN V3:
700 700  
701 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
382 +=== 2.5.3 Set Device Time ===
702 702  
703 703  
704 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
385 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
705 705  
706 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
387 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
707 707  
389 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
708 708  
709 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
710 710  
392 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
711 711  
712 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
713 713  
714 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
395 +The Datalog uplinks will use below payload format.
715 715  
716 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
397 +**Retrieval data payload:**
717 717  
718 -Below is the connection to SHT20/ SHT31. The connection is as below:
399 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
400 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
401 +**Size(bytes)**
402 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
403 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
404 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
405 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
719 719  
407 +**Poll message flag & Ext:**
720 720  
721 -[[image:image-20230513103633-3.png||height="448" width="716"]]
409 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
722 722  
723 -The device will be able to get the I2C sensor data now and upload to IoT Server.
411 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
724 724  
725 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
413 +**Poll Message Flag**: 1: This message is a poll message reply.
726 726  
727 -Convert the read byte to decimal and divide it by ten.
415 +* Poll Message Flag is set to 1.
728 728  
729 -**Example:**
417 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
730 730  
731 -Temperature Read:0116(H) = 278(D)  Value 278 /10=27.8℃;
419 +For example, in US915 band, the max payload for different DR is:
732 732  
733 -Humidity:    Read:0248(H)=584(D)  Value 584 / 10=58.4, So 58.4%
421 +**a) DR0:** max is 11 bytes so one entry of data
734 734  
735 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
423 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
736 736  
425 +**c) DR2:** total payload includes 11 entries of data
737 737  
738 -==== 2.3.3.7  ​Distance Reading ====
427 +**d) DR3: **total payload includes 22 entries of data.
739 739  
429 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
740 740  
741 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
742 742  
743 -
744 -==== 2.3.3.8 Ultrasonic Sensor ====
745 -
746 -
747 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
748 -
749 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
750 -
751 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
752 -
753 -The picture below shows the connection:
754 -
755 -[[image:image-20230512173903-6.png||height="596" width="715"]]
756 -
757 -
758 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
759 -
760 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
761 -
762 762  **Example:**
763 763  
764 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
434 +If S31x-LB has below data inside Flash:
765 765  
436 +[[image:1682646494051-944.png]]
766 766  
438 +If user sends below downlink command: 3160065F9760066DA705
767 767  
768 -==== 2.3.3.9  Battery Output - BAT pin ====
440 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
769 769  
442 + Stop time: 60066DA7= time 21/1/19 05:27:03
770 770  
771 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
772 772  
445 +**S31x-LB will uplink this payload.**
773 773  
774 -==== 2.3.3.10  +5V Output ====
447 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
775 775  
449 +(((
450 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
451 +)))
776 776  
777 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
453 +(((
454 +Where the first 11 bytes is for the first entry:
455 +)))
778 778  
779 -The 5V output time can be controlled by AT Command.
457 +(((
458 +7FFF089801464160065F97
459 +)))
780 780  
781 -(% style="color:blue" %)**AT+5VT=1000**
461 +(((
462 +**Ext sensor data**=0x7FFF/100=327.67
463 +)))
782 782  
783 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
465 +(((
466 +**Temp**=0x088E/100=22.00
467 +)))
784 784  
785 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
469 +(((
470 +**Hum**=0x014B/10=32.6
471 +)))
786 786  
473 +(((
474 +**poll message flag & Ext**=0x41,means reply data,Ext=1
475 +)))
787 787  
477 +(((
478 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
479 +)))
788 788  
789 -==== 2.3.3.11  BH1750 Illumination Sensor ====
790 790  
482 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
791 791  
792 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
484 +== 2.6 Temperature Alarm Feature ==
793 793  
794 -[[image:image-20230512172447-4.png||height="416" width="712"]]
795 795  
796 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
487 +S31x-LB work flow with Alarm feature.
797 797  
798 798  
799 -==== 2.3.3.12  Working MOD ====
490 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
800 800  
801 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
802 802  
803 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
493 +== 2.7 Frequency Plans ==
804 804  
805 -Case 7^^th^^ Byte >> 2 & 0x1f:
806 806  
807 -* 0: MOD1
808 -* 1: MOD2
809 -* 2: MOD3
810 -* 3: MOD4
811 -* 4: MOD5
812 -* 5: MOD6
813 -* 6: MOD7
814 -* 7: MOD8
815 -* 8: MOD9
496 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
816 816  
817 -== 2.4 Payload Decoder file ==
818 -
819 -
820 -In TTN, use can add a custom payload so it shows friendly reading
821 -
822 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
823 -
824 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
825 -
826 -
827 -
828 -== 2.5 Frequency Plans ==
829 -
830 -
831 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
832 -
833 833  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
834 834  
835 835  
836 -= 3. Configure SN50v3-LB =
501 += 3. Configure S31x-LB =
837 837  
838 838  == 3.1 Configure Methods ==
839 839  
840 840  
841 -SN50v3-LB supports below configure method:
506 +S31x-LB supports below configure method:
842 842  
843 843  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
844 844  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -857,7 +857,7 @@
857 857  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
858 858  
859 859  
860 -== 3.3 Commands special design for SN50v3-LB ==
525 +== 3.3 Commands special design for S31x-LB ==
861 861  
862 862  
863 863  These commands only valid for S31x-LB, as below:
... ... @@ -865,6 +865,7 @@
865 865  
866 866  === 3.3.1 Set Transmit Interval Time ===
867 867  
533 +
868 868  Feature: Change LoRaWAN End Node Transmit Interval.
869 869  
870 870  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -892,155 +892,120 @@
892 892  
893 893  === 3.3.2 Get Device Status ===
894 894  
895 -Send a LoRaWAN downlink to ask the device to send its status.
896 896  
562 +Send a LoRaWAN downlink to ask device send Alarm settings.
563 +
897 897  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
898 898  
899 899  Sensor will upload Device Status via FPORT=5. See payload section for detail.
900 900  
901 901  
902 -=== 3.3.3 Set Interrupt Mode ===
569 +=== 3.3.3 Set Temperature Alarm Threshold ===
903 903  
904 -Feature, Set Interrupt mode for GPIO_EXIT.
571 +* (% style="color:blue" %)**AT Command:**
905 905  
906 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
573 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
907 907  
908 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
909 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
910 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
911 -0
912 -OK
913 -the mode is 0 =Disable Interrupt
914 -)))
915 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
916 -Set Transmit Interval
917 -0. (Disable Interrupt),
918 -~1. (Trigger by rising and falling edge)
919 -2. (Trigger by falling edge)
920 -3. (Trigger by rising edge)
921 -)))|(% style="width:157px" %)OK
922 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
923 -Set Transmit Interval
575 +* When min=0, and max≠0, Alarm higher than max
576 +* When min≠0, and max=0, Alarm lower than min
577 +* When min≠0 and max≠0, Alarm higher than max or lower than min
924 924  
925 -trigger by rising edge.
926 -)))|(% style="width:157px" %)OK
927 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
579 +Example:
928 928  
929 -(% style="color:blue" %)**Downlink Command: 0x06**
581 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
930 930  
931 -Format: Command Code (0x06) followed by 3 bytes.
583 +* (% style="color:blue" %)**Downlink Payload:**
932 932  
933 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
585 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
934 934  
935 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
936 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
937 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
938 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
587 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
939 939  
940 -=== 3.3.4 Set Power Output Duration ===
941 941  
942 -Control the output duration 5V . Before each sampling, device will
590 +=== 3.3.4 Set Humidity Alarm Threshold ===
943 943  
944 -~1. first enable the power output to external sensor,
592 +* (% style="color:blue" %)**AT Command:**
945 945  
946 -2. keep it on as per duration, read sensor value and construct uplink payload
594 +(% style="color:#037691" %)**AT+SHHUM=min,max**
947 947  
948 -3. final, close the power output.
596 +* When min=0, and max≠0, Alarm higher than max
597 +* When min≠0, and max=0, Alarm lower than min
598 +* When min≠0 and max≠0, Alarm higher than max or lower than min
949 949  
950 -(% style="color:blue" %)**AT Command: AT+5VT**
600 +Example:
951 951  
952 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
953 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
954 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
955 -500(default)
956 -OK
957 -)))
958 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
959 -Close after a delay of 1000 milliseconds.
960 -)))|(% style="width:157px" %)OK
602 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
961 961  
962 -(% style="color:blue" %)**Downlink Command: 0x07**
604 +* (% style="color:blue" %)**Downlink Payload:**
963 963  
964 -Format: Command Code (0x07) followed by 2 bytes.
606 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
965 965  
966 -The first and second bytes are the time to turn on.
608 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
967 967  
968 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
969 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
970 970  
971 -=== 3.3.5 Set Weighing parameters ===
611 +=== 3.3.5 Set Alarm Interval ===
972 972  
973 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
613 +The shortest time of two Alarm packet. (unit: min)
974 974  
975 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
615 +* (% style="color:blue" %)**AT Command:**
976 976  
977 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
978 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
979 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
980 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
981 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
617 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
982 982  
983 -(% style="color:blue" %)**Downlink Command: 0x08**
619 +* (% style="color:blue" %)**Downlink Payload:**
984 984  
985 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
621 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
986 986  
987 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
988 988  
989 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
624 +=== 3.3.6 Get Alarm settings ===
990 990  
991 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
992 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
993 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
994 994  
995 -=== 3.3.6 Set Digital pulse count value ===
627 +Send a LoRaWAN downlink to ask device send Alarm settings.
996 996  
997 -Feature: Set the pulse count value.
629 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
998 998  
999 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
631 +**Example:**
1000 1000  
1001 -(% style="color:blue" %)**AT Command: AT+SETCNT**
633 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1002 1002  
1003 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1004 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1005 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1006 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1007 1007  
1008 -(% style="color:blue" %)**Downlink Command: 0x09**
636 +**Explain:**
1009 1009  
1010 -Format: Command Code (0x09) followed by 5 bytes.
638 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1011 1011  
1012 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
640 +=== 3.3.7 Set Interrupt Mode ===
1013 1013  
1014 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1015 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1016 1016  
1017 -=== 3.3.7 Set Workmode ===
643 +Feature, Set Interrupt mode for GPIO_EXIT.
1018 1018  
1019 -Feature: Switch working mode.
645 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1020 1020  
1021 -(% style="color:blue" %)**AT Command: AT+MOD**
1022 -
1023 1023  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1024 1024  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1025 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
649 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
650 +0
1026 1026  OK
652 +the mode is 0 =Disable Interrupt
1027 1027  )))
1028 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1029 -OK
1030 -Attention:Take effect after ATZ
1031 -)))
654 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
655 +Set Transmit Interval
656 +0. (Disable Interrupt),
657 +~1. (Trigger by rising and falling edge)
658 +2. (Trigger by falling edge)
659 +3. (Trigger by rising edge)
660 +)))|(% style="width:157px" %)OK
1032 1032  
1033 -(% style="color:blue" %)**Downlink Command: 0x0A**
662 +(% style="color:blue" %)**Downlink Command: 0x06**
1034 1034  
1035 -Format: Command Code (0x0A) followed by 1 bytes.
664 +Format: Command Code (0x06) followed by 3 bytes.
1036 1036  
1037 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1038 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
666 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1039 1039  
668 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
669 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
670 +
1040 1040  = 4. Battery & Power Consumption =
1041 1041  
1042 1042  
1043 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
674 +S31x-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1044 1044  
1045 1045  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1046 1046  
... ... @@ -1049,7 +1049,7 @@
1049 1049  
1050 1050  
1051 1051  (% class="wikigeneratedid" %)
1052 -User can change firmware SN50v3-LB to:
683 +User can change firmware S31x-LB to:
1053 1053  
1054 1054  * Change Frequency band/ region.
1055 1055  * Update with new features.
... ... @@ -1065,45 +1065,47 @@
1065 1065  
1066 1066  = 6. FAQ =
1067 1067  
1068 -== 6.1 Where can i find source code of SN50v3-LB? ==
1069 1069  
1070 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1071 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1072 1072  
1073 1073  = 7. Order Info =
1074 1074  
1075 1075  
1076 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
704 +Part Number: (% style="color:blue" %)**S31-LB-XX  / S31B-LB-XX**
1077 1077  
1078 1078  (% style="color:red" %)**XX**(%%): The default frequency band
1079 1079  
1080 1080  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
709 +
1081 1081  * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
711 +
1082 1082  * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
713 +
1083 1083  * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
715 +
1084 1084  * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
717 +
1085 1085  * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
719 +
1086 1086  * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
721 +
1087 1087  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1088 1088  
1089 -(% style="color:red" %)**YY: ** (%%)Hole Option
724 += =
1090 1090  
1091 -* (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1092 -* (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1093 -* (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1094 -* (% style="color:red" %)**NH**(%%): No Hole
1095 -
1096 1096  = 8. ​Packing Info =
1097 1097  
1098 1098  (% style="color:#037691" %)**Package Includes**:
1099 1099  
1100 -* SN50v3-LB LoRaWAN Generic Node
730 +* S31x-LB LoRaWAN Temperature & Humidity Sensor
1101 1101  
1102 1102  (% style="color:#037691" %)**Dimension and weight**:
1103 1103  
1104 1104  * Device Size: cm
735 +
1105 1105  * Device Weight: g
737 +
1106 1106  * Package Size / pcs : cm
739 +
1107 1107  * Weight / pcs : g
1108 1108  
1109 1109  = 9. Support =
... ... @@ -1110,5 +1110,4 @@
1110 1110  
1111 1111  
1112 1112  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1113 -
1114 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
746 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0