<
From version < 43.49 >
edited by Xiaoling
on 2023/05/16 15:49
To version < 87.9 >
edited by Xiaoling
on 2024/01/03 11:30
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,20 +14,19 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -39,7 +39,8 @@
39 39  * Support wireless OTA update firmware
40 40  * Uplink on periodically
41 41  * Downlink to change configure
42 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
43 43  
44 44  == 1.3 Specification ==
45 45  
... ... @@ -46,7 +46,7 @@
46 46  
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v
50 50  * Operating Temperature: -40 ~~ 85°C
51 51  
52 52  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -89,7 +89,7 @@
89 89  == 1.5 Button & LEDs ==
90 90  
91 91  
92 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
93 93  
94 94  
95 95  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -108,7 +108,7 @@
108 108  == 1.6 BLE connection ==
109 109  
110 110  
111 -SN50v3-LB supports BLE remote configure.
116 +SN50v3-LB/LS supports BLE remote configure.
112 112  
113 113  
114 114  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -123,35 +123,40 @@
123 123  == 1.7 Pin Definitions ==
124 124  
125 125  
126 -[[image:image-20230513102034-2.png]]
131 +[[image:image-20230610163213-1.png||height="404" width="699"]]
127 127  
128 128  
129 129  == 1.8 Mechanical ==
130 130  
136 +=== 1.8.1 for LB version ===
131 131  
132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
133 133  
134 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
135 135  
141 +
136 136  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137 137  
144 +=== 1.8.2 for LS version ===
138 138  
139 -== Hole Option ==
146 +[[image:image-20231231203439-3.png||height="385" width="886"]]
140 140  
141 141  
142 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149 +== 1.9 Hole Option ==
143 143  
151 +
152 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
153 +
144 144  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
145 145  
146 146  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147 147  
148 148  
149 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
159 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
150 150  
151 151  == 2.1 How it works ==
152 152  
153 153  
154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155 155  
156 156  
157 157  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -159,12 +159,12 @@
159 159  
160 160  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
161 161  
162 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
172 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163 163  
164 164  
165 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
175 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
166 166  
167 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
177 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
168 168  
169 169  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
170 170  
... ... @@ -193,10 +193,10 @@
193 193  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
194 194  
195 195  
196 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
206 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
197 197  
198 198  
199 -Press the button for 5 seconds to activate the SN50v3-LB.
209 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
200 200  
201 201  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
202 202  
... ... @@ -208,7 +208,7 @@
208 208  === 2.3.1 Device Status, FPORT~=5 ===
209 209  
210 210  
211 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
221 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
212 212  
213 213  The Payload format is as below.
214 214  
... ... @@ -216,44 +216,44 @@
216 216  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
217 217  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
218 218  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
219 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
229 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
220 220  
221 221  Example parse in TTNv3
222 222  
223 223  
224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
234 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
225 225  
226 226  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227 227  
228 228  (% style="color:#037691" %)**Frequency Band**:
229 229  
230 -*0x01: EU868
240 +0x01: EU868
231 231  
232 -*0x02: US915
242 +0x02: US915
233 233  
234 -*0x03: IN865
244 +0x03: IN865
235 235  
236 -*0x04: AU915
246 +0x04: AU915
237 237  
238 -*0x05: KZ865
248 +0x05: KZ865
239 239  
240 -*0x06: RU864
250 +0x06: RU864
241 241  
242 -*0x07: AS923
252 +0x07: AS923
243 243  
244 -*0x08: AS923-1
254 +0x08: AS923-1
245 245  
246 -*0x09: AS923-2
256 +0x09: AS923-2
247 247  
248 -*0x0a: AS923-3
258 +0x0a: AS923-3
249 249  
250 -*0x0b: CN470
260 +0x0b: CN470
251 251  
252 -*0x0c: EU433
262 +0x0c: EU433
253 253  
254 -*0x0d: KR920
264 +0x0d: KR920
255 255  
256 -*0x0e: MA869
266 +0x0e: MA869
257 257  
258 258  
259 259  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -277,19 +277,22 @@
277 277  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
278 278  
279 279  
280 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
290 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
281 281  
282 282  For example:
283 283  
284 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
294 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
285 285  
286 286  
287 287  (% style="color:red" %) **Important Notice:**
288 288  
289 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
290 -1. All modes share the same Payload Explanation from HERE.
291 -1. By default, the device will send an uplink message every 20 minutes.
299 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
292 292  
301 +2. All modes share the same Payload Explanation from HERE.
302 +
303 +3. By default, the device will send an uplink message every 20 minutes.
304 +
305 +
293 293  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
294 294  
295 295  
... ... @@ -296,8 +296,8 @@
296 296  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
297 297  
298 298  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
299 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
300 -|**Value**|Bat|(% style="width:191px" %)(((
312 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
313 +|Value|Bat|(% style="width:191px" %)(((
301 301  Temperature(DS18B20)(PC13)
302 302  )))|(% style="width:78px" %)(((
303 303  ADC(PA4)
... ... @@ -312,7 +312,6 @@
312 312  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
313 313  
314 314  
315 -
316 316  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
317 317  
318 318  
... ... @@ -319,8 +319,8 @@
319 319  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
320 320  
321 321  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
322 -|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
323 -|**Value**|BAT|(% style="width:196px" %)(((
334 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
335 +|Value|BAT|(% style="width:196px" %)(((
324 324  Temperature(DS18B20)(PC13)
325 325  )))|(% style="width:87px" %)(((
326 326  ADC(PA4)
... ... @@ -327,7 +327,7 @@
327 327  )))|(% style="width:189px" %)(((
328 328  Digital in(PB15) & Digital Interrupt(PA8)
329 329  )))|(% style="width:208px" %)(((
330 -Distance measure by:1) LIDAR-Lite V3HP
342 +Distance measure by: 1) LIDAR-Lite V3HP
331 331  Or 2) Ultrasonic Sensor
332 332  )))|(% style="width:117px" %)Reserved
333 333  
... ... @@ -341,7 +341,7 @@
341 341  
342 342  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
343 343  
344 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
356 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
345 345  
346 346  [[image:image-20230512173903-6.png||height="596" width="715"]]
347 347  
... ... @@ -350,7 +350,7 @@
350 350  
351 351  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
352 352  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
353 -|**Value**|BAT|(% style="width:183px" %)(((
365 +|Value|BAT|(% style="width:183px" %)(((
354 354  Temperature(DS18B20)(PC13)
355 355  )))|(% style="width:173px" %)(((
356 356  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -358,8 +358,7 @@
358 358  ADC(PA4)
359 359  )))|(% style="width:323px" %)(((
360 360  Distance measure by:1)TF-Mini plus LiDAR
361 -Or 
362 -2) TF-Luna LiDAR
373 +Or 2) TF-Luna LiDAR
363 363  )))|(% style="width:188px" %)Distance signal  strength
364 364  
365 365  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -367,7 +367,7 @@
367 367  
368 368  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
369 369  
370 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
371 371  
372 372  [[image:image-20230512180609-7.png||height="555" width="802"]]
373 373  
... ... @@ -374,9 +374,9 @@
374 374  
375 375  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
376 376  
377 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
388 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
378 378  
379 -[[image:image-20230513105207-4.png||height="469" width="802"]]
390 +[[image:image-20230610170047-1.png||height="452" width="799"]]
380 380  
381 381  
382 382  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
... ... @@ -387,8 +387,8 @@
387 387  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
388 388  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
389 389  **Size(bytes)**
390 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
391 -|**Value**|(% style="width:68px" %)(((
401 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
402 +|Value|(% style="width:68px" %)(((
392 392  ADC1(PA4)
393 393  )))|(% style="width:75px" %)(((
394 394  ADC2(PA5)
... ... @@ -412,7 +412,7 @@
412 412  
413 413  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
414 414  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
415 -|**Value**|BAT|(% style="width:186px" %)(((
426 +|Value|BAT|(% style="width:186px" %)(((
416 416  Temperature1(DS18B20)(PC13)
417 417  )))|(% style="width:82px" %)(((
418 418  ADC(PA4)
... ... @@ -423,10 +423,10 @@
423 423  
424 424  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
425 425  
437 +
426 426  [[image:image-20230513134006-1.png||height="559" width="736"]]
427 427  
428 428  
429 -
430 430  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
431 431  
432 432  
... ... @@ -434,15 +434,18 @@
434 434  
435 435  Each HX711 need to be calibrated before used. User need to do below two steps:
436 436  
437 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
438 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
448 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
449 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
439 439  1. (((
440 440  Weight has 4 bytes, the unit is g.
452 +
453 +
454 +
441 441  )))
442 442  
443 443  For example:
444 444  
445 -**AT+GETSENSORVALUE =0**
459 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
446 446  
447 447  Response:  Weight is 401 g
448 448  
... ... @@ -452,20 +452,17 @@
452 452  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
453 453  **Size(bytes)**
454 454  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
455 -|**Value**|BAT|(% style="width:193px" %)(((
456 -Temperature(DS18B20)
457 -(PC13)
469 +|Value|BAT|(% style="width:193px" %)(((
470 +Temperature(DS18B20)(PC13)
458 458  )))|(% style="width:85px" %)(((
459 459  ADC(PA4)
460 460  )))|(% style="width:186px" %)(((
461 -Digital in(PB15) &
462 -Digital Interrupt(PA8)
474 +Digital in(PB15) & Digital Interrupt(PA8)
463 463  )))|(% style="width:100px" %)Weight
464 464  
465 465  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
466 466  
467 467  
468 -
469 469  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470 470  
471 471  
... ... @@ -475,11 +475,12 @@
475 475  
476 476  [[image:image-20230512181814-9.png||height="543" width="697"]]
477 477  
489 +
478 478  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
479 479  
480 480  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
481 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
482 -|**Value**|BAT|(% style="width:256px" %)(((
493 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
494 +|Value|BAT|(% style="width:256px" %)(((
483 483  Temperature(DS18B20)(PC13)
484 484  )))|(% style="width:108px" %)(((
485 485  ADC(PA4)
... ... @@ -492,7 +492,6 @@
492 492  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
493 493  
494 494  
495 -
496 496  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
497 497  
498 498  
... ... @@ -500,7 +500,7 @@
500 500  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
501 501  **Size(bytes)**
502 502  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
503 -|**Value**|BAT|(% style="width:188px" %)(((
514 +|Value|BAT|(% style="width:188px" %)(((
504 504  Temperature(DS18B20)
505 505  (PC13)
506 506  )))|(% style="width:83px" %)(((
... ... @@ -518,8 +518,8 @@
518 518  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
519 519  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
520 520  **Size(bytes)**
521 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
522 -|**Value**|BAT|(% style="width:207px" %)(((
532 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
533 +|Value|BAT|(% style="width:207px" %)(((
523 523  Temperature(DS18B20)
524 524  (PC13)
525 525  )))|(% style="width:94px" %)(((
... ... @@ -541,19 +541,19 @@
541 541  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 542  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
543 543  **Size(bytes)**
544 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
545 -|**Value**|BAT|(((
546 -Temperature1(DS18B20)
547 -(PC13)
555 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
556 +|Value|BAT|(((
557 +Temperature
558 +(DS18B20)(PC13)
548 548  )))|(((
549 -Temperature2(DS18B20)
550 -(PB9)
560 +Temperature2
561 +(DS18B20)(PB9)
551 551  )))|(((
552 552  Digital Interrupt
553 553  (PB15)
554 554  )))|(% style="width:193px" %)(((
555 -Temperature3(DS18B20)
556 -(PB8)
566 +Temperature3
567 +(DS18B20)(PB8)
557 557  )))|(% style="width:78px" %)(((
558 558  Count1(PA8)
559 559  )))|(% style="width:78px" %)(((
... ... @@ -578,6 +578,105 @@
578 578  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
579 579  
580 580  
592 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
593 +
594 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
595 +
596 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
597 +
598 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
599 +
600 +
601 +===== 2.3.2.10.a  Uplink, PWM input capture =====
602 +
603 +
604 +[[image:image-20230817172209-2.png||height="439" width="683"]]
605 +
606 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
607 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
608 +|Value|Bat|(% style="width:191px" %)(((
609 +Temperature(DS18B20)(PC13)
610 +)))|(% style="width:78px" %)(((
611 +ADC(PA4)
612 +)))|(% style="width:135px" %)(((
613 +PWM_Setting
614 +&Digital Interrupt(PA8)
615 +)))|(% style="width:70px" %)(((
616 +Pulse period
617 +)))|(% style="width:89px" %)(((
618 +Duration of high level
619 +)))
620 +
621 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
622 +
623 +
624 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
625 +
626 +**Frequency:**
627 +
628 +(% class="MsoNormal" %)
629 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
630 +
631 +(% class="MsoNormal" %)
632 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
633 +
634 +
635 +(% class="MsoNormal" %)
636 +**Duty cycle:**
637 +
638 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
639 +
640 +[[image:image-20230818092200-1.png||height="344" width="627"]]
641 +
642 +===== 2.3.2.10.b  Uplink, PWM output =====
643 +
644 +[[image:image-20230817172209-2.png||height="439" width="683"]]
645 +
646 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
647 +
648 +a is the time delay of the output, the unit is ms.
649 +
650 +b is the output frequency, the unit is HZ.
651 +
652 +c is the duty cycle of the output, the unit is %.
653 +
654 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
655 +
656 +aa is the time delay of the output, the unit is ms.
657 +
658 +bb is the output frequency, the unit is HZ.
659 +
660 +cc is the duty cycle of the output, the unit is %.
661 +
662 +
663 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
664 +
665 +The oscilloscope displays as follows:
666 +
667 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
668 +
669 +
670 +===== 2.3.2.10.c  Downlink, PWM output =====
671 +
672 +
673 +[[image:image-20230817173800-3.png||height="412" width="685"]]
674 +
675 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
676 +
677 + xx xx xx is the output frequency, the unit is HZ.
678 +
679 + yy is the duty cycle of the output, the unit is %.
680 +
681 + zz zz is the time delay of the output, the unit is ms.
682 +
683 +
684 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
685 +
686 +The oscilloscope displays as follows:
687 +
688 +[[image:image-20230817173858-5.png||height="694" width="921"]]
689 +
690 +
581 581  === 2.3.3  ​Decode payload ===
582 582  
583 583  
... ... @@ -587,13 +587,13 @@
587 587  
588 588  The payload decoder function for TTN V3 are here:
589 589  
590 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
700 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
591 591  
592 592  
593 593  ==== 2.3.3.1 Battery Info ====
594 594  
595 595  
596 -Check the battery voltage for SN50v3.
706 +Check the battery voltage for SN50v3-LB/LS.
597 597  
598 598  Ex1: 0x0B45 = 2885mV
599 599  
... ... @@ -641,19 +641,24 @@
641 641  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
642 642  
643 643  
644 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
754 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
645 645  
646 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
756 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
647 647  
648 648  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
649 649  
760 +
650 650  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
651 651  
652 652  
764 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
765 +
766 +[[image:image-20230811113449-1.png||height="370" width="608"]]
767 +
653 653  ==== 2.3.3.5 Digital Interrupt ====
654 654  
655 655  
656 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
771 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
657 657  
658 658  (% style="color:blue" %)** Interrupt connection method:**
659 659  
... ... @@ -666,18 +666,18 @@
666 666  
667 667  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
668 668  
669 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
784 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
670 670  
671 671  
672 672  (% style="color:blue" %)**Below is the installation example:**
673 673  
674 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
789 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
675 675  
676 676  * (((
677 -One pin to SN50_v3's PA8 pin
792 +One pin to SN50v3-LB/LS's PA8 pin
678 678  )))
679 679  * (((
680 -The other pin to SN50_v3's VDD pin
795 +The other pin to SN50v3-LB/LS's VDD pin
681 681  )))
682 682  
683 683  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -694,7 +694,7 @@
694 694  
695 695  The command is:
696 696  
697 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
812 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
698 698  
699 699  Below shows some screen captures in TTN V3:
700 700  
... ... @@ -701,7 +701,7 @@
701 701  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
702 702  
703 703  
704 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
819 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
705 705  
706 706  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
707 707  
... ... @@ -713,12 +713,13 @@
713 713  
714 714  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
715 715  
716 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
831 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
717 717  
833 +
718 718  Below is the connection to SHT20/ SHT31. The connection is as below:
719 719  
836 +[[image:image-20230610170152-2.png||height="501" width="846"]]
720 720  
721 -[[image:image-20230513103633-3.png||height="448" width="716"]]
722 722  
723 723  The device will be able to get the I2C sensor data now and upload to IoT Server.
724 724  
... ... @@ -746,7 +746,7 @@
746 746  
747 747  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
748 748  
749 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
865 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
750 750  
751 751  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
752 752  
... ... @@ -754,8 +754,9 @@
754 754  
755 755  [[image:image-20230512173903-6.png||height="596" width="715"]]
756 756  
757 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
758 758  
874 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
875 +
759 759  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
760 760  
761 761  **Example:**
... ... @@ -763,16 +763,17 @@
763 763  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
764 764  
765 765  
766 -
767 767  ==== 2.3.3.9  Battery Output - BAT pin ====
768 768  
769 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
770 770  
886 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
771 771  
888 +
772 772  ==== 2.3.3.10  +5V Output ====
773 773  
774 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
775 775  
892 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
893 +
776 776  The 5V output time can be controlled by AT Command.
777 777  
778 778  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -779,21 +779,53 @@
779 779  
780 780  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
781 781  
782 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
900 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
783 783  
784 784  
785 -
786 786  ==== 2.3.3.11  BH1750 Illumination Sensor ====
787 787  
905 +
788 788  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
789 789  
790 790  [[image:image-20230512172447-4.png||height="416" width="712"]]
791 791  
910 +
792 792  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
793 793  
794 794  
795 -==== 2.3.3.12  Working MOD ====
914 +==== 2.3.3.12  PWM MOD ====
796 796  
916 +
917 +* (((
918 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
919 +)))
920 +* (((
921 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
922 +)))
923 +
924 + [[image:image-20230817183249-3.png||height="320" width="417"]]
925 +
926 +* (((
927 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
928 +)))
929 +* (((
930 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
931 +)))
932 +* (((
933 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
934 +
935 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
936 +
937 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
938 +
939 +b) If the output duration is more than 30 seconds, better to use external power source. 
940 +)))
941 +
942 +
943 +
944 +==== 2.3.3.13  Working MOD ====
945 +
946 +
797 797  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
798 798  
799 799  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -809,6 +809,7 @@
809 809  * 6: MOD7
810 810  * 7: MOD8
811 811  * 8: MOD9
962 +* 9: MOD10
812 812  
813 813  == 2.4 Payload Decoder file ==
814 814  
... ... @@ -820,21 +820,20 @@
820 820  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
821 821  
822 822  
823 -
824 824  == 2.5 Frequency Plans ==
825 825  
826 826  
827 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
977 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
828 828  
829 829  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
830 830  
831 831  
832 -= 3. Configure SN50v3-LB =
982 += 3. Configure SN50v3-LB/LS =
833 833  
834 834  == 3.1 Configure Methods ==
835 835  
836 836  
837 -SN50v3-LB supports below configure method:
987 +SN50v3-LB/LS supports below configure method:
838 838  
839 839  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
840 840  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -853,20 +853,21 @@
853 853  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
854 854  
855 855  
856 -== 3.3 Commands special design for SN50v3-LB ==
1006 +== 3.3 Commands special design for SN50v3-LB/LS ==
857 857  
858 858  
859 -These commands only valid for S31x-LB, as below:
1009 +These commands only valid for SN50v3-LB/LS, as below:
860 860  
861 861  
862 862  === 3.3.1 Set Transmit Interval Time ===
863 863  
1014 +
864 864  Feature: Change LoRaWAN End Node Transmit Interval.
865 865  
866 866  (% style="color:blue" %)**AT Command: AT+TDC**
867 867  
868 868  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
869 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1020 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
870 870  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
871 871  30000
872 872  OK
... ... @@ -888,21 +888,23 @@
888 888  
889 889  === 3.3.2 Get Device Status ===
890 890  
1042 +
891 891  Send a LoRaWAN downlink to ask the device to send its status.
892 892  
893 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1045 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
894 894  
895 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
1047 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
896 896  
897 897  
898 898  === 3.3.3 Set Interrupt Mode ===
899 899  
1052 +
900 900  Feature, Set Interrupt mode for GPIO_EXIT.
901 901  
902 902  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
903 903  
904 904  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
905 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1058 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
906 906  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
907 907  0
908 908  OK
... ... @@ -917,7 +917,6 @@
917 917  )))|(% style="width:157px" %)OK
918 918  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
919 919  Set Transmit Interval
920 -
921 921  trigger by rising edge.
922 922  )))|(% style="width:157px" %)OK
923 923  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -935,6 +935,7 @@
935 935  
936 936  === 3.3.4 Set Power Output Duration ===
937 937  
1090 +
938 938  Control the output duration 5V . Before each sampling, device will
939 939  
940 940  ~1. first enable the power output to external sensor,
... ... @@ -946,7 +946,7 @@
946 946  (% style="color:blue" %)**AT Command: AT+5VT**
947 947  
948 948  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
949 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1102 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
950 950  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
951 951  500(default)
952 952  OK
... ... @@ -966,12 +966,13 @@
966 966  
967 967  === 3.3.5 Set Weighing parameters ===
968 968  
1122 +
969 969  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
970 970  
971 971  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
972 972  
973 973  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
974 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1128 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
975 975  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
976 976  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
977 977  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -990,6 +990,7 @@
990 990  
991 991  === 3.3.6 Set Digital pulse count value ===
992 992  
1147 +
993 993  Feature: Set the pulse count value.
994 994  
995 995  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -997,7 +997,7 @@
997 997  (% style="color:blue" %)**AT Command: AT+SETCNT**
998 998  
999 999  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1000 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1155 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1001 1001  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1002 1002  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1003 1003  
... ... @@ -1012,12 +1012,13 @@
1012 1012  
1013 1013  === 3.3.7 Set Workmode ===
1014 1014  
1170 +
1015 1015  Feature: Switch working mode.
1016 1016  
1017 1017  (% style="color:blue" %)**AT Command: AT+MOD**
1018 1018  
1019 1019  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1020 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1176 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1021 1021  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1022 1022  OK
1023 1023  )))
... ... @@ -1033,11 +1033,103 @@
1033 1033  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1034 1034  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1035 1035  
1036 -= 4. Battery & Power Consumption =
1192 +(% id="H3.3.8PWMsetting" %)
1193 +=== 3.3.8 PWM setting ===
1037 1037  
1038 1038  
1039 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1196 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1040 1040  
1198 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1199 +
1200 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1201 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1202 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1203 +0(default)
1204 +
1205 +OK
1206 +)))
1207 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1208 +OK
1209 +
1210 +)))
1211 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1212 +
1213 +(% style="color:blue" %)**Downlink Command: 0x0C**
1214 +
1215 +Format: Command Code (0x0C) followed by 1 bytes.
1216 +
1217 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219 +
1220 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1221 +
1222 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1223 +
1224 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1226 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 +0,0,0(default)
1228 +
1229 +OK
1230 +)))
1231 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1232 +OK
1233 +
1234 +)))
1235 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1236 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1237 +
1238 +
1239 +)))|(% style="width:137px" %)(((
1240 +OK
1241 +)))
1242 +
1243 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1244 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1245 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 +AT+PWMOUT=a,b,c
1247 +
1248 +
1249 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1250 +Set PWM output time, output frequency and output duty cycle.
1251 +
1252 +(((
1253 +
1254 +)))
1255 +
1256 +(((
1257 +
1258 +)))
1259 +)))|(% style="width:242px" %)(((
1260 +a: Output time (unit: seconds)
1261 +
1262 +The value ranges from 0 to 65535.
1263 +
1264 +When a=65535, PWM will always output.
1265 +)))
1266 +|(% style="width:242px" %)(((
1267 +b: Output frequency (unit: HZ)
1268 +)))
1269 +|(% style="width:242px" %)(((
1270 +c: Output duty cycle (unit: %)
1271 +
1272 +The value ranges from 0 to 100.
1273 +)))
1274 +
1275 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1276 +
1277 +Format: Command Code (0x0B01) followed by 6 bytes.
1278 +
1279 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1280 +
1281 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1282 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1283 +
1284 += 4. Battery & Power Cons =
1285 +
1286 +
1287 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1288 +
1041 1041  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1042 1042  
1043 1043  
... ... @@ -1045,31 +1045,47 @@
1045 1045  
1046 1046  
1047 1047  (% class="wikigeneratedid" %)
1048 -User can change firmware SN50v3-LB to:
1296 +**User can change firmware SN50v3-LB/LS to:**
1049 1049  
1050 1050  * Change Frequency band/ region.
1051 1051  * Update with new features.
1052 1052  * Fix bugs.
1053 1053  
1054 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1302 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1055 1055  
1304 +**Methods to Update Firmware:**
1056 1056  
1057 -Methods to Update Firmware:
1306 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1307 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1058 1058  
1059 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1060 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1061 -
1062 1062  = 6. FAQ =
1063 1063  
1064 -== 6.1 Where can i find source code of SN50v3-LB? ==
1311 +== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1065 1065  
1313 +
1066 1066  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1067 1067  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1068 1068  
1317 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1318 +
1319 +
1320 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1321 +
1322 +
1323 +== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1324 +
1325 +
1326 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1327 +
1328 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1329 +
1330 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1331 +
1332 +
1069 1069  = 7. Order Info =
1070 1070  
1071 1071  
1072 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1336 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1073 1073  
1074 1074  (% style="color:red" %)**XX**(%%): The default frequency band
1075 1075  
... ... @@ -1091,9 +1091,10 @@
1091 1091  
1092 1092  = 8. ​Packing Info =
1093 1093  
1358 +
1094 1094  (% style="color:#037691" %)**Package Includes**:
1095 1095  
1096 -* SN50v3-LB LoRaWAN Generic Node
1361 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1097 1097  
1098 1098  (% style="color:#037691" %)**Dimension and weight**:
1099 1099  
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0