<
From version < 43.46 >
edited by Xiaoling
on 2023/05/16 15:40
To version < 7.1 >
edited by Edwin Chen
on 2023/05/11 20:37
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,21 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 -
34 34  * LoRaWAN 1.0.3 Class A
35 35  * Ultra-low power consumption
36 36  * Open-Source hardware/software
... ... @@ -41,10 +41,8 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 45  == 1.3 Specification ==
46 46  
47 -
48 48  (% style="color:#037691" %)**Common DC Characteristics:**
49 49  
50 50  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,10 +79,8 @@
79 79  * Sleep Mode: 5uA @ 3.3v
80 80  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81 81  
82 -
83 83  == 1.4 Sleep mode and working mode ==
84 84  
85 -
86 86  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
87 87  
88 88  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -107,7 +107,6 @@
107 107  )))
108 108  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109 109  
110 -
111 111  == 1.6 BLE connection ==
112 112  
113 113  
... ... @@ -126,7 +126,6 @@
126 126  == 1.7 Pin Definitions ==
127 127  
128 128  
129 -[[image:image-20230513102034-2.png]]
130 130  
131 131  
132 132  == 1.8 Mechanical ==
... ... @@ -141,7 +141,6 @@
141 141  
142 142  == Hole Option ==
143 143  
144 -
145 145  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
146 146  
147 147  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -149,12 +149,12 @@
149 149  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
150 150  
151 151  
152 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
146 += 2. Configure S31x-LB to connect to LoRaWAN network =
153 153  
154 154  == 2.1 How it works ==
155 155  
156 156  
157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
151 +The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 158  
159 159  
160 160  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -165,11 +165,11 @@
165 165  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166 166  
167 167  
168 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
162 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
169 169  
170 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
164 +Each S31x-LB is shipped with a sticker with the default device EUI as below:
171 171  
172 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
166 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
173 173  
174 174  
175 175  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -196,10 +196,10 @@
196 196  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
197 197  
198 198  
199 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
193 +(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
200 200  
201 201  
202 -Press the button for 5 seconds to activate the SN50v3-LB.
196 +Press the button for 5 seconds to activate the S31x-LB.
203 203  
204 204  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
205 205  
... ... @@ -211,7 +211,7 @@
211 211  === 2.3.1 Device Status, FPORT~=5 ===
212 212  
213 213  
214 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
208 +Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
215 215  
216 216  The Payload format is as below.
217 217  
... ... @@ -223,9 +223,11 @@
223 223  
224 224  Example parse in TTNv3
225 225  
220 +[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
226 226  
227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
228 228  
223 +(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
224 +
229 229  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230 230  
231 231  (% style="color:#037691" %)**Frequency Band**:
... ... @@ -277,347 +277,41 @@
277 277  Ex2: 0x0B49 = 2889mV
278 278  
279 279  
280 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
276 +=== 2.3.2  Sensor Data. FPORT~=2 ===
281 281  
282 282  
283 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
279 +Sensor Data is uplink via FPORT=2
284 284  
285 -For example:
286 -
287 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288 -
289 -
290 -(% style="color:red" %) **Important Notice:**
291 -
292 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
293 -1. All modes share the same Payload Explanation from HERE.
294 -1. By default, the device will send an uplink message every 20 minutes.
295 -
296 -
297 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
298 -
299 -
300 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
301 -
302 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
303 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
304 -|**Value**|Bat|(% style="width:191px" %)(((
305 -Temperature(DS18B20)(PC13)
306 -)))|(% style="width:78px" %)(((
307 -ADC(PA4)
308 -)))|(% style="width:216px" %)(((
309 -Digital in(PB15)&Digital Interrupt(PA8)
310 -)))|(% style="width:308px" %)(((
311 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
312 -)))|(% style="width:154px" %)(((
313 -Humidity(SHT20 or SHT31)
314 -)))
315 -
316 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
317 -
318 -
319 -
320 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
321 -
322 -
323 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
324 -
325 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
326 -|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
327 -|**Value**|BAT|(% style="width:196px" %)(((
328 -Temperature(DS18B20)(PC13)
329 -)))|(% style="width:87px" %)(((
330 -ADC(PA4)
331 -)))|(% style="width:189px" %)(((
332 -Digital in(PB15) & Digital Interrupt(PA8)
333 -)))|(% style="width:208px" %)(((
334 -Distance measure by:1) LIDAR-Lite V3HP
335 -Or 2) Ultrasonic Sensor
336 -)))|(% style="width:117px" %)Reserved
337 -
338 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
339 -
340 -
341 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
342 -
343 -[[image:image-20230512173758-5.png||height="563" width="712"]]
344 -
345 -
346 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
347 -
348 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
349 -
350 -[[image:image-20230512173903-6.png||height="596" width="715"]]
351 -
352 -
353 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
354 -
355 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
356 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
357 -|**Value**|BAT|(% style="width:183px" %)(((
358 -Temperature(DS18B20)(PC13)
359 -)))|(% style="width:173px" %)(((
360 -Digital in(PB15) & Digital Interrupt(PA8)
361 -)))|(% style="width:84px" %)(((
362 -ADC(PA4)
363 -)))|(% style="width:323px" %)(((
364 -Distance measure by:1)TF-Mini plus LiDAR
365 -Or 
366 -2) TF-Luna LiDAR
367 -)))|(% style="width:188px" %)Distance signal  strength
368 -
369 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
370 -
371 -
372 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
373 -
374 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
375 -
376 -[[image:image-20230512180609-7.png||height="555" width="802"]]
377 -
378 -
379 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
380 -
381 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
382 -
383 -[[image:image-20230513105207-4.png||height="469" width="802"]]
384 -
385 -
386 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
387 -
388 -
389 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
390 -
391 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
392 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
281 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
282 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
393 393  **Size(bytes)**
394 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
395 -|**Value**|(% style="width:68px" %)(((
396 -ADC1(PA4)
397 -)))|(% style="width:75px" %)(((
398 -ADC2(PA5)
399 -)))|(((
400 -ADC3(PA8)
401 -)))|(((
402 -Digital Interrupt(PB15)
403 -)))|(% style="width:304px" %)(((
404 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
405 -)))|(% style="width:163px" %)(((
406 -Humidity(SHT20 or SHT31)
407 -)))|(% style="width:53px" %)Bat
408 -
409 -[[image:image-20230513110214-6.png]]
410 -
411 -
412 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
413 -
414 -
415 -This mode has total 11 bytes. As shown below:
416 -
417 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
419 -|**Value**|BAT|(% style="width:186px" %)(((
420 -Temperature1(DS18B20)(PC13)
421 -)))|(% style="width:82px" %)(((
422 -ADC(PA4)
423 -)))|(% style="width:210px" %)(((
424 -Digital in(PB15) & Digital Interrupt(PA8) 
425 -)))|(% style="width:191px" %)Temperature2(DS18B20)
426 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
427 -
428 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
429 -
430 -[[image:image-20230513134006-1.png||height="559" width="736"]]
431 -
432 -
433 -
434 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
435 -
436 -
437 -[[image:image-20230512164658-2.png||height="532" width="729"]]
438 -
439 -Each HX711 need to be calibrated before used. User need to do below two steps:
440 -
441 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
442 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
443 -1. (((
444 -Weight has 4 bytes, the unit is g.
284 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
285 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
286 +[[Battery>>||anchor="HBattery:"]]
287 +)))|(% style="width:130px" %)(((
288 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
289 +)))|(% style="width:91px" %)(((
290 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
291 +)))|(% style="width:103px" %)(((
292 +[[Temperature>>||anchor="HTemperature:"]]
293 +)))|(% style="width:80px" %)(((
294 +[[Humidity>>||anchor="HHumidity:"]]
445 445  )))
446 446  
447 -For example:
297 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
448 448  
449 -**AT+GETSENSORVALUE =0**
299 +Sensor Battery Level.
450 450  
451 -Response:  Weight is 401 g
452 -
453 -Check the response of this command and adjust the value to match the real value for thing.
454 -
455 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
456 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
457 -**Size(bytes)**
458 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
459 -|**Value**|BAT|(% style="width:193px" %)(((
460 -Temperature(DS18B20)
461 -(PC13)
462 -)))|(% style="width:85px" %)(((
463 -ADC(PA4)
464 -)))|(% style="width:186px" %)(((
465 -Digital in(PB15) &
466 -Digital Interrupt(PA8)
467 -)))|(% style="width:100px" %)Weight
468 -
469 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
470 -
471 -
472 -
473 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
474 -
475 -
476 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
477 -
478 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
479 -
480 -[[image:image-20230512181814-9.png||height="543" width="697"]]
481 -
482 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
483 -
484 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
485 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
486 -|**Value**|BAT|(% style="width:256px" %)(((
487 -Temperature(DS18B20)(PC13)
488 -)))|(% style="width:108px" %)(((
489 -ADC(PA4)
490 -)))|(% style="width:126px" %)(((
491 -Digital in(PB15)
492 -)))|(% style="width:145px" %)(((
493 -Count(PA8)
494 -)))
495 -
496 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
497 -
498 -
499 -
500 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
501 -
502 -
503 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
504 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
505 -**Size(bytes)**
506 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
507 -|**Value**|BAT|(% style="width:188px" %)(((
508 -Temperature(DS18B20)
509 -(PC13)
510 -)))|(% style="width:83px" %)(((
511 -ADC(PA5)
512 -)))|(% style="width:184px" %)(((
513 -Digital Interrupt1(PA8)
514 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
515 -
516 -[[image:image-20230513111203-7.png||height="324" width="975"]]
517 -
518 -
519 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
520 -
521 -
522 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
523 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
524 -**Size(bytes)**
525 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
526 -|**Value**|BAT|(% style="width:207px" %)(((
527 -Temperature(DS18B20)
528 -(PC13)
529 -)))|(% style="width:94px" %)(((
530 -ADC1(PA4)
531 -)))|(% style="width:198px" %)(((
532 -Digital Interrupt(PB15)
533 -)))|(% style="width:84px" %)(((
534 -ADC2(PA5)
535 -)))|(% style="width:82px" %)(((
536 -ADC3(PA8)
537 -)))
538 -
539 -[[image:image-20230513111231-8.png||height="335" width="900"]]
540 -
541 -
542 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
543 -
544 -
545 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
546 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
547 -**Size(bytes)**
548 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
549 -|**Value**|BAT|(((
550 -Temperature1(DS18B20)
551 -(PC13)
552 -)))|(((
553 -Temperature2(DS18B20)
554 -(PB9)
555 -)))|(((
556 -Digital Interrupt
557 -(PB15)
558 -)))|(% style="width:193px" %)(((
559 -Temperature3(DS18B20)
560 -(PB8)
561 -)))|(% style="width:78px" %)(((
562 -Count1(PA8)
563 -)))|(% style="width:78px" %)(((
564 -Count2(PA4)
565 -)))
566 -
567 -[[image:image-20230513111255-9.png||height="341" width="899"]]
568 -
569 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
570 -
571 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
572 -
573 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
574 -
575 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
576 -
577 -
578 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
579 -
580 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
581 -
582 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
583 -
584 -
585 -=== 2.3.3  ​Decode payload ===
586 -
587 -
588 -While using TTN V3 network, you can add the payload format to decode the payload.
589 -
590 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
591 -
592 -The payload decoder function for TTN V3 are here:
593 -
594 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
595 -
596 -
597 -==== 2.3.3.1 Battery Info ====
598 -
599 -
600 -Check the battery voltage for SN50v3.
601 -
602 602  Ex1: 0x0B45 = 2885mV
603 603  
604 604  Ex2: 0x0B49 = 2889mV
605 605  
606 606  
607 -==== 2.3.3.2  Temperature (DS18B20) ====
608 608  
307 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
609 609  
610 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
309 +**Example**:
611 611  
612 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
613 -
614 -(% style="color:blue" %)**Connection:**
615 -
616 -[[image:image-20230512180718-8.png||height="538" width="647"]]
617 -
618 -
619 -(% style="color:blue" %)**Example**:
620 -
621 621  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
622 622  
623 623  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -625,216 +625,195 @@
625 625  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
626 626  
627 627  
628 -==== 2.3.3.3 Digital Input ====
318 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
629 629  
630 630  
631 -The digital input for pin PB15,
321 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
632 632  
633 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
634 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
635 635  
636 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
637 -(((
638 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
324 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
639 639  
640 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
641 641  
642 -
643 -)))
327 +**Example:**
644 644  
645 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
329 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
646 646  
331 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
647 647  
648 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
333 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
649 649  
650 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
335 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
651 651  
652 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
653 653  
654 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
338 +== 2.4 Payload Decoder file ==
655 655  
656 656  
657 -==== 2.3.3.5 Digital Interrupt ====
341 +In TTN, use can add a custom payload so it shows friendly reading
658 658  
343 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
659 659  
660 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
345 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
661 661  
662 -(% style="color:blue" %)** Interrupt connection method:**
663 663  
664 -[[image:image-20230513105351-5.png||height="147" width="485"]]
348 +== 2.5 Datalog Feature ==
665 665  
666 666  
667 -(% style="color:blue" %)**Example to use with door sensor :**
351 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
668 668  
669 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
670 670  
671 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
354 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
672 672  
673 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
674 674  
357 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
675 675  
676 -(% style="color:blue" %)**Below is the installation example:**
359 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
360 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
677 677  
678 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
362 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
679 679  
680 -* (((
681 -One pin to SN50_v3's PA8 pin
682 -)))
683 -* (((
684 -The other pin to SN50_v3's VDD pin
685 -)))
364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
686 686  
687 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
366 +=== 2.5.2 Unix TimeStamp ===
688 688  
689 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
690 690  
691 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
369 +S31x-LB uses Unix TimeStamp format based on
692 692  
693 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
371 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
694 694  
695 -The above photos shows the two parts of the magnetic switch fitted to a door.
373 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
696 696  
697 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
375 +Below is the converter example
698 698  
699 -The command is:
377 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
700 700  
701 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
379 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 Jan ~-~- 29 Friday 03:03:25
702 702  
703 -Below shows some screen captures in TTN V3:
704 704  
705 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
382 +=== 2.5.3 Set Device Time ===
706 706  
707 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
708 708  
709 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
385 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
710 710  
387 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
711 711  
712 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
389 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
713 713  
714 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
715 715  
716 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
392 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
717 717  
718 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
719 719  
720 -Below is the connection to SHT20/ SHT31. The connection is as below:
395 +The Datalog uplinks will use below payload format.
721 721  
397 +**Retrieval data payload:**
722 722  
723 -[[image:image-20230513103633-3.png||height="448" width="716"]]
399 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
400 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
401 +**Size(bytes)**
402 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
403 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
404 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
405 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
724 724  
725 -The device will be able to get the I2C sensor data now and upload to IoT Server.
407 +**Poll message flag & Ext:**
726 726  
727 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
409 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
728 728  
729 -Convert the read byte to decimal and divide it by ten.
411 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
730 730  
731 -**Example:**
413 +**Poll Message Flag**: 1: This message is a poll message reply.
732 732  
733 -Temperature Read:0116(H) = 278(D)  Value 278 /10=27.8℃;
415 +* Poll Message Flag is set to 1.
734 734  
735 -Humidity:    Read:0248(H)=584(D)  Value 584 / 10=58.4, So 58.4%
417 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
736 736  
737 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
419 +For example, in US915 band, the max payload for different DR is:
738 738  
421 +**a) DR0:** max is 11 bytes so one entry of data
739 739  
740 -==== 2.3.3.7  ​Distance Reading ====
423 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
741 741  
742 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
425 +**c) DR2:** total payload includes 11 entries of data
743 743  
427 +**d) DR3: **total payload includes 22 entries of data.
744 744  
745 -==== 2.3.3.8 Ultrasonic Sensor ====
429 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
746 746  
747 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
748 748  
749 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
750 -
751 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
752 -
753 -The picture below shows the connection:
754 -
755 -[[image:image-20230512173903-6.png||height="596" width="715"]]
756 -
757 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
758 -
759 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
760 -
761 761  **Example:**
762 762  
763 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
434 +If S31x-LB has below data inside Flash:
764 764  
436 +[[image:1682646494051-944.png]]
765 765  
438 +If user sends below downlink command: 3160065F9760066DA705
766 766  
767 -==== 2.3.3.9  Battery Output - BAT pin ====
440 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
768 768  
769 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
442 + Stop time: 60066DA7= time 21/1/19 05:27:03
770 770  
771 771  
772 -==== 2.3.3.1 +5V Output ====
445 +**S31x-LB will uplink this payload.**
773 773  
774 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling
447 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
775 775  
776 -The 5V output time can be controlled by AT Command.
449 +(((
450 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
451 +)))
777 777  
778 -(% style="color:blue" %)**AT+5VT=1000**
453 +(((
454 +Where the first 11 bytes is for the first entry:
455 +)))
779 779  
780 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
457 +(((
458 +7FFF089801464160065F97
459 +)))
781 781  
782 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
461 +(((
462 +**Ext sensor data**=0x7FFF/100=327.67
463 +)))
783 783  
465 +(((
466 +**Temp**=0x088E/100=22.00
467 +)))
784 784  
469 +(((
470 +**Hum**=0x014B/10=32.6
471 +)))
785 785  
786 -==== 2.3.3.11  BH1750 Illumination Sensor ====
473 +(((
474 +**poll message flag & Ext**=0x41,means reply data,Ext=1
475 +)))
787 787  
788 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
477 +(((
478 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
479 +)))
789 789  
790 -[[image:image-20230512172447-4.png||height="416" width="712"]]
791 791  
792 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
482 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
793 793  
484 +== 2.6 Temperature Alarm Feature ==
794 794  
795 -==== 2.3.3.12  Working MOD ====
796 796  
797 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
487 +S31x-LB work flow with Alarm feature.
798 798  
799 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
800 800  
801 -Case 7^^th^^ Byte >> 2 & 0x1f:
490 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
802 802  
803 -* 0: MOD1
804 -* 1: MOD2
805 -* 2: MOD3
806 -* 3: MOD4
807 -* 4: MOD5
808 -* 5: MOD6
809 -* 6: MOD7
810 -* 7: MOD8
811 -* 8: MOD9
812 812  
813 -== 2.4 Payload Decoder file ==
493 +== 2.7 Frequency Plans ==
814 814  
815 815  
816 -In TTN, use can add a custom payload so it shows friendly reading
496 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
817 817  
818 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
819 -
820 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
821 -
822 -
823 -
824 -== 2.5 Frequency Plans ==
825 -
826 -
827 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
828 -
829 829  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
830 830  
831 831  
832 -= 3. Configure SN50v3-LB =
501 += 3. Configure S31x-LB =
833 833  
834 834  == 3.1 Configure Methods ==
835 835  
836 836  
837 -SN50v3-LB supports below configure method:
506 +S31x-LB supports below configure method:
838 838  
839 839  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
840 840  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -853,7 +853,7 @@
853 853  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
854 854  
855 855  
856 -== 3.3 Commands special design for SN50v3-LB ==
525 +== 3.3 Commands special design for S31x-LB ==
857 857  
858 858  
859 859  These commands only valid for S31x-LB, as below:
... ... @@ -861,6 +861,7 @@
861 861  
862 862  === 3.3.1 Set Transmit Interval Time ===
863 863  
533 +
864 864  Feature: Change LoRaWAN End Node Transmit Interval.
865 865  
866 866  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -888,155 +888,120 @@
888 888  
889 889  === 3.3.2 Get Device Status ===
890 890  
891 -Send a LoRaWAN downlink to ask the device to send its status.
892 892  
562 +Send a LoRaWAN downlink to ask device send Alarm settings.
563 +
893 893  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
894 894  
895 895  Sensor will upload Device Status via FPORT=5. See payload section for detail.
896 896  
897 897  
898 -=== 3.3.3 Set Interrupt Mode ===
569 +=== 3.3.3 Set Temperature Alarm Threshold ===
899 899  
900 -Feature, Set Interrupt mode for GPIO_EXIT.
571 +* (% style="color:blue" %)**AT Command:**
901 901  
902 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
573 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
903 903  
904 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
905 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
906 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
907 -0
908 -OK
909 -the mode is 0 =Disable Interrupt
910 -)))
911 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
912 -Set Transmit Interval
913 -0. (Disable Interrupt),
914 -~1. (Trigger by rising and falling edge)
915 -2. (Trigger by falling edge)
916 -3. (Trigger by rising edge)
917 -)))|(% style="width:157px" %)OK
918 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
919 -Set Transmit Interval
575 +* When min=0, and max≠0, Alarm higher than max
576 +* When min≠0, and max=0, Alarm lower than min
577 +* When min≠0 and max≠0, Alarm higher than max or lower than min
920 920  
921 -trigger by rising edge.
922 -)))|(% style="width:157px" %)OK
923 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
579 +Example:
924 924  
925 -(% style="color:blue" %)**Downlink Command: 0x06**
581 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
926 926  
927 -Format: Command Code (0x06) followed by 3 bytes.
583 +* (% style="color:blue" %)**Downlink Payload:**
928 928  
929 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
585 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
930 930  
931 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
932 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
933 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
934 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
587 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
935 935  
936 -=== 3.3.4 Set Power Output Duration ===
937 937  
938 -Control the output duration 5V . Before each sampling, device will
590 +=== 3.3.4 Set Humidity Alarm Threshold ===
939 939  
940 -~1. first enable the power output to external sensor,
592 +* (% style="color:blue" %)**AT Command:**
941 941  
942 -2. keep it on as per duration, read sensor value and construct uplink payload
594 +(% style="color:#037691" %)**AT+SHHUM=min,max**
943 943  
944 -3. final, close the power output.
596 +* When min=0, and max≠0, Alarm higher than max
597 +* When min≠0, and max=0, Alarm lower than min
598 +* When min≠0 and max≠0, Alarm higher than max or lower than min
945 945  
946 -(% style="color:blue" %)**AT Command: AT+5VT**
600 +Example:
947 947  
948 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
949 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
950 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
951 -500(default)
952 -OK
953 -)))
954 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
955 -Close after a delay of 1000 milliseconds.
956 -)))|(% style="width:157px" %)OK
602 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
957 957  
958 -(% style="color:blue" %)**Downlink Command: 0x07**
604 +* (% style="color:blue" %)**Downlink Payload:**
959 959  
960 -Format: Command Code (0x07) followed by 2 bytes.
606 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
961 961  
962 -The first and second bytes are the time to turn on.
608 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
963 963  
964 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
965 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
966 966  
967 -=== 3.3.5 Set Weighing parameters ===
611 +=== 3.3.5 Set Alarm Interval ===
968 968  
969 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
613 +The shortest time of two Alarm packet. (unit: min)
970 970  
971 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
615 +* (% style="color:blue" %)**AT Command:**
972 972  
973 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
974 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
975 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
976 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
977 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
617 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
978 978  
979 -(% style="color:blue" %)**Downlink Command: 0x08**
619 +* (% style="color:blue" %)**Downlink Payload:**
980 980  
981 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
621 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
982 982  
983 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
984 984  
985 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
624 +=== 3.3.6 Get Alarm settings ===
986 986  
987 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
988 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
989 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
990 990  
991 -=== 3.3.6 Set Digital pulse count value ===
627 +Send a LoRaWAN downlink to ask device send Alarm settings.
992 992  
993 -Feature: Set the pulse count value.
629 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
994 994  
995 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
631 +**Example:**
996 996  
997 -(% style="color:blue" %)**AT Command: AT+SETCNT**
633 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
998 998  
999 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1000 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1001 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1002 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1003 1003  
1004 -(% style="color:blue" %)**Downlink Command: 0x09**
636 +**Explain:**
1005 1005  
1006 -Format: Command Code (0x09) followed by 5 bytes.
638 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1007 1007  
1008 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
640 +=== 3.3.7 Set Interrupt Mode ===
1009 1009  
1010 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1011 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1012 1012  
1013 -=== 3.3.7 Set Workmode ===
643 +Feature, Set Interrupt mode for GPIO_EXIT.
1014 1014  
1015 -Feature: Switch working mode.
645 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1016 1016  
1017 -(% style="color:blue" %)**AT Command: AT+MOD**
1018 -
1019 1019  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1020 1020  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1021 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
649 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
650 +0
1022 1022  OK
652 +the mode is 0 =Disable Interrupt
1023 1023  )))
1024 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1025 -OK
1026 -Attention:Take effect after ATZ
1027 -)))
654 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
655 +Set Transmit Interval
656 +0. (Disable Interrupt),
657 +~1. (Trigger by rising and falling edge)
658 +2. (Trigger by falling edge)
659 +3. (Trigger by rising edge)
660 +)))|(% style="width:157px" %)OK
1028 1028  
1029 -(% style="color:blue" %)**Downlink Command: 0x0A**
662 +(% style="color:blue" %)**Downlink Command: 0x06**
1030 1030  
1031 -Format: Command Code (0x0A) followed by 1 bytes.
664 +Format: Command Code (0x06) followed by 3 bytes.
1032 1032  
1033 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1034 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
666 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1035 1035  
668 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
669 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
670 +
1036 1036  = 4. Battery & Power Consumption =
1037 1037  
1038 1038  
1039 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
674 +S31x-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1040 1040  
1041 1041  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1042 1042  
... ... @@ -1045,7 +1045,7 @@
1045 1045  
1046 1046  
1047 1047  (% class="wikigeneratedid" %)
1048 -User can change firmware SN50v3-LB to:
683 +User can change firmware S31x-LB to:
1049 1049  
1050 1050  * Change Frequency band/ region.
1051 1051  * Update with new features.
... ... @@ -1061,45 +1061,47 @@
1061 1061  
1062 1062  = 6. FAQ =
1063 1063  
1064 -== 6.1 Where can i find source code of SN50v3-LB? ==
1065 1065  
1066 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1067 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1068 1068  
1069 1069  = 7. Order Info =
1070 1070  
1071 1071  
1072 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
704 +Part Number: (% style="color:blue" %)**S31-LB-XX  / S31B-LB-XX**
1073 1073  
1074 1074  (% style="color:red" %)**XX**(%%): The default frequency band
1075 1075  
1076 1076  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
709 +
1077 1077  * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
711 +
1078 1078  * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
713 +
1079 1079  * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
715 +
1080 1080  * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
717 +
1081 1081  * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
719 +
1082 1082  * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
721 +
1083 1083  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1084 1084  
1085 -(% style="color:red" %)**YY: ** (%%)Hole Option
724 += =
1086 1086  
1087 -* (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1088 -* (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1089 -* (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1090 -* (% style="color:red" %)**NH**(%%): No Hole
1091 -
1092 1092  = 8. ​Packing Info =
1093 1093  
1094 1094  (% style="color:#037691" %)**Package Includes**:
1095 1095  
1096 -* SN50v3-LB LoRaWAN Generic Node
730 +* S31x-LB LoRaWAN Temperature & Humidity Sensor
1097 1097  
1098 1098  (% style="color:#037691" %)**Dimension and weight**:
1099 1099  
1100 1100  * Device Size: cm
735 +
1101 1101  * Device Weight: g
737 +
1102 1102  * Package Size / pcs : cm
739 +
1103 1103  * Weight / pcs : g
1104 1104  
1105 1105  = 9. Support =
... ... @@ -1106,5 +1106,4 @@
1106 1106  
1107 1107  
1108 1108  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1109 -
1110 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
746 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230511203450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -679.1 KB
Content
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0