Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 21 added, 0 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
- image-20240103095714-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor Node User Manual 1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual - Content
-
... ... @@ -1,10 +1,15 @@ 1 + 2 + 1 1 (% style="text-align:center" %) 2 -[[image:image-202 30515135611-1.jpeg||height="589" width="589"]]4 +[[image:image-20240103095714-2.png]] 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 9 + 10 + 11 +**Table of Contents:** 12 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -14,20 +14,19 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 18 18 19 19 20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 -(% style="color:blue" %)** SN50V3-LB **(%%)has a powerful48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 25 25 26 -(% style="color:blue" %)** SN50V3-LB**(%%) has abuilt-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining. 27 27 28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -39,15 +39,15 @@ 39 39 * Support wireless OTA update firmware 40 40 * Uplink on periodically 41 41 * Downlink to change configure 42 -* 8500mAh Battery for long term use 46 +* 8500mAh Li/SOCl2 Battery (SN50v3-LB) 47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 43 43 44 - 45 45 == 1.3 Specification == 46 46 47 47 48 48 (% style="color:#037691" %)**Common DC Characteristics:** 49 49 50 -* Supply Voltage: built8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v54 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v 51 51 * Operating Temperature: -40 ~~ 85°C 52 52 53 53 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -79,7 +79,6 @@ 79 79 * Sleep Mode: 5uA @ 3.3v 80 80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 81 81 82 - 83 83 == 1.4 Sleep mode and working mode == 84 84 85 85 ... ... @@ -91,11 +91,10 @@ 91 91 == 1.5 Button & LEDs == 92 92 93 93 94 -[[image: Main.User.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]97 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]] 95 95 96 - 97 97 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 98 -|=(% style="width: 167px;background-color:# D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**100 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action** 99 99 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 100 100 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 101 101 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -107,11 +107,10 @@ 107 107 ))) 108 108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 109 109 110 - 111 111 == 1.6 BLE connection == 112 112 113 113 114 -SN50v3-LB supports BLE remote configure. 115 +SN50v3-LB/LS supports BLE remote configure. 115 115 116 116 117 117 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -126,35 +126,40 @@ 126 126 == 1.7 Pin Definitions == 127 127 128 128 129 -[[image:image-20230 513102034-2.png]]130 +[[image:image-20230610163213-1.png||height="404" width="699"]] 130 130 131 131 132 132 == 1.8 Mechanical == 133 133 135 +=== 1.8.1 for LB version === 134 134 135 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 136 136 137 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 138 138 140 + 139 139 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 140 140 143 +=== 1.8.2 for LS version === 141 141 142 - == HoleOption ==145 +[[image:image-20231231203439-3.png||height="385" width="886"]] 143 143 144 144 145 - SN50v3-LBhasdifferent holesize optionsfor different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:148 +== 1.9 Hole Option == 146 146 150 + 151 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 152 + 147 147 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 148 148 149 149 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 150 150 151 151 152 -= 2. Configure SN50v3-LB to connect to LoRaWAN network = 158 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network = 153 153 154 154 == 2.1 How it works == 155 155 156 156 157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.163 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 158 158 159 159 160 160 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -162,12 +162,12 @@ 162 162 163 163 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 164 164 165 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.171 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 166 166 167 167 168 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 174 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS. 169 169 170 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 176 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below: 171 171 172 172 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 173 173 ... ... @@ -196,10 +196,10 @@ 196 196 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 197 197 198 198 199 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 205 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 200 200 201 201 202 -Press the button for 5 seconds to activate the SN50v3-LB. 208 +Press the button for 5 seconds to activate the SN50v3-LB/LS. 203 203 204 204 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 205 205 ... ... @@ -211,52 +211,52 @@ 211 211 === 2.3.1 Device Status, FPORT~=5 === 212 212 213 213 214 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 220 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server. 215 215 216 216 The Payload format is as below. 217 217 218 218 219 219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 220 -|(% colspan="6" style="background-color:# d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**226 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)** 221 221 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 222 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT228 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 223 223 224 224 Example parse in TTNv3 225 225 226 226 227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 233 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C 228 228 229 229 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 230 230 231 231 (% style="color:#037691" %)**Frequency Band**: 232 232 233 - *0x01: EU868239 +0x01: EU868 234 234 235 - *0x02: US915241 +0x02: US915 236 236 237 - *0x03: IN865243 +0x03: IN865 238 238 239 - *0x04: AU915245 +0x04: AU915 240 240 241 - *0x05: KZ865247 +0x05: KZ865 242 242 243 - *0x06: RU864249 +0x06: RU864 244 244 245 - *0x07: AS923251 +0x07: AS923 246 246 247 - *0x08: AS923-1253 +0x08: AS923-1 248 248 249 - *0x09: AS923-2255 +0x09: AS923-2 250 250 251 - *0x0a: AS923-3257 +0x0a: AS923-3 252 252 253 - *0x0b: CN470259 +0x0b: CN470 254 254 255 - *0x0c: EU433261 +0x0c: EU433 256 256 257 - *0x0d: KR920263 +0x0d: KR920 258 258 259 - *0x0e: MA869265 +0x0e: MA869 260 260 261 261 262 262 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -280,28 +280,30 @@ 280 280 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 281 281 282 282 283 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 289 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes. 284 284 285 285 For example: 286 286 287 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 293 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 288 288 289 289 290 290 (% style="color:red" %) **Important Notice:** 291 291 292 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 293 -1. All modes share the same Payload Explanation from HERE. 294 -1. By default, the device will send an uplink message every 20 minutes. 298 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload. 295 295 300 +2. All modes share the same Payload Explanation from HERE. 296 296 302 +3. By default, the device will send an uplink message every 20 minutes. 303 + 304 + 297 297 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 298 298 299 299 300 300 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 301 301 302 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)303 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**304 -| **Value**|Bat|(% style="width:191px" %)(((310 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 311 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2** 312 +|Value|Bat|(% style="width:191px" %)((( 305 305 Temperature(DS18B20)(PC13) 306 306 )))|(% style="width:78px" %)((( 307 307 ADC(PA4) ... ... @@ -316,15 +316,14 @@ 316 316 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 317 317 318 318 319 - 320 320 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 321 321 322 322 323 323 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 324 324 325 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)326 -|(% style="background-color:# d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**327 -| **Value**|BAT|(% style="width:196px" %)(((332 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 333 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2** 334 +|Value|BAT|(% style="width:196px" %)((( 328 328 Temperature(DS18B20)(PC13) 329 329 )))|(% style="width:87px" %)((( 330 330 ADC(PA4) ... ... @@ -331,7 +331,7 @@ 331 331 )))|(% style="width:189px" %)((( 332 332 Digital in(PB15) & Digital Interrupt(PA8) 333 333 )))|(% style="width:208px" %)((( 334 -Distance measure by:1) LIDAR-Lite V3HP 341 +Distance measure by: 1) LIDAR-Lite V3HP 335 335 Or 2) Ultrasonic Sensor 336 336 )))|(% style="width:117px" %)Reserved 337 337 ... ... @@ -345,7 +345,7 @@ 345 345 346 346 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 347 347 348 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 355 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 349 349 350 350 [[image:image-20230512173903-6.png||height="596" width="715"]] 351 351 ... ... @@ -352,9 +352,9 @@ 352 352 353 353 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 354 354 355 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)356 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**357 -| **Value**|BAT|(% style="width:183px" %)(((362 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 363 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2** 364 +|Value|BAT|(% style="width:183px" %)((( 358 358 Temperature(DS18B20)(PC13) 359 359 )))|(% style="width:173px" %)((( 360 360 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -362,8 +362,7 @@ 362 362 ADC(PA4) 363 363 )))|(% style="width:323px" %)((( 364 364 Distance measure by:1)TF-Mini plus LiDAR 365 -Or 366 -2) TF-Luna LiDAR 372 +Or 2) TF-Luna LiDAR 367 367 )))|(% style="width:188px" %)Distance signal strength 368 368 369 369 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] ... ... @@ -371,7 +371,7 @@ 371 371 372 372 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 373 373 374 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 380 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 375 375 376 376 [[image:image-20230512180609-7.png||height="555" width="802"]] 377 377 ... ... @@ -378,9 +378,9 @@ 378 378 379 379 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 380 380 381 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 387 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 382 382 383 -[[image:image-20230 513105207-4.png||height="469" width="802"]]389 +[[image:image-20230610170047-1.png||height="452" width="799"]] 384 384 385 385 386 386 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== ... ... @@ -388,11 +388,11 @@ 388 388 389 389 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 390 390 391 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)392 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((397 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 398 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 393 393 **Size(bytes)** 394 -)))|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1395 -| **Value**|(% style="width:68px" %)(((400 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1 401 +|Value|(% style="width:68px" %)((( 396 396 ADC1(PA4) 397 397 )))|(% style="width:75px" %)((( 398 398 ADC2(PA5) ... ... @@ -414,9 +414,9 @@ 414 414 415 415 This mode has total 11 bytes. As shown below: 416 416 417 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)418 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**419 -| **Value**|BAT|(% style="width:186px" %)(((423 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 424 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2** 425 +|Value|BAT|(% style="width:186px" %)((( 420 420 Temperature1(DS18B20)(PC13) 421 421 )))|(% style="width:82px" %)((( 422 422 ADC(PA4) ... ... @@ -427,10 +427,10 @@ 427 427 428 428 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 429 429 436 + 430 430 [[image:image-20230513134006-1.png||height="559" width="736"]] 431 431 432 432 433 - 434 434 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 435 435 436 436 ... ... @@ -438,38 +438,38 @@ 438 438 439 439 Each HX711 need to be calibrated before used. User need to do below two steps: 440 440 441 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 442 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 447 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 448 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 443 443 1. ((( 444 444 Weight has 4 bytes, the unit is g. 451 + 452 + 453 + 445 445 ))) 446 446 447 447 For example: 448 448 449 -**AT+GETSENSORVALUE =0** 458 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 450 450 451 451 Response: Weight is 401 g 452 452 453 453 Check the response of this command and adjust the value to match the real value for thing. 454 454 455 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)456 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((464 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 465 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 457 457 **Size(bytes)** 458 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 459 -|**Value**|BAT|(% style="width:193px" %)((( 460 -Temperature(DS18B20) 461 -(PC13) 467 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4** 468 +|Value|BAT|(% style="width:193px" %)((( 469 +Temperature(DS18B20)(PC13) 462 462 )))|(% style="width:85px" %)((( 463 463 ADC(PA4) 464 464 )))|(% style="width:186px" %)((( 465 -Digital in(PB15) & 466 -Digital Interrupt(PA8) 473 +Digital in(PB15) & Digital Interrupt(PA8) 467 467 )))|(% style="width:100px" %)Weight 468 468 469 469 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 470 470 471 471 472 - 473 473 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 474 474 475 475 ... ... @@ -479,11 +479,12 @@ 479 479 480 480 [[image:image-20230512181814-9.png||height="543" width="697"]] 481 481 488 + 482 482 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 483 483 484 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)485 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**4**486 -| **Value**|BAT|(% style="width:256px" %)(((491 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 492 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4** 493 +|Value|BAT|(% style="width:256px" %)((( 487 487 Temperature(DS18B20)(PC13) 488 488 )))|(% style="width:108px" %)((( 489 489 ADC(PA4) ... ... @@ -496,15 +496,14 @@ 496 496 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 497 497 498 498 499 - 500 500 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 501 501 502 502 503 503 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 504 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((510 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 505 505 **Size(bytes)** 506 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2507 -| **Value**|BAT|(% style="width:188px" %)(((512 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2 513 +|Value|BAT|(% style="width:188px" %)((( 508 508 Temperature(DS18B20) 509 509 (PC13) 510 510 )))|(% style="width:83px" %)((( ... ... @@ -520,10 +520,10 @@ 520 520 521 521 522 522 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 523 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((529 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 524 524 **Size(bytes)** 525 -)))|=(% style="width: 30px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2526 -| **Value**|BAT|(% style="width:207px" %)(((531 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2 532 +|Value|BAT|(% style="width:207px" %)((( 527 527 Temperature(DS18B20) 528 528 (PC13) 529 529 )))|(% style="width:94px" %)((( ... ... @@ -543,21 +543,21 @@ 543 543 544 544 545 545 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 546 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((552 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 547 547 **Size(bytes)** 548 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4549 -| **Value**|BAT|(((550 -Temperature 1(DS18B20)551 -(PC13) 554 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4 555 +|Value|BAT|((( 556 +Temperature 557 +(DS18B20)(PC13) 552 552 )))|((( 553 -Temperature2 (DS18B20)554 -(PB9) 559 +Temperature2 560 +(DS18B20)(PB9) 555 555 )))|((( 556 556 Digital Interrupt 557 557 (PB15) 558 558 )))|(% style="width:193px" %)((( 559 -Temperature3 (DS18B20)560 -(PB8) 565 +Temperature3 566 +(DS18B20)(PB8) 561 561 )))|(% style="width:78px" %)((( 562 562 Count1(PA8) 563 563 )))|(% style="width:78px" %)((( ... ... @@ -582,6 +582,108 @@ 582 582 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 583 583 584 584 591 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ==== 592 + 593 + 594 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 595 + 596 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 597 + 598 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 599 + 600 + 601 +===== 2.3.2.10.a Uplink, PWM input capture ===== 602 + 603 + 604 +[[image:image-20230817172209-2.png||height="439" width="683"]] 605 + 606 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 607 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2** 608 +|Value|Bat|(% style="width:191px" %)((( 609 +Temperature(DS18B20)(PC13) 610 +)))|(% style="width:78px" %)((( 611 +ADC(PA4) 612 +)))|(% style="width:135px" %)((( 613 +PWM_Setting 614 +&Digital Interrupt(PA8) 615 +)))|(% style="width:70px" %)((( 616 +Pulse period 617 +)))|(% style="width:89px" %)((( 618 +Duration of high level 619 +))) 620 + 621 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 622 + 623 + 624 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 625 + 626 +**Frequency:** 627 + 628 +(% class="MsoNormal" %) 629 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 630 + 631 +(% class="MsoNormal" %) 632 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 633 + 634 + 635 +(% class="MsoNormal" %) 636 +**Duty cycle:** 637 + 638 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 639 + 640 +[[image:image-20230818092200-1.png||height="344" width="627"]] 641 + 642 + 643 +===== 2.3.2.10.b Uplink, PWM output ===== 644 + 645 + 646 +[[image:image-20230817172209-2.png||height="439" width="683"]] 647 + 648 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 649 + 650 +a is the time delay of the output, the unit is ms. 651 + 652 +b is the output frequency, the unit is HZ. 653 + 654 +c is the duty cycle of the output, the unit is %. 655 + 656 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 657 + 658 +aa is the time delay of the output, the unit is ms. 659 + 660 +bb is the output frequency, the unit is HZ. 661 + 662 +cc is the duty cycle of the output, the unit is %. 663 + 664 + 665 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 666 + 667 +The oscilloscope displays as follows: 668 + 669 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 670 + 671 + 672 +===== 2.3.2.10.c Downlink, PWM output ===== 673 + 674 + 675 +[[image:image-20230817173800-3.png||height="412" width="685"]] 676 + 677 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 678 + 679 + xx xx xx is the output frequency, the unit is HZ. 680 + 681 + yy is the duty cycle of the output, the unit is %. 682 + 683 + zz zz is the time delay of the output, the unit is ms. 684 + 685 + 686 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 687 + 688 +The oscilloscope displays as follows: 689 + 690 +[[image:image-20230817173858-5.png||height="634" width="843"]] 691 + 692 + 585 585 === 2.3.3 Decode payload === 586 586 587 587 ... ... @@ -591,13 +591,13 @@ 591 591 592 592 The payload decoder function for TTN V3 are here: 593 593 594 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 702 +SN50v3-LB/LS TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 595 595 596 596 597 597 ==== 2.3.3.1 Battery Info ==== 598 598 599 599 600 -Check the battery voltage for SN50v3. 708 +Check the battery voltage for SN50v3-LB/LS. 601 601 602 602 Ex1: 0x0B45 = 2885mV 603 603 ... ... @@ -645,19 +645,26 @@ 645 645 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 646 646 647 647 648 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 756 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 649 649 650 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 758 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 651 651 652 652 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 653 653 762 + 654 654 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 655 655 656 656 766 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 767 + 768 +[[image:image-20230811113449-1.png||height="370" width="608"]] 769 + 770 + 771 + 657 657 ==== 2.3.3.5 Digital Interrupt ==== 658 658 659 659 660 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 775 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server. 661 661 662 662 (% style="color:blue" %)** Interrupt connection method:** 663 663 ... ... @@ -670,18 +670,18 @@ 670 670 671 671 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 672 672 673 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.788 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window. 674 674 675 675 676 676 (% style="color:blue" %)**Below is the installation example:** 677 677 678 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50 _v3 as follows:793 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows: 679 679 680 680 * ((( 681 -One pin to SN50 _v3's PA8 pin796 +One pin to SN50v3-LB/LS's PA8 pin 682 682 ))) 683 683 * ((( 684 -The other pin to SN50 _v3's VDD pin799 +The other pin to SN50v3-LB/LS's VDD pin 685 685 ))) 686 686 687 687 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -698,29 +698,32 @@ 698 698 699 699 The command is: 700 700 701 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 816 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 702 702 703 703 Below shows some screen captures in TTN V3: 704 704 705 705 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 706 706 707 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 708 708 823 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 824 + 709 709 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 710 710 711 711 712 712 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 713 713 830 + 714 714 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 715 715 716 716 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 717 717 718 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.835 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.** 719 719 837 + 720 720 Below is the connection to SHT20/ SHT31. The connection is as below: 721 721 840 +[[image:image-20230610170152-2.png||height="501" width="846"]] 722 722 723 -[[image:image-20230513103633-3.png||height="448" width="716"]] 724 724 725 725 The device will be able to get the I2C sensor data now and upload to IoT Server. 726 726 ... ... @@ -739,14 +739,16 @@ 739 739 740 740 ==== 2.3.3.7 Distance Reading ==== 741 741 860 + 742 742 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 743 743 744 744 745 745 ==== 2.3.3.8 Ultrasonic Sensor ==== 746 746 866 + 747 747 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 748 748 749 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.869 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 750 750 751 751 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 752 752 ... ... @@ -754,8 +754,9 @@ 754 754 755 755 [[image:image-20230512173903-6.png||height="596" width="715"]] 756 756 757 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 758 758 878 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 879 + 759 759 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 760 760 761 761 **Example:** ... ... @@ -763,16 +763,17 @@ 763 763 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 764 764 765 765 766 - 767 767 ==== 2.3.3.9 Battery Output - BAT pin ==== 768 768 769 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 770 770 890 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon. 771 771 892 + 772 772 ==== 2.3.3.10 +5V Output ==== 773 773 774 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 775 775 896 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 897 + 776 776 The 5V output time can be controlled by AT Command. 777 777 778 778 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -779,21 +779,51 @@ 779 779 780 780 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 781 781 782 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 904 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 783 783 784 784 785 - 786 786 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 787 787 909 + 788 788 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 789 789 790 790 [[image:image-20230512172447-4.png||height="416" width="712"]] 791 791 914 + 792 792 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 793 793 794 794 795 -==== 2.3.3.12 W orkingMOD ====918 +==== 2.3.3.12 PWM MOD ==== 796 796 920 + 921 +* ((( 922 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 923 +))) 924 +* ((( 925 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 926 +))) 927 + 928 + [[image:image-20230817183249-3.png||height="320" width="417"]] 929 + 930 +* ((( 931 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 932 +))) 933 +* ((( 934 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 935 +))) 936 +* ((( 937 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 938 + 939 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 940 + 941 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 942 + 943 +b) If the output duration is more than 30 seconds, better to use external power source. 944 +))) 945 + 946 +==== 2.3.3.13 Working MOD ==== 947 + 948 + 797 797 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 798 798 799 799 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -809,6 +809,7 @@ 809 809 * 6: MOD7 810 810 * 7: MOD8 811 811 * 8: MOD9 964 +* 9: MOD10 812 812 813 813 == 2.4 Payload Decoder file == 814 814 ... ... @@ -820,21 +820,20 @@ 820 820 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 821 821 822 822 823 - 824 824 == 2.5 Frequency Plans == 825 825 826 826 827 -The SN50v3-LB uses OTAA mode and below frequency plans by default. Ifuserwanttouseit withdifferent frequencyplan, pleaserefer theATcommandsets.979 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country. 828 828 829 829 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 830 830 831 831 832 -= 3. Configure SN50v3-LB = 984 += 3. Configure SN50v3-LB/LS = 833 833 834 834 == 3.1 Configure Methods == 835 835 836 836 837 -SN50v3-LB supports below configure method: 989 +SN50v3-LB/LS supports below configure method: 838 838 839 839 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 840 840 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -853,20 +853,21 @@ 853 853 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 854 854 855 855 856 -== 3.3 Commands special design for SN50v3-LB == 1008 +== 3.3 Commands special design for SN50v3-LB/LS == 857 857 858 858 859 -These commands only valid for S3 1x-LB, as below:1011 +These commands only valid for SN50v3-LB/LS, as below: 860 860 861 861 862 862 === 3.3.1 Set Transmit Interval Time === 863 863 1016 + 864 864 Feature: Change LoRaWAN End Node Transmit Interval. 865 865 866 866 (% style="color:blue" %)**AT Command: AT+TDC** 867 867 868 868 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 869 -|=(% style="width: 156px;background-color:# D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**1022 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 870 870 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 871 871 30000 872 872 OK ... ... @@ -888,21 +888,23 @@ 888 888 889 889 === 3.3.2 Get Device Status === 890 890 1044 + 891 891 Send a LoRaWAN downlink to ask the device to send its status. 892 892 893 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 011047 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 894 894 895 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 1049 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 896 896 897 897 898 898 === 3.3.3 Set Interrupt Mode === 899 899 1054 + 900 900 Feature, Set Interrupt mode for GPIO_EXIT. 901 901 902 -(% style="color:blue" %)**AT Command: AT+INTMOD1 ,AT+INTMOD2,AT+INTMOD3**1057 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 903 903 904 904 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 905 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1060 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 906 906 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 907 907 0 908 908 OK ... ... @@ -917,7 +917,6 @@ 917 917 )))|(% style="width:157px" %)OK 918 918 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 919 919 Set Transmit Interval 920 - 921 921 trigger by rising edge. 922 922 )))|(% style="width:157px" %)OK 923 923 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -935,6 +935,7 @@ 935 935 936 936 === 3.3.4 Set Power Output Duration === 937 937 1092 + 938 938 Control the output duration 5V . Before each sampling, device will 939 939 940 940 ~1. first enable the power output to external sensor, ... ... @@ -946,7 +946,7 @@ 946 946 (% style="color:blue" %)**AT Command: AT+5VT** 947 947 948 948 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 949 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1104 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 950 950 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 951 951 500(default) 952 952 OK ... ... @@ -966,14 +966,15 @@ 966 966 967 967 === 3.3.5 Set Weighing parameters === 968 968 1124 + 969 969 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 970 970 971 971 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 972 972 973 973 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 974 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1130 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 975 975 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 976 -|(% style="width:154px" %)AT+WEIGAP= ?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)1132 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 977 977 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 978 978 979 979 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -990,6 +990,7 @@ 990 990 991 991 === 3.3.6 Set Digital pulse count value === 992 992 1149 + 993 993 Feature: Set the pulse count value. 994 994 995 995 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -997,7 +997,7 @@ 997 997 (% style="color:blue" %)**AT Command: AT+SETCNT** 998 998 999 999 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1000 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1157 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1001 1001 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1002 1002 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1003 1003 ... ... @@ -1012,12 +1012,13 @@ 1012 1012 1013 1013 === 3.3.7 Set Workmode === 1014 1014 1172 + 1015 1015 Feature: Switch working mode. 1016 1016 1017 1017 (% style="color:blue" %)**AT Command: AT+MOD** 1018 1018 1019 1019 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1020 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1178 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1021 1021 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1022 1022 OK 1023 1023 ))) ... ... @@ -1033,11 +1033,97 @@ 1033 1033 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1034 1034 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1035 1035 1036 -= 4.Battery &PowerConsumption =1194 +=== 3.3.8 PWM setting === 1037 1037 1038 1038 1039 - SN50v3-LB useER26500 + SPC1520 batterypack.Seebelowlink for detailinformationaboutthe batteryinfoand howtoreplace.1197 +Feature: Set the time acquisition unit for PWM input capture. 1040 1040 1199 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1200 + 1201 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1202 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response** 1203 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1204 +0(default) 1205 +OK 1206 +))) 1207 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1208 +OK 1209 + 1210 +))) 1211 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1212 + 1213 +(% style="color:blue" %)**Downlink Command: 0x0C** 1214 + 1215 +Format: Command Code (0x0C) followed by 1 bytes. 1216 + 1217 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1218 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1219 + 1220 +**Feature: Set PWM output time, output frequency and output duty cycle.** 1221 + 1222 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1223 + 1224 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1225 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response** 1226 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1227 +0,0,0(default) 1228 +OK 1229 +))) 1230 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1231 +OK 1232 + 1233 +))) 1234 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1235 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1236 + 1237 + 1238 +)))|(% style="width:137px" %)((( 1239 +OK 1240 +))) 1241 + 1242 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1243 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters** 1244 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1245 +AT+PWMOUT=a,b,c 1246 + 1247 + 1248 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1249 +Set PWM output time, output frequency and output duty cycle. 1250 + 1251 +((( 1252 + 1253 +))) 1254 + 1255 +((( 1256 + 1257 +))) 1258 +)))|(% style="width:242px" %)((( 1259 +a: Output time (unit: seconds) 1260 +The value ranges from 0 to 65535. 1261 +When a=65535, PWM will always output. 1262 +))) 1263 +|(% style="width:242px" %)((( 1264 +b: Output frequency (unit: HZ) 1265 +))) 1266 +|(% style="width:242px" %)((( 1267 +c: Output duty cycle (unit: %) 1268 +The value ranges from 0 to 100. 1269 +))) 1270 + 1271 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1272 + 1273 +Format: Command Code (0x0B01) followed by 6 bytes. 1274 + 1275 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1276 + 1277 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1278 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1279 + 1280 += 4. Battery & Power Cons = 1281 + 1282 + 1283 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1284 + 1041 1041 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1042 1042 1043 1043 ... ... @@ -1045,31 +1045,47 @@ 1045 1045 1046 1046 1047 1047 (% class="wikigeneratedid" %) 1048 -User can change firmware SN50v3-LB to: 1292 +**User can change firmware SN50v3-LB/LS to:** 1049 1049 1050 1050 * Change Frequency band/ region. 1051 1051 * Update with new features. 1052 1052 * Fix bugs. 1053 1053 1054 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1298 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]** 1055 1055 1300 +**Methods to Update Firmware:** 1056 1056 1057 -Methods to Update Firmware: 1302 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1303 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1058 1058 1059 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1060 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1061 - 1062 1062 = 6. FAQ = 1063 1063 1064 -== 6.1 Where can i find source code of SN50v3-LB? == 1307 +== 6.1 Where can i find source code of SN50v3-LB/LS? == 1065 1065 1309 + 1066 1066 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1067 1067 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1068 1068 1313 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? == 1314 + 1315 + 1316 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1317 + 1318 + 1319 +== 6.3 How to put several sensors to a SN50v3-LB/LS? == 1320 + 1321 + 1322 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1323 + 1324 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1325 + 1326 +[[image:image-20230810121434-1.png||height="242" width="656"]] 1327 + 1328 + 1069 1069 = 7. Order Info = 1070 1070 1071 1071 1072 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1332 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY** 1073 1073 1074 1074 (% style="color:red" %)**XX**(%%): The default frequency band 1075 1075 ... ... @@ -1091,9 +1091,10 @@ 1091 1091 1092 1092 = 8. Packing Info = 1093 1093 1354 + 1094 1094 (% style="color:#037691" %)**Package Includes**: 1095 1095 1096 -* SN50v3-LB LoRaWAN Generic Node 1357 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node 1097 1097 1098 1098 (% style="color:#037691" %)**Dimension and weight**: 1099 1099
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +230.1 KB - Content