Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -42,6 +42,7 @@ 42 42 * 8500mAh Battery for long term use 43 43 44 44 45 + 45 45 == 1.3 Specification == 46 46 47 47 ... ... @@ -80,6 +80,7 @@ 80 80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 81 81 82 82 84 + 83 83 == 1.4 Sleep mode and working mode == 84 84 85 85 ... ... @@ -107,7 +107,6 @@ 107 107 ))) 108 108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 109 109 110 - 111 111 == 1.6 BLE connection == 112 112 113 113 ... ... @@ -139,7 +139,7 @@ 139 139 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 140 140 141 141 142 -== Hole Option == 143 +== 1.9 Hole Option == 143 143 144 144 145 145 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -154,7 +154,7 @@ 154 154 == 2.1 How it works == 155 155 156 156 157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.158 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 158 158 159 159 160 160 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -162,7 +162,7 @@ 162 162 163 163 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 164 164 165 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.166 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 166 166 167 167 168 168 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -211,7 +211,7 @@ 211 211 === 2.3.1 Device Status, FPORT~=5 === 212 212 213 213 214 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 215 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 215 215 216 216 The Payload format is as below. 217 217 ... ... @@ -219,12 +219,12 @@ 219 219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 220 220 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 221 221 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 222 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT223 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 223 223 224 224 Example parse in TTNv3 225 225 226 226 227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 228 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 228 228 229 229 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 230 230 ... ... @@ -280,20 +280,22 @@ 280 280 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 281 281 282 282 283 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 284 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 284 284 285 285 For example: 286 286 287 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 288 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 288 288 289 289 290 290 (% style="color:red" %) **Important Notice:** 291 291 292 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 293 -1. All modes share the same Payload Explanation from HERE. 294 -1. By default, the device will send an uplink message every 20 minutes. 293 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 295 295 295 +2. All modes share the same Payload Explanation from HERE. 296 296 297 +3. By default, the device will send an uplink message every 20 minutes. 298 + 299 + 297 297 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 298 298 299 299 ... ... @@ -300,8 +300,8 @@ 300 300 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 301 301 302 302 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 303 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width: 40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**304 -| **Value**|Bat|(% style="width:191px" %)(((306 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 307 +|Value|Bat|(% style="width:191px" %)((( 305 305 Temperature(DS18B20)(PC13) 306 306 )))|(% style="width:78px" %)((( 307 307 ADC(PA4) ... ... @@ -316,7 +316,6 @@ 316 316 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 317 317 318 318 319 - 320 320 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 321 321 322 322 ... ... @@ -323,8 +323,8 @@ 323 323 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 324 324 325 325 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 326 -|(% style="background-color:#d9e2f3; color:#0070c0; width: 40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**327 -| **Value**|BAT|(% style="width:196px" %)(((328 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 329 +|Value|BAT|(% style="width:196px" %)((( 328 328 Temperature(DS18B20)(PC13) 329 329 )))|(% style="width:87px" %)((( 330 330 ADC(PA4) ... ... @@ -332,7 +332,8 @@ 332 332 Digital in(PB15) & Digital Interrupt(PA8) 333 333 )))|(% style="width:208px" %)((( 334 334 Distance measure by:1) LIDAR-Lite V3HP 335 -Or 2) Ultrasonic Sensor 337 +Or 338 +2) Ultrasonic Sensor 336 336 )))|(% style="width:117px" %)Reserved 337 337 338 338 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -345,7 +345,7 @@ 345 345 346 346 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 347 347 348 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 351 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 349 349 350 350 [[image:image-20230512173903-6.png||height="596" width="715"]] 351 351 ... ... @@ -371,7 +371,7 @@ 371 371 372 372 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 373 373 374 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 375 375 376 376 [[image:image-20230512180609-7.png||height="555" width="802"]] 377 377 ... ... @@ -378,7 +378,7 @@ 378 378 379 379 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 380 380 381 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 384 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 382 382 383 383 [[image:image-20230513105207-4.png||height="469" width="802"]] 384 384 ... ... @@ -391,8 +391,8 @@ 391 391 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 392 392 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 393 393 **Size(bytes)** 394 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 40px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1395 -| **Value**|(% style="width:68px" %)(((397 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 398 +|Value|(% style="width:68px" %)((( 396 396 ADC1(PA4) 397 397 )))|(% style="width:75px" %)((( 398 398 ADC2(PA5) ... ... @@ -416,7 +416,7 @@ 416 416 417 417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 418 418 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 419 -| **Value**|BAT|(% style="width:186px" %)(((422 +|Value|BAT|(% style="width:186px" %)((( 420 420 Temperature1(DS18B20)(PC13) 421 421 )))|(% style="width:82px" %)((( 422 422 ADC(PA4) ... ... @@ -427,10 +427,10 @@ 427 427 428 428 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 429 429 433 + 430 430 [[image:image-20230513134006-1.png||height="559" width="736"]] 431 431 432 432 433 - 434 434 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 435 435 436 436 ... ... @@ -438,15 +438,18 @@ 438 438 439 439 Each HX711 need to be calibrated before used. User need to do below two steps: 440 440 441 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 442 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 444 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 445 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 443 443 1. ((( 444 444 Weight has 4 bytes, the unit is g. 448 + 449 + 450 + 445 445 ))) 446 446 447 447 For example: 448 448 449 -**AT+GETSENSORVALUE =0** 455 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 450 450 451 451 Response: Weight is 401 g 452 452 ... ... @@ -456,14 +456,12 @@ 456 456 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 457 457 **Size(bytes)** 458 458 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 459 -|**Value**|BAT|(% style="width:193px" %)((( 460 -Temperature(DS18B20) 461 -(PC13) 465 +|Value|BAT|(% style="width:193px" %)((( 466 +Temperature(DS18B20)(PC13) 462 462 )))|(% style="width:85px" %)((( 463 463 ADC(PA4) 464 464 )))|(% style="width:186px" %)((( 465 -Digital in(PB15) & 466 -Digital Interrupt(PA8) 470 +Digital in(PB15) & Digital Interrupt(PA8) 467 467 )))|(% style="width:100px" %)Weight 468 468 469 469 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] ... ... @@ -479,11 +479,12 @@ 479 479 480 480 [[image:image-20230512181814-9.png||height="543" width="697"]] 481 481 486 + 482 482 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 483 483 484 484 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 485 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**486 -| **Value**|BAT|(% style="width:256px" %)(((490 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 491 +|Value|BAT|(% style="width:256px" %)((( 487 487 Temperature(DS18B20)(PC13) 488 488 )))|(% style="width:108px" %)((( 489 489 ADC(PA4) ... ... @@ -496,7 +496,6 @@ 496 496 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 497 497 498 498 499 - 500 500 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 501 501 502 502 ... ... @@ -504,7 +504,7 @@ 504 504 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 505 505 **Size(bytes)** 506 506 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 507 -| **Value**|BAT|(% style="width:188px" %)(((511 +|Value|BAT|(% style="width:188px" %)((( 508 508 Temperature(DS18B20) 509 509 (PC13) 510 510 )))|(% style="width:83px" %)((( ... ... @@ -522,8 +522,8 @@ 522 522 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 523 523 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 524 524 **Size(bytes)** 525 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 1 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2526 -| **Value**|BAT|(% style="width:207px" %)(((529 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 530 +|Value|BAT|(% style="width:207px" %)((( 527 527 Temperature(DS18B20) 528 528 (PC13) 529 529 )))|(% style="width:94px" %)((( ... ... @@ -545,19 +545,19 @@ 545 545 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 546 546 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 547 547 **Size(bytes)** 548 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4549 -| **Value**|BAT|(((550 -Temperature 1(DS18B20)551 -(PC13) 552 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 553 +|Value|BAT|((( 554 +Temperature 555 +(DS18B20)(PC13) 552 552 )))|((( 553 -Temperature2 (DS18B20)554 -(PB9) 557 +Temperature2 558 +(DS18B20)(PB9) 555 555 )))|((( 556 556 Digital Interrupt 557 557 (PB15) 558 558 )))|(% style="width:193px" %)((( 559 -Temperature3 (DS18B20)560 -(PB8) 563 +Temperature3 564 +(DS18B20)(PB8) 561 561 )))|(% style="width:78px" %)((( 562 562 Count1(PA8) 563 563 )))|(% style="width:78px" %)((( ... ... @@ -591,13 +591,13 @@ 591 591 592 592 The payload decoder function for TTN V3 are here: 593 593 594 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 598 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 595 595 596 596 597 597 ==== 2.3.3.1 Battery Info ==== 598 598 599 599 600 -Check the battery voltage for SN50v3. 604 +Check the battery voltage for SN50v3-LB. 601 601 602 602 Ex1: 0x0B45 = 2885mV 603 603 ... ... @@ -651,6 +651,7 @@ 651 651 652 652 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 653 653 658 + 654 654 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 655 655 656 656 ... ... @@ -657,7 +657,7 @@ 657 657 ==== 2.3.3.5 Digital Interrupt ==== 658 658 659 659 660 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 665 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 661 661 662 662 (% style="color:blue" %)** Interrupt connection method:** 663 663 ... ... @@ -670,18 +670,18 @@ 670 670 671 671 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 672 672 673 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.678 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 674 674 675 675 676 676 (% style="color:blue" %)**Below is the installation example:** 677 677 678 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50 _v3 as follows:683 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 679 679 680 680 * ((( 681 -One pin to SN50 _v3's PA8 pin686 +One pin to SN50v3-LB's PA8 pin 682 682 ))) 683 683 * ((( 684 -The other pin to SN50 _v3's VDD pin689 +The other pin to SN50v3-LB's VDD pin 685 685 ))) 686 686 687 687 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -698,30 +698,33 @@ 698 698 699 699 The command is: 700 700 701 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 706 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 702 702 703 703 Below shows some screen captures in TTN V3: 704 704 705 705 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 706 706 707 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 708 708 713 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 714 + 709 709 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 710 710 711 711 712 712 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 713 713 720 + 714 714 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 715 715 716 716 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 717 717 718 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.725 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 719 719 727 + 720 720 Below is the connection to SHT20/ SHT31. The connection is as below: 721 721 722 - 723 723 [[image:image-20230513103633-3.png||height="448" width="716"]] 724 724 732 + 725 725 The device will be able to get the I2C sensor data now and upload to IoT Server. 726 726 727 727 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -739,14 +739,16 @@ 739 739 740 740 ==== 2.3.3.7 Distance Reading ==== 741 741 750 + 742 742 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 743 743 744 744 745 745 ==== 2.3.3.8 Ultrasonic Sensor ==== 746 746 756 + 747 747 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 748 748 749 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.759 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 750 750 751 751 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 752 752 ... ... @@ -754,8 +754,9 @@ 754 754 755 755 [[image:image-20230512173903-6.png||height="596" width="715"]] 756 756 757 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 758 758 768 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 769 + 759 759 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 760 760 761 761 **Example:** ... ... @@ -763,16 +763,17 @@ 763 763 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 764 764 765 765 766 - 767 767 ==== 2.3.3.9 Battery Output - BAT pin ==== 768 768 769 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 770 770 780 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 771 771 782 + 772 772 ==== 2.3.3.10 +5V Output ==== 773 773 774 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 775 775 786 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 787 + 776 776 The 5V output time can be controlled by AT Command. 777 777 778 778 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -779,21 +779,23 @@ 779 779 780 780 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 781 781 782 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 794 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 783 783 784 784 785 - 786 786 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 787 787 799 + 788 788 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 789 789 790 790 [[image:image-20230512172447-4.png||height="416" width="712"]] 791 791 804 + 792 792 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 793 793 794 794 795 795 ==== 2.3.3.12 Working MOD ==== 796 796 810 + 797 797 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 798 798 799 799 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -820,7 +820,6 @@ 820 820 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 821 821 822 822 823 - 824 824 == 2.5 Frequency Plans == 825 825 826 826 ... ... @@ -856,11 +856,12 @@ 856 856 == 3.3 Commands special design for SN50v3-LB == 857 857 858 858 859 -These commands only valid for S3 1x-LB, as below:872 +These commands only valid for SN50v3-LB, as below: 860 860 861 861 862 862 === 3.3.1 Set Transmit Interval Time === 863 863 877 + 864 864 Feature: Change LoRaWAN End Node Transmit Interval. 865 865 866 866 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -888,21 +888,23 @@ 888 888 889 889 === 3.3.2 Get Device Status === 890 890 905 + 891 891 Send a LoRaWAN downlink to ask the device to send its status. 892 892 893 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01908 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 894 894 895 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 910 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 896 896 897 897 898 898 === 3.3.3 Set Interrupt Mode === 899 899 915 + 900 900 Feature, Set Interrupt mode for GPIO_EXIT. 901 901 902 902 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 903 903 904 904 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 905 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**921 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 906 906 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 907 907 0 908 908 OK ... ... @@ -917,7 +917,6 @@ 917 917 )))|(% style="width:157px" %)OK 918 918 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 919 919 Set Transmit Interval 920 - 921 921 trigger by rising edge. 922 922 )))|(% style="width:157px" %)OK 923 923 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -935,6 +935,7 @@ 935 935 936 936 === 3.3.4 Set Power Output Duration === 937 937 953 + 938 938 Control the output duration 5V . Before each sampling, device will 939 939 940 940 ~1. first enable the power output to external sensor, ... ... @@ -946,7 +946,7 @@ 946 946 (% style="color:blue" %)**AT Command: AT+5VT** 947 947 948 948 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 949 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**965 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 950 950 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 951 951 500(default) 952 952 OK ... ... @@ -966,12 +966,13 @@ 966 966 967 967 === 3.3.5 Set Weighing parameters === 968 968 985 + 969 969 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 970 970 971 971 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 972 972 973 973 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 974 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**991 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 975 975 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 976 976 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 977 977 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -990,6 +990,7 @@ 990 990 991 991 === 3.3.6 Set Digital pulse count value === 992 992 1010 + 993 993 Feature: Set the pulse count value. 994 994 995 995 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -997,7 +997,7 @@ 997 997 (% style="color:blue" %)**AT Command: AT+SETCNT** 998 998 999 999 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1000 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1018 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1001 1001 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1002 1002 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1003 1003 ... ... @@ -1012,12 +1012,13 @@ 1012 1012 1013 1013 === 3.3.7 Set Workmode === 1014 1014 1033 + 1015 1015 Feature: Switch working mode. 1016 1016 1017 1017 (% style="color:blue" %)**AT Command: AT+MOD** 1018 1018 1019 1019 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1020 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1039 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1021 1021 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1022 1022 OK 1023 1023 ))) ... ... @@ -1045,17 +1045,16 @@ 1045 1045 1046 1046 1047 1047 (% class="wikigeneratedid" %) 1048 -User can change firmware SN50v3-LB to: 1067 +**User can change firmware SN50v3-LB to:** 1049 1049 1050 1050 * Change Frequency band/ region. 1051 1051 * Update with new features. 1052 1052 * Fix bugs. 1053 1053 1054 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1073 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1055 1055 1075 +**Methods to Update Firmware:** 1056 1056 1057 -Methods to Update Firmware: 1058 - 1059 1059 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1060 1060 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1061 1061 ... ... @@ -1063,6 +1063,7 @@ 1063 1063 1064 1064 == 6.1 Where can i find source code of SN50v3-LB? == 1065 1065 1084 + 1066 1066 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1067 1067 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1068 1068 ... ... @@ -1091,6 +1091,7 @@ 1091 1091 1092 1092 = 8. Packing Info = 1093 1093 1113 + 1094 1094 (% style="color:#037691" %)**Package Includes**: 1095 1095 1096 1096 * SN50v3-LB LoRaWAN Generic Node