Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -41,6 +41,7 @@ 41 41 * Downlink to change configure 42 42 * 8500mAh Battery for long term use 43 43 44 + 44 44 == 1.3 Specification == 45 45 46 46 ... ... @@ -78,6 +78,7 @@ 78 78 * Sleep Mode: 5uA @ 3.3v 79 79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 80 80 82 + 81 81 == 1.4 Sleep mode and working mode == 82 82 83 83 ... ... @@ -105,6 +105,7 @@ 105 105 ))) 106 106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 107 107 110 + 108 108 == 1.6 BLE connection == 109 109 110 110 ... ... @@ -136,7 +136,7 @@ 136 136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 137 137 138 138 139 -== Hole Option == 142 +== 1.9 Hole Option == 140 140 141 141 142 142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -151,7 +151,7 @@ 151 151 == 2.1 How it works == 152 152 153 153 154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 155 155 156 156 157 157 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -159,7 +159,7 @@ 159 159 160 160 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 161 161 162 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.165 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 163 164 164 165 165 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -208,7 +208,7 @@ 208 208 === 2.3.1 Device Status, FPORT~=5 === 209 209 210 210 211 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 214 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 212 212 213 213 The Payload format is as below. 214 214 ... ... @@ -221,7 +221,7 @@ 221 221 Example parse in TTNv3 222 222 223 223 224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 225 225 226 226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 227 227 ... ... @@ -277,19 +277,22 @@ 277 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 278 278 279 279 280 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 283 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 281 281 282 282 For example: 283 283 284 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 287 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 285 285 286 286 287 287 (% style="color:red" %) **Important Notice:** 288 288 289 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 290 -1. All modes share the same Payload Explanation from HERE. 291 -1. By default, the device will send an uplink message every 20 minutes. 292 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 292 292 294 +2. All modes share the same Payload Explanation from HERE. 295 + 296 +3. By default, the device will send an uplink message every 20 minutes. 297 + 298 + 293 293 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 294 294 295 295 ... ... @@ -296,7 +296,7 @@ 296 296 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 297 297 298 298 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 299 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width: 40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**305 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 300 300 |**Value**|Bat|(% style="width:191px" %)((( 301 301 Temperature(DS18B20)(PC13) 302 302 )))|(% style="width:78px" %)((( ... ... @@ -312,7 +312,6 @@ 312 312 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 313 313 314 314 315 - 316 316 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 317 317 318 318 ... ... @@ -319,7 +319,7 @@ 319 319 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 320 320 321 321 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 322 -|(% style="background-color:#d9e2f3; color:#0070c0; width: 40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**327 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 323 323 |**Value**|BAT|(% style="width:196px" %)((( 324 324 Temperature(DS18B20)(PC13) 325 325 )))|(% style="width:87px" %)((( ... ... @@ -328,7 +328,8 @@ 328 328 Digital in(PB15) & Digital Interrupt(PA8) 329 329 )))|(% style="width:208px" %)((( 330 330 Distance measure by:1) LIDAR-Lite V3HP 331 -Or 2) Ultrasonic Sensor 336 +Or 337 +2) Ultrasonic Sensor 332 332 )))|(% style="width:117px" %)Reserved 333 333 334 334 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -341,7 +341,7 @@ 341 341 342 342 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 343 343 344 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 350 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 345 345 346 346 [[image:image-20230512173903-6.png||height="596" width="715"]] 347 347 ... ... @@ -367,7 +367,7 @@ 367 367 368 368 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 369 369 370 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 376 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 371 371 372 372 [[image:image-20230512180609-7.png||height="555" width="802"]] 373 373 ... ... @@ -374,7 +374,7 @@ 374 374 375 375 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 376 376 377 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 383 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 378 378 379 379 [[image:image-20230513105207-4.png||height="469" width="802"]] 380 380 ... ... @@ -387,7 +387,7 @@ 387 387 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 388 388 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 389 389 **Size(bytes)** 390 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 40px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1396 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 391 391 |**Value**|(% style="width:68px" %)((( 392 392 ADC1(PA4) 393 393 )))|(% style="width:75px" %)((( ... ... @@ -423,10 +423,10 @@ 423 423 424 424 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 425 425 432 + 426 426 [[image:image-20230513134006-1.png||height="559" width="736"]] 427 427 428 428 429 - 430 430 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 431 431 432 432 ... ... @@ -434,15 +434,18 @@ 434 434 435 435 Each HX711 need to be calibrated before used. User need to do below two steps: 436 436 437 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 438 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 443 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 444 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 439 439 1. ((( 440 440 Weight has 4 bytes, the unit is g. 447 + 448 + 449 + 441 441 ))) 442 442 443 443 For example: 444 444 445 -**AT+GETSENSORVALUE =0** 454 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 446 446 447 447 Response: Weight is 401 g 448 448 ... ... @@ -453,13 +453,11 @@ 453 453 **Size(bytes)** 454 454 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 455 455 |**Value**|BAT|(% style="width:193px" %)((( 456 -Temperature(DS18B20) 457 -(PC13) 465 +Temperature(DS18B20)(PC13) 458 458 )))|(% style="width:85px" %)((( 459 459 ADC(PA4) 460 460 )))|(% style="width:186px" %)((( 461 -Digital in(PB15) & 462 -Digital Interrupt(PA8) 469 +Digital in(PB15) & Digital Interrupt(PA8) 463 463 )))|(% style="width:100px" %)Weight 464 464 465 465 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] ... ... @@ -475,10 +475,11 @@ 475 475 476 476 [[image:image-20230512181814-9.png||height="543" width="697"]] 477 477 485 + 478 478 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 479 479 480 480 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 481 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**489 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 482 482 |**Value**|BAT|(% style="width:256px" %)((( 483 483 Temperature(DS18B20)(PC13) 484 484 )))|(% style="width:108px" %)((( ... ... @@ -492,7 +492,6 @@ 492 492 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 493 493 494 494 495 - 496 496 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 497 497 498 498 ... ... @@ -518,7 +518,7 @@ 518 518 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 519 519 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 520 520 **Size(bytes)** 521 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 1 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2528 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 522 522 |**Value**|BAT|(% style="width:207px" %)((( 523 523 Temperature(DS18B20) 524 524 (PC13) ... ... @@ -541,19 +541,19 @@ 541 541 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 542 542 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 543 543 **Size(bytes)** 544 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4551 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 545 545 |**Value**|BAT|((( 546 -Temperature 1(DS18B20)547 -(PC13) 553 +Temperature 554 +(DS18B20)(PC13) 548 548 )))|((( 549 -Temperature2 (DS18B20)550 -(PB9) 556 +Temperature2 557 +(DS18B20)(PB9) 551 551 )))|((( 552 552 Digital Interrupt 553 553 (PB15) 554 554 )))|(% style="width:193px" %)((( 555 -Temperature3 (DS18B20)556 -(PB8) 562 +Temperature3 563 +(DS18B20)(PB8) 557 557 )))|(% style="width:78px" %)((( 558 558 Count1(PA8) 559 559 )))|(% style="width:78px" %)((( ... ... @@ -587,13 +587,13 @@ 587 587 588 588 The payload decoder function for TTN V3 are here: 589 589 590 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 597 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 591 591 592 592 593 593 ==== 2.3.3.1 Battery Info ==== 594 594 595 595 596 -Check the battery voltage for SN50v3. 603 +Check the battery voltage for SN50v3-LB. 597 597 598 598 Ex1: 0x0B45 = 2885mV 599 599 ... ... @@ -647,6 +647,7 @@ 647 647 648 648 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 649 649 657 + 650 650 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 651 651 652 652 ... ... @@ -653,7 +653,7 @@ 653 653 ==== 2.3.3.5 Digital Interrupt ==== 654 654 655 655 656 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 664 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 657 657 658 658 (% style="color:blue" %)** Interrupt connection method:** 659 659 ... ... @@ -666,18 +666,18 @@ 666 666 667 667 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 668 668 669 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.677 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 670 670 671 671 672 672 (% style="color:blue" %)**Below is the installation example:** 673 673 674 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50 _v3 as follows:682 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 675 675 676 676 * ((( 677 -One pin to SN50 _v3's PA8 pin685 +One pin to SN50v3-LB's PA8 pin 678 678 ))) 679 679 * ((( 680 -The other pin to SN50 _v3's VDD pin688 +The other pin to SN50v3-LB's VDD pin 681 681 ))) 682 682 683 683 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -694,7 +694,7 @@ 694 694 695 695 The command is: 696 696 697 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 705 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 698 698 699 699 Below shows some screen captures in TTN V3: 700 700 ... ... @@ -701,7 +701,7 @@ 701 701 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 702 702 703 703 704 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 712 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 705 705 706 706 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 707 707 ... ... @@ -713,13 +713,14 @@ 713 713 714 714 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 715 715 716 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.724 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 717 717 726 + 718 718 Below is the connection to SHT20/ SHT31. The connection is as below: 719 719 720 - 721 721 [[image:image-20230513103633-3.png||height="448" width="716"]] 722 722 731 + 723 723 The device will be able to get the I2C sensor data now and upload to IoT Server. 724 724 725 725 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -746,7 +746,7 @@ 746 746 747 747 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 748 748 749 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.758 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 750 750 751 751 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 752 752 ... ... @@ -754,8 +754,9 @@ 754 754 755 755 [[image:image-20230512173903-6.png||height="596" width="715"]] 756 756 757 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 758 758 767 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 768 + 759 759 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 760 760 761 761 **Example:** ... ... @@ -763,16 +763,17 @@ 763 763 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 764 764 765 765 766 - 767 767 ==== 2.3.3.9 Battery Output - BAT pin ==== 768 768 769 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 770 770 779 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 771 771 781 + 772 772 ==== 2.3.3.10 +5V Output ==== 773 773 774 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 775 775 785 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 786 + 776 776 The 5V output time can be controlled by AT Command. 777 777 778 778 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -779,21 +779,23 @@ 779 779 780 780 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 781 781 782 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 793 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 783 783 784 784 785 - 786 786 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 787 787 798 + 788 788 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 789 789 790 790 [[image:image-20230512172447-4.png||height="416" width="712"]] 791 791 803 + 792 792 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 793 793 794 794 795 795 ==== 2.3.3.12 Working MOD ==== 796 796 809 + 797 797 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 798 798 799 799 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -810,6 +810,7 @@ 810 810 * 7: MOD8 811 811 * 8: MOD9 812 812 826 + 813 813 == 2.4 Payload Decoder file == 814 814 815 815 ... ... @@ -820,7 +820,6 @@ 820 820 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 821 821 822 822 823 - 824 824 == 2.5 Frequency Plans == 825 825 826 826 ... ... @@ -840,6 +840,7 @@ 840 840 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 841 841 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 842 842 856 + 843 843 == 3.2 General Commands == 844 844 845 845 ... ... @@ -856,11 +856,12 @@ 856 856 == 3.3 Commands special design for SN50v3-LB == 857 857 858 858 859 -These commands only valid for S3 1x-LB, as below:873 +These commands only valid for SN50v3-LB, as below: 860 860 861 861 862 862 === 3.3.1 Set Transmit Interval Time === 863 863 878 + 864 864 Feature: Change LoRaWAN End Node Transmit Interval. 865 865 866 866 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -886,17 +886,20 @@ 886 886 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 887 887 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 888 888 904 + 889 889 === 3.3.2 Get Device Status === 890 890 907 + 891 891 Send a LoRaWAN downlink to ask the device to send its status. 892 892 893 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01910 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 894 894 895 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 912 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 896 896 897 897 898 898 === 3.3.3 Set Interrupt Mode === 899 899 917 + 900 900 Feature, Set Interrupt mode for GPIO_EXIT. 901 901 902 902 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -917,7 +917,6 @@ 917 917 )))|(% style="width:157px" %)OK 918 918 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 919 919 Set Transmit Interval 920 - 921 921 trigger by rising edge. 922 922 )))|(% style="width:157px" %)OK 923 923 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -933,8 +933,10 @@ 933 933 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 934 934 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 935 935 953 + 936 936 === 3.3.4 Set Power Output Duration === 937 937 956 + 938 938 Control the output duration 5V . Before each sampling, device will 939 939 940 940 ~1. first enable the power output to external sensor, ... ... @@ -964,8 +964,10 @@ 964 964 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 965 965 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 966 966 986 + 967 967 === 3.3.5 Set Weighing parameters === 968 968 989 + 969 969 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 970 970 971 971 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -988,8 +988,10 @@ 988 988 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 989 989 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 990 990 1012 + 991 991 === 3.3.6 Set Digital pulse count value === 992 992 1015 + 993 993 Feature: Set the pulse count value. 994 994 995 995 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1010,8 +1010,10 @@ 1010 1010 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1011 1011 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1012 1012 1036 + 1013 1013 === 3.3.7 Set Workmode === 1014 1014 1039 + 1015 1015 Feature: Switch working mode. 1016 1016 1017 1017 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1033,6 +1033,7 @@ 1033 1033 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1034 1034 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1035 1035 1061 + 1036 1036 = 4. Battery & Power Consumption = 1037 1037 1038 1038 ... ... @@ -1045,27 +1045,29 @@ 1045 1045 1046 1046 1047 1047 (% class="wikigeneratedid" %) 1048 -User can change firmware SN50v3-LB to: 1074 +**User can change firmware SN50v3-LB to:** 1049 1049 1050 1050 * Change Frequency band/ region. 1051 1051 * Update with new features. 1052 1052 * Fix bugs. 1053 1053 1054 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1080 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1055 1055 1082 +**Methods to Update Firmware:** 1056 1056 1057 -Methods to Update Firmware: 1058 - 1059 1059 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1060 1060 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1061 1061 1087 + 1062 1062 = 6. FAQ = 1063 1063 1064 1064 == 6.1 Where can i find source code of SN50v3-LB? == 1065 1065 1092 + 1066 1066 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1067 1067 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1068 1068 1096 + 1069 1069 = 7. Order Info = 1070 1070 1071 1071 ... ... @@ -1089,8 +1089,10 @@ 1089 1089 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1090 1090 * (% style="color:red" %)**NH**(%%): No Hole 1091 1091 1120 + 1092 1092 = 8. Packing Info = 1093 1093 1123 + 1094 1094 (% style="color:#037691" %)**Package Includes**: 1095 1095 1096 1096 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1102,6 +1102,7 @@ 1102 1102 * Package Size / pcs : cm 1103 1103 * Weight / pcs : g 1104 1104 1135 + 1105 1105 = 9. Support = 1106 1106 1107 1107