<
From version < 43.46 >
edited by Xiaoling
on 2023/05/16 15:40
To version < 44.2 >
edited by Xiaoling
on 2023/05/18 08:57
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -41,7 +41,6 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 45  == 1.3 Specification ==
46 46  
47 47  
... ... @@ -79,7 +79,6 @@
79 79  * Sleep Mode: 5uA @ 3.3v
80 80  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81 81  
82 -
83 83  == 1.4 Sleep mode and working mode ==
84 84  
85 85  
... ... @@ -107,7 +107,6 @@
107 107  )))
108 108  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109 109  
110 -
111 111  == 1.6 BLE connection ==
112 112  
113 113  
... ... @@ -280,20 +280,22 @@
280 280  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
281 281  
282 282  
283 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
284 284  
285 285  For example:
286 286  
287 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288 288  
289 289  
290 290  (% style="color:red" %) **Important Notice:**
291 291  
292 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
293 -1. All modes share the same Payload Explanation from HERE.
294 -1. By default, the device will send an uplink message every 20 minutes.
289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
295 295  
291 +2. All modes share the same Payload Explanation from HERE.
296 296  
293 +3. By default, the device will send an uplink message every 20 minutes.
294 +
295 +
297 297  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
298 298  
299 299  
... ... @@ -300,7 +300,7 @@
300 300  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
301 301  
302 302  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
303 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
302 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
304 304  |**Value**|Bat|(% style="width:191px" %)(((
305 305  Temperature(DS18B20)(PC13)
306 306  )))|(% style="width:78px" %)(((
... ... @@ -323,7 +323,7 @@
323 323  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
324 324  
325 325  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
326 -|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
325 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
327 327  |**Value**|BAT|(% style="width:196px" %)(((
328 328  Temperature(DS18B20)(PC13)
329 329  )))|(% style="width:87px" %)(((
... ... @@ -332,7 +332,8 @@
332 332  Digital in(PB15) & Digital Interrupt(PA8)
333 333  )))|(% style="width:208px" %)(((
334 334  Distance measure by:1) LIDAR-Lite V3HP
335 -Or 2) Ultrasonic Sensor
334 +Or
335 +2) Ultrasonic Sensor
336 336  )))|(% style="width:117px" %)Reserved
337 337  
338 338  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -345,7 +345,7 @@
345 345  
346 346  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
347 347  
348 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
348 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
349 349  
350 350  [[image:image-20230512173903-6.png||height="596" width="715"]]
351 351  
... ... @@ -371,7 +371,7 @@
371 371  
372 372  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
373 373  
374 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
374 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
375 375  
376 376  [[image:image-20230512180609-7.png||height="555" width="802"]]
377 377  
... ... @@ -378,7 +378,7 @@
378 378  
379 379  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
380 380  
381 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
382 382  
383 383  [[image:image-20230513105207-4.png||height="469" width="802"]]
384 384  
... ... @@ -391,7 +391,7 @@
391 391  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
392 392  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
393 393  **Size(bytes)**
394 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
394 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
395 395  |**Value**|(% style="width:68px" %)(((
396 396  ADC1(PA4)
397 397  )))|(% style="width:75px" %)(((
... ... @@ -438,15 +438,18 @@
438 438  
439 439  Each HX711 need to be calibrated before used. User need to do below two steps:
440 440  
441 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
442 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
441 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
443 443  1. (((
444 444  Weight has 4 bytes, the unit is g.
445 +
446 +
447 +
445 445  )))
446 446  
447 447  For example:
448 448  
449 -**AT+GETSENSORVALUE =0**
452 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
450 450  
451 451  Response:  Weight is 401 g
452 452  
... ... @@ -457,13 +457,11 @@
457 457  **Size(bytes)**
458 458  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
459 459  |**Value**|BAT|(% style="width:193px" %)(((
460 -Temperature(DS18B20)
461 -(PC13)
463 +Temperature(DS18B20)(PC13)
462 462  )))|(% style="width:85px" %)(((
463 463  ADC(PA4)
464 464  )))|(% style="width:186px" %)(((
465 -Digital in(PB15) &
466 -Digital Interrupt(PA8)
467 +Digital in(PB15) & Digital Interrupt(PA8)
467 467  )))|(% style="width:100px" %)Weight
468 468  
469 469  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -479,10 +479,11 @@
479 479  
480 480  [[image:image-20230512181814-9.png||height="543" width="697"]]
481 481  
483 +
482 482  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
483 483  
484 484  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
485 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
486 486  |**Value**|BAT|(% style="width:256px" %)(((
487 487  Temperature(DS18B20)(PC13)
488 488  )))|(% style="width:108px" %)(((
... ... @@ -522,7 +522,7 @@
522 522  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
523 523  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
524 524  **Size(bytes)**
525 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
527 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
526 526  |**Value**|BAT|(% style="width:207px" %)(((
527 527  Temperature(DS18B20)
528 528  (PC13)
... ... @@ -545,19 +545,19 @@
545 545  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
546 546  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
547 547  **Size(bytes)**
548 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
550 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
549 549  |**Value**|BAT|(((
550 -Temperature1(DS18B20)
551 -(PC13)
552 +Temperature
553 +(DS18B20)(PC13)
552 552  )))|(((
553 -Temperature2(DS18B20)
554 -(PB9)
555 +Temperature2
556 +(DS18B20)(PB9)
555 555  )))|(((
556 556  Digital Interrupt
557 557  (PB15)
558 558  )))|(% style="width:193px" %)(((
559 -Temperature3(DS18B20)
560 -(PB8)
561 +Temperature3
562 +(DS18B20)(PB8)
561 561  )))|(% style="width:78px" %)(((
562 562  Count1(PA8)
563 563  )))|(% style="width:78px" %)(((
... ... @@ -591,13 +591,13 @@
591 591  
592 592  The payload decoder function for TTN V3 are here:
593 593  
594 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
596 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
595 595  
596 596  
597 597  ==== 2.3.3.1 Battery Info ====
598 598  
599 599  
600 -Check the battery voltage for SN50v3.
602 +Check the battery voltage for SN50v3-LB.
601 601  
602 602  Ex1: 0x0B45 = 2885mV
603 603  
... ... @@ -651,6 +651,7 @@
651 651  
652 652  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
653 653  
656 +
654 654  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
655 655  
656 656  
... ... @@ -657,7 +657,7 @@
657 657  ==== 2.3.3.5 Digital Interrupt ====
658 658  
659 659  
660 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
663 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
661 661  
662 662  (% style="color:blue" %)** Interrupt connection method:**
663 663  
... ... @@ -670,18 +670,18 @@
670 670  
671 671  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
672 672  
673 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
676 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
674 674  
675 675  
676 676  (% style="color:blue" %)**Below is the installation example:**
677 677  
678 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
681 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
679 679  
680 680  * (((
681 -One pin to SN50_v3's PA8 pin
684 +One pin to SN50v3-LB's PA8 pin
682 682  )))
683 683  * (((
684 -The other pin to SN50_v3's VDD pin
687 +The other pin to SN50v3-LB's VDD pin
685 685  )))
686 686  
687 687  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -698,12 +698,13 @@
698 698  
699 699  The command is:
700 700  
701 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
704 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
702 702  
703 703  Below shows some screen captures in TTN V3:
704 704  
705 705  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
706 706  
710 +
707 707  In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
708 708  
709 709  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
... ... @@ -711,15 +711,16 @@
711 711  
712 712  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
713 713  
718 +
714 714  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
715 715  
716 716  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
717 717  
718 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
723 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
719 719  
725 +
720 720  Below is the connection to SHT20/ SHT31. The connection is as below:
721 721  
722 -
723 723  [[image:image-20230513103633-3.png||height="448" width="716"]]
724 724  
725 725  The device will be able to get the I2C sensor data now and upload to IoT Server.
... ... @@ -739,14 +739,16 @@
739 739  
740 740  ==== 2.3.3.7  ​Distance Reading ====
741 741  
747 +
742 742  Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
743 743  
744 744  
745 745  ==== 2.3.3.8 Ultrasonic Sensor ====
746 746  
753 +
747 747  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
748 748  
749 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
756 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
750 750  
751 751  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
752 752  
... ... @@ -754,8 +754,9 @@
754 754  
755 755  [[image:image-20230512173903-6.png||height="596" width="715"]]
756 756  
757 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
758 758  
765 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
766 +
759 759  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
760 760  
761 761  **Example:**
... ... @@ -763,16 +763,17 @@
763 763  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
764 764  
765 765  
766 -
767 767  ==== 2.3.3.9  Battery Output - BAT pin ====
768 768  
776 +
769 769  The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
770 770  
771 771  
772 772  ==== 2.3.3.10  +5V Output ====
773 773  
774 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
775 775  
783 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
784 +
776 776  The 5V output time can be controlled by AT Command.
777 777  
778 778  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -782,18 +782,20 @@
782 782  By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
783 783  
784 784  
785 -
786 786  ==== 2.3.3.11  BH1750 Illumination Sensor ====
787 787  
796 +
788 788  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
789 789  
790 790  [[image:image-20230512172447-4.png||height="416" width="712"]]
791 791  
801 +
792 792  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
793 793  
794 794  
795 795  ==== 2.3.3.12  Working MOD ====
796 796  
807 +
797 797  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
798 798  
799 799  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -820,7 +820,6 @@
820 820  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
821 821  
822 822  
823 -
824 824  == 2.5 Frequency Plans ==
825 825  
826 826  
... ... @@ -856,11 +856,12 @@
856 856  == 3.3 Commands special design for SN50v3-LB ==
857 857  
858 858  
859 -These commands only valid for S31x-LB, as below:
869 +These commands only valid for SN50v3-LB, as below:
860 860  
861 861  
862 862  === 3.3.1 Set Transmit Interval Time ===
863 863  
874 +
864 864  Feature: Change LoRaWAN End Node Transmit Interval.
865 865  
866 866  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -888,6 +888,7 @@
888 888  
889 889  === 3.3.2 Get Device Status ===
890 890  
902 +
891 891  Send a LoRaWAN downlink to ask the device to send its status.
892 892  
893 893  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
... ... @@ -897,6 +897,7 @@
897 897  
898 898  === 3.3.3 Set Interrupt Mode ===
899 899  
912 +
900 900  Feature, Set Interrupt mode for GPIO_EXIT.
901 901  
902 902  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
... ... @@ -917,7 +917,6 @@
917 917  )))|(% style="width:157px" %)OK
918 918  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
919 919  Set Transmit Interval
920 -
921 921  trigger by rising edge.
922 922  )))|(% style="width:157px" %)OK
923 923  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -935,6 +935,7 @@
935 935  
936 936  === 3.3.4 Set Power Output Duration ===
937 937  
950 +
938 938  Control the output duration 5V . Before each sampling, device will
939 939  
940 940  ~1. first enable the power output to external sensor,
... ... @@ -966,6 +966,7 @@
966 966  
967 967  === 3.3.5 Set Weighing parameters ===
968 968  
982 +
969 969  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
970 970  
971 971  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
... ... @@ -990,6 +990,7 @@
990 990  
991 991  === 3.3.6 Set Digital pulse count value ===
992 992  
1007 +
993 993  Feature: Set the pulse count value.
994 994  
995 995  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1012,6 +1012,7 @@
1012 1012  
1013 1013  === 3.3.7 Set Workmode ===
1014 1014  
1030 +
1015 1015  Feature: Switch working mode.
1016 1016  
1017 1017  (% style="color:blue" %)**AT Command: AT+MOD**
... ... @@ -1063,6 +1063,7 @@
1063 1063  
1064 1064  == 6.1 Where can i find source code of SN50v3-LB? ==
1065 1065  
1082 +
1066 1066  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1067 1067  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1068 1068  
... ... @@ -1091,6 +1091,7 @@
1091 1091  
1092 1092  = 8. ​Packing Info =
1093 1093  
1111 +
1094 1094  (% style="color:#037691" %)**Package Includes**:
1095 1095  
1096 1096  * SN50v3-LB LoRaWAN Generic Node
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0