<
From version < 43.45 >
edited by Xiaoling
on 2023/05/16 15:37
To version < 83.1 >
edited by Edwin Chen
on 2023/12/31 20:35
>
Change comment: Uploaded new attachment "image-20231231203439-3.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -3,7 +3,7 @@
3 3  
4 4  
5 5  
6 -**Table of Contents**
6 +**Table of Contents:**
7 7  
8 8  {{toc/}}
9 9  
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,7 +27,6 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -41,8 +41,6 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 48  
... ... @@ -80,8 +80,6 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -93,7 +93,7 @@
93 93  == 1.5 Button & LEDs ==
94 94  
95 95  
96 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
97 97  
98 98  
99 99  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -109,8 +109,6 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 -
113 -
114 114  == 1.6 BLE connection ==
115 115  
116 116  
... ... @@ -129,7 +129,7 @@
129 129  == 1.7 Pin Definitions ==
130 130  
131 131  
132 -[[image:image-20230513102034-2.png]]
125 +[[image:image-20230610163213-1.png||height="404" width="699"]]
133 133  
134 134  
135 135  == 1.8 Mechanical ==
... ... @@ -142,7 +142,7 @@
142 142  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143 143  
144 144  
145 -== Hole Option ==
138 +== 1.9 Hole Option ==
146 146  
147 147  
148 148  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -157,7 +157,7 @@
157 157  == 2.1 How it works ==
158 158  
159 159  
160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161 161  
162 162  
163 163  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -165,7 +165,7 @@
165 165  
166 166  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
167 167  
168 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
161 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
169 169  
170 170  
171 171  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -214,7 +214,7 @@
214 214  === 2.3.1 Device Status, FPORT~=5 ===
215 215  
216 216  
217 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
210 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
218 218  
219 219  The Payload format is as below.
220 220  
... ... @@ -222,44 +222,44 @@
222 222  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
223 223  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
224 224  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
225 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
218 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
226 226  
227 227  Example parse in TTNv3
228 228  
229 229  
230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
231 231  
232 232  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233 233  
234 234  (% style="color:#037691" %)**Frequency Band**:
235 235  
236 -*0x01: EU868
229 +0x01: EU868
237 237  
238 -*0x02: US915
231 +0x02: US915
239 239  
240 -*0x03: IN865
233 +0x03: IN865
241 241  
242 -*0x04: AU915
235 +0x04: AU915
243 243  
244 -*0x05: KZ865
237 +0x05: KZ865
245 245  
246 -*0x06: RU864
239 +0x06: RU864
247 247  
248 -*0x07: AS923
241 +0x07: AS923
249 249  
250 -*0x08: AS923-1
243 +0x08: AS923-1
251 251  
252 -*0x09: AS923-2
245 +0x09: AS923-2
253 253  
254 -*0x0a: AS923-3
247 +0x0a: AS923-3
255 255  
256 -*0x0b: CN470
249 +0x0b: CN470
257 257  
258 -*0x0c: EU433
251 +0x0c: EU433
259 259  
260 -*0x0d: KR920
253 +0x0d: KR920
261 261  
262 -*0x0e: MA869
255 +0x0e: MA869
263 263  
264 264  
265 265  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -283,21 +283,22 @@
283 283  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284 284  
285 285  
286 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
279 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
287 287  
288 288  For example:
289 289  
290 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
283 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
291 291  
292 292  
293 293  (% style="color:red" %) **Important Notice:**
294 294  
295 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
296 -1. All modes share the same Payload Explanation from HERE.
297 -1. By default, the device will send an uplink message every 20 minutes.
288 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
298 298  
290 +2. All modes share the same Payload Explanation from HERE.
299 299  
292 +3. By default, the device will send an uplink message every 20 minutes.
300 300  
294 +
301 301  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
302 302  
303 303  
... ... @@ -304,8 +304,8 @@
304 304  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
305 305  
306 306  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
307 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
308 -|**Value**|Bat|(% style="width:191px" %)(((
301 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
302 +|Value|Bat|(% style="width:191px" %)(((
309 309  Temperature(DS18B20)(PC13)
310 310  )))|(% style="width:78px" %)(((
311 311  ADC(PA4)
... ... @@ -320,7 +320,6 @@
320 320  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
321 321  
322 322  
323 -
324 324  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325 325  
326 326  
... ... @@ -327,8 +327,8 @@
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 329  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 -|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 -|**Value**|BAT|(% style="width:196px" %)(((
323 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
324 +|Value|BAT|(% style="width:196px" %)(((
332 332  Temperature(DS18B20)(PC13)
333 333  )))|(% style="width:87px" %)(((
334 334  ADC(PA4)
... ... @@ -335,7 +335,7 @@
335 335  )))|(% style="width:189px" %)(((
336 336  Digital in(PB15) & Digital Interrupt(PA8)
337 337  )))|(% style="width:208px" %)(((
338 -Distance measure by:1) LIDAR-Lite V3HP
331 +Distance measure by: 1) LIDAR-Lite V3HP
339 339  Or 2) Ultrasonic Sensor
340 340  )))|(% style="width:117px" %)Reserved
341 341  
... ... @@ -349,7 +349,7 @@
349 349  
350 350  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
351 351  
352 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
345 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
353 353  
354 354  [[image:image-20230512173903-6.png||height="596" width="715"]]
355 355  
... ... @@ -358,7 +358,7 @@
358 358  
359 359  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
360 360  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
361 -|**Value**|BAT|(% style="width:183px" %)(((
354 +|Value|BAT|(% style="width:183px" %)(((
362 362  Temperature(DS18B20)(PC13)
363 363  )))|(% style="width:173px" %)(((
364 364  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -366,8 +366,7 @@
366 366  ADC(PA4)
367 367  )))|(% style="width:323px" %)(((
368 368  Distance measure by:1)TF-Mini plus LiDAR
369 -Or 
370 -2) TF-Luna LiDAR
362 +Or 2) TF-Luna LiDAR
371 371  )))|(% style="width:188px" %)Distance signal  strength
372 372  
373 373  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -375,7 +375,7 @@
375 375  
376 376  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
377 377  
378 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
370 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
379 379  
380 380  [[image:image-20230512180609-7.png||height="555" width="802"]]
381 381  
... ... @@ -382,9 +382,9 @@
382 382  
383 383  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
384 384  
385 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
386 386  
387 -[[image:image-20230513105207-4.png||height="469" width="802"]]
379 +[[image:image-20230610170047-1.png||height="452" width="799"]]
388 388  
389 389  
390 390  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
... ... @@ -395,8 +395,8 @@
395 395  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
396 396  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
397 397  **Size(bytes)**
398 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
399 -|**Value**|(% style="width:68px" %)(((
390 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
391 +|Value|(% style="width:68px" %)(((
400 400  ADC1(PA4)
401 401  )))|(% style="width:75px" %)(((
402 402  ADC2(PA5)
... ... @@ -420,7 +420,7 @@
420 420  
421 421  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
422 422  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
423 -|**Value**|BAT|(% style="width:186px" %)(((
415 +|Value|BAT|(% style="width:186px" %)(((
424 424  Temperature1(DS18B20)(PC13)
425 425  )))|(% style="width:82px" %)(((
426 426  ADC(PA4)
... ... @@ -431,10 +431,10 @@
431 431  
432 432  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
433 433  
426 +
434 434  [[image:image-20230513134006-1.png||height="559" width="736"]]
435 435  
436 436  
437 -
438 438  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
439 439  
440 440  
... ... @@ -442,15 +442,18 @@
442 442  
443 443  Each HX711 need to be calibrated before used. User need to do below two steps:
444 444  
445 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
446 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
437 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
438 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
447 447  1. (((
448 448  Weight has 4 bytes, the unit is g.
441 +
442 +
443 +
449 449  )))
450 450  
451 451  For example:
452 452  
453 -**AT+GETSENSORVALUE =0**
448 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
454 454  
455 455  Response:  Weight is 401 g
456 456  
... ... @@ -460,20 +460,17 @@
460 460  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
461 461  **Size(bytes)**
462 462  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
463 -|**Value**|BAT|(% style="width:193px" %)(((
464 -Temperature(DS18B20)
465 -(PC13)
458 +|Value|BAT|(% style="width:193px" %)(((
459 +Temperature(DS18B20)(PC13)
466 466  )))|(% style="width:85px" %)(((
467 467  ADC(PA4)
468 468  )))|(% style="width:186px" %)(((
469 -Digital in(PB15) &
470 -Digital Interrupt(PA8)
463 +Digital in(PB15) & Digital Interrupt(PA8)
471 471  )))|(% style="width:100px" %)Weight
472 472  
473 473  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
474 474  
475 475  
476 -
477 477  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478 478  
479 479  
... ... @@ -483,11 +483,12 @@
483 483  
484 484  [[image:image-20230512181814-9.png||height="543" width="697"]]
485 485  
478 +
486 486  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
487 487  
488 488  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
489 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
490 -|**Value**|BAT|(% style="width:256px" %)(((
482 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
483 +|Value|BAT|(% style="width:256px" %)(((
491 491  Temperature(DS18B20)(PC13)
492 492  )))|(% style="width:108px" %)(((
493 493  ADC(PA4)
... ... @@ -500,7 +500,6 @@
500 500  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
501 501  
502 502  
503 -
504 504  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
505 505  
506 506  
... ... @@ -508,7 +508,7 @@
508 508  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
509 509  **Size(bytes)**
510 510  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
511 -|**Value**|BAT|(% style="width:188px" %)(((
503 +|Value|BAT|(% style="width:188px" %)(((
512 512  Temperature(DS18B20)
513 513  (PC13)
514 514  )))|(% style="width:83px" %)(((
... ... @@ -526,8 +526,8 @@
526 526  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
527 527  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
528 528  **Size(bytes)**
529 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
530 -|**Value**|BAT|(% style="width:207px" %)(((
521 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
522 +|Value|BAT|(% style="width:207px" %)(((
531 531  Temperature(DS18B20)
532 532  (PC13)
533 533  )))|(% style="width:94px" %)(((
... ... @@ -549,19 +549,19 @@
549 549  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
550 550  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
551 551  **Size(bytes)**
552 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
553 -|**Value**|BAT|(((
554 -Temperature1(DS18B20)
555 -(PC13)
544 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
545 +|Value|BAT|(((
546 +Temperature
547 +(DS18B20)(PC13)
556 556  )))|(((
557 -Temperature2(DS18B20)
558 -(PB9)
549 +Temperature2
550 +(DS18B20)(PB9)
559 559  )))|(((
560 560  Digital Interrupt
561 561  (PB15)
562 562  )))|(% style="width:193px" %)(((
563 -Temperature3(DS18B20)
564 -(PB8)
555 +Temperature3
556 +(DS18B20)(PB8)
565 565  )))|(% style="width:78px" %)(((
566 566  Count1(PA8)
567 567  )))|(% style="width:78px" %)(((
... ... @@ -586,6 +586,105 @@
586 586  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
587 587  
588 588  
581 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 +
583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 +
585 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 +
587 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588 +
589 +
590 +===== 2.3.2.10.a  Uplink, PWM input capture =====
591 +
592 +
593 +[[image:image-20230817172209-2.png||height="439" width="683"]]
594 +
595 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
596 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
597 +|Value|Bat|(% style="width:191px" %)(((
598 +Temperature(DS18B20)(PC13)
599 +)))|(% style="width:78px" %)(((
600 +ADC(PA4)
601 +)))|(% style="width:135px" %)(((
602 +PWM_Setting
603 +&Digital Interrupt(PA8)
604 +)))|(% style="width:70px" %)(((
605 +Pulse period
606 +)))|(% style="width:89px" %)(((
607 +Duration of high level
608 +)))
609 +
610 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
611 +
612 +
613 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
614 +
615 +**Frequency:**
616 +
617 +(% class="MsoNormal" %)
618 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
619 +
620 +(% class="MsoNormal" %)
621 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
622 +
623 +
624 +(% class="MsoNormal" %)
625 +**Duty cycle:**
626 +
627 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
628 +
629 +[[image:image-20230818092200-1.png||height="344" width="627"]]
630 +
631 +===== 2.3.2.10.b  Uplink, PWM output =====
632 +
633 +[[image:image-20230817172209-2.png||height="439" width="683"]]
634 +
635 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
636 +
637 +a is the time delay of the output, the unit is ms.
638 +
639 +b is the output frequency, the unit is HZ.
640 +
641 +c is the duty cycle of the output, the unit is %.
642 +
643 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
644 +
645 +aa is the time delay of the output, the unit is ms.
646 +
647 +bb is the output frequency, the unit is HZ.
648 +
649 +cc is the duty cycle of the output, the unit is %.
650 +
651 +
652 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
653 +
654 +The oscilloscope displays as follows:
655 +
656 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
657 +
658 +
659 +===== 2.3.2.10.c  Downlink, PWM output =====
660 +
661 +
662 +[[image:image-20230817173800-3.png||height="412" width="685"]]
663 +
664 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
665 +
666 + xx xx xx is the output frequency, the unit is HZ.
667 +
668 + yy is the duty cycle of the output, the unit is %.
669 +
670 + zz zz is the time delay of the output, the unit is ms.
671 +
672 +
673 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
674 +
675 +The oscilloscope displays as follows:
676 +
677 +[[image:image-20230817173858-5.png||height="694" width="921"]]
678 +
679 +
589 589  === 2.3.3  ​Decode payload ===
590 590  
591 591  
... ... @@ -595,13 +595,13 @@
595 595  
596 596  The payload decoder function for TTN V3 are here:
597 597  
598 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
689 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
599 599  
600 600  
601 601  ==== 2.3.3.1 Battery Info ====
602 602  
603 603  
604 -Check the battery voltage for SN50v3.
695 +Check the battery voltage for SN50v3-LB.
605 605  
606 606  Ex1: 0x0B45 = 2885mV
607 607  
... ... @@ -619,6 +619,7 @@
619 619  
620 620  [[image:image-20230512180718-8.png||height="538" width="647"]]
621 621  
713 +
622 622  (% style="color:blue" %)**Example**:
623 623  
624 624  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -630,6 +630,7 @@
630 630  
631 631  ==== 2.3.3.3 Digital Input ====
632 632  
725 +
633 633  The digital input for pin PB15,
634 634  
635 635  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -639,28 +639,38 @@
639 639  (((
640 640  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
641 641  
642 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
735 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
736 +
737 +
643 643  )))
644 644  
645 645  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
646 646  
647 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
648 648  
649 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
743 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
650 650  
745 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
746 +
651 651  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
652 652  
653 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
654 654  
750 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
655 655  
752 +
753 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
754 +
755 +[[image:image-20230811113449-1.png||height="370" width="608"]]
756 +
656 656  ==== 2.3.3.5 Digital Interrupt ====
657 657  
658 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
659 659  
760 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
761 +
660 660  (% style="color:blue" %)** Interrupt connection method:**
661 661  
662 662  [[image:image-20230513105351-5.png||height="147" width="485"]]
663 663  
766 +
664 664  (% style="color:blue" %)**Example to use with door sensor :**
665 665  
666 666  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -667,22 +667,23 @@
667 667  
668 668  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
669 669  
670 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
773 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
671 671  
672 -(% style="color:blue" %)** Below is the installation example:**
673 673  
674 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
776 +(% style="color:blue" %)**Below is the installation example:**
675 675  
778 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
779 +
676 676  * (((
677 -One pin to SN50_v3's PA8 pin
781 +One pin to SN50v3-LB's PA8 pin
678 678  )))
679 679  * (((
680 -The other pin to SN50_v3's VDD pin
784 +The other pin to SN50v3-LB's VDD pin
681 681  )))
682 682  
683 683  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
684 684  
685 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
789 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
686 686  
687 687  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
688 688  
... ... @@ -694,29 +694,32 @@
694 694  
695 695  The command is:
696 696  
697 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
801 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
698 698  
699 699  Below shows some screen captures in TTN V3:
700 700  
701 701  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
702 702  
703 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
704 704  
808 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
809 +
705 705  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
706 706  
707 707  
708 708  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
709 709  
815 +
710 710  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
711 711  
712 712  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
713 713  
714 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
820 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
715 715  
822 +
716 716  Below is the connection to SHT20/ SHT31. The connection is as below:
717 717  
825 +[[image:image-20230610170152-2.png||height="501" width="846"]]
718 718  
719 -[[image:image-20230513103633-3.png||height="448" width="716"]]
720 720  
721 721  The device will be able to get the I2C sensor data now and upload to IoT Server.
722 722  
... ... @@ -735,14 +735,16 @@
735 735  
736 736  ==== 2.3.3.7  ​Distance Reading ====
737 737  
845 +
738 738  Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
739 739  
740 740  
741 741  ==== 2.3.3.8 Ultrasonic Sensor ====
742 742  
851 +
743 743  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
744 744  
745 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
854 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
746 746  
747 747  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
748 748  
... ... @@ -750,8 +750,9 @@
750 750  
751 751  [[image:image-20230512173903-6.png||height="596" width="715"]]
752 752  
753 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
754 754  
863 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
864 +
755 755  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
756 756  
757 757  **Example:**
... ... @@ -759,16 +759,17 @@
759 759  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
760 760  
761 761  
762 -
763 763  ==== 2.3.3.9  Battery Output - BAT pin ====
764 764  
765 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
766 766  
875 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
767 767  
877 +
768 768  ==== 2.3.3.10  +5V Output ====
769 769  
770 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
771 771  
881 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
882 +
772 772  The 5V output time can be controlled by AT Command.
773 773  
774 774  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -775,21 +775,54 @@
775 775  
776 776  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
777 777  
778 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
889 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
779 779  
780 780  
781 -
782 782  ==== 2.3.3.11  BH1750 Illumination Sensor ====
783 783  
894 +
784 784  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
785 785  
786 786  [[image:image-20230512172447-4.png||height="416" width="712"]]
787 787  
899 +
788 788  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
789 789  
790 790  
791 -==== 2.3.3.12  Working MOD ====
903 +==== 2.3.3.12  PWM MOD ====
792 792  
905 +
906 +* (((
907 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
908 +)))
909 +* (((
910 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
911 +)))
912 +
913 + [[image:image-20230817183249-3.png||height="320" width="417"]]
914 +
915 +* (((
916 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
917 +)))
918 +* (((
919 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
920 +)))
921 +* (((
922 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
923 +
924 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
925 +
926 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
927 +
928 +b) If the output duration is more than 30 seconds, better to use external power source. 
929 +
930 +
931 +
932 +)))
933 +
934 +==== 2.3.3.13  Working MOD ====
935 +
936 +
793 793  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
794 794  
795 795  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -805,8 +805,8 @@
805 805  * 6: MOD7
806 806  * 7: MOD8
807 807  * 8: MOD9
952 +* 9: MOD10
808 808  
809 -
810 810  == 2.4 Payload Decoder file ==
811 811  
812 812  
... ... @@ -817,7 +817,6 @@
817 817  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
818 818  
819 819  
820 -
821 821  == 2.5 Frequency Plans ==
822 822  
823 823  
... ... @@ -853,17 +853,18 @@
853 853  == 3.3 Commands special design for SN50v3-LB ==
854 854  
855 855  
856 -These commands only valid for S31x-LB, as below:
999 +These commands only valid for SN50v3-LB, as below:
857 857  
858 858  
859 859  === 3.3.1 Set Transmit Interval Time ===
860 860  
1004 +
861 861  Feature: Change LoRaWAN End Node Transmit Interval.
862 862  
863 863  (% style="color:blue" %)**AT Command: AT+TDC**
864 864  
865 865  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
866 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1010 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
867 867  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
868 868  30000
869 869  OK
... ... @@ -883,24 +883,25 @@
883 883  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
884 884  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
885 885  
886 -
887 887  === 3.3.2 Get Device Status ===
888 888  
1032 +
889 889  Send a LoRaWAN downlink to ask the device to send its status.
890 890  
891 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1035 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
892 892  
893 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
1037 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
894 894  
895 895  
896 896  === 3.3.3 Set Interrupt Mode ===
897 897  
1042 +
898 898  Feature, Set Interrupt mode for GPIO_EXIT.
899 899  
900 900  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
901 901  
902 902  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
903 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1048 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
904 904  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
905 905  0
906 906  OK
... ... @@ -915,7 +915,6 @@
915 915  )))|(% style="width:157px" %)OK
916 916  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
917 917  Set Transmit Interval
918 -
919 919  trigger by rising edge.
920 920  )))|(% style="width:157px" %)OK
921 921  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -931,9 +931,9 @@
931 931  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
932 932  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
933 933  
934 -
935 935  === 3.3.4 Set Power Output Duration ===
936 936  
1080 +
937 937  Control the output duration 5V . Before each sampling, device will
938 938  
939 939  ~1. first enable the power output to external sensor,
... ... @@ -945,7 +945,7 @@
945 945  (% style="color:blue" %)**AT Command: AT+5VT**
946 946  
947 947  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
948 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1092 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
949 949  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
950 950  500(default)
951 951  OK
... ... @@ -963,15 +963,15 @@
963 963  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
964 964  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
965 965  
966 -
967 967  === 3.3.5 Set Weighing parameters ===
968 968  
1112 +
969 969  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
970 970  
971 971  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
972 972  
973 973  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
974 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1118 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
975 975  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
976 976  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
977 977  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -988,9 +988,9 @@
988 988  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
989 989  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
990 990  
991 -
992 992  === 3.3.6 Set Digital pulse count value ===
993 993  
1137 +
994 994  Feature: Set the pulse count value.
995 995  
996 996  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -998,7 +998,7 @@
998 998  (% style="color:blue" %)**AT Command: AT+SETCNT**
999 999  
1000 1000  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1001 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1145 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1002 1002  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1003 1003  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1004 1004  
... ... @@ -1011,15 +1011,15 @@
1011 1011  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1012 1012  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1013 1013  
1014 -
1015 1015  === 3.3.7 Set Workmode ===
1016 1016  
1160 +
1017 1017  Feature: Switch working mode.
1018 1018  
1019 1019  (% style="color:blue" %)**AT Command: AT+MOD**
1020 1020  
1021 1021  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1022 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1166 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1023 1023  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1024 1024  OK
1025 1025  )))
... ... @@ -1035,10 +1035,101 @@
1035 1035  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1036 1036  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1037 1037  
1182 +(% id="H3.3.8PWMsetting" %)
1183 +=== 3.3.8 PWM setting ===
1038 1038  
1039 -= 4. Battery & Power Consumption =
1040 1040  
1186 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1041 1041  
1188 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1189 +
1190 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1191 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1192 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1193 +0(default)
1194 +
1195 +OK
1196 +)))
1197 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1198 +OK
1199 +
1200 +)))
1201 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1202 +
1203 +(% style="color:blue" %)**Downlink Command: 0x0C**
1204 +
1205 +Format: Command Code (0x0C) followed by 1 bytes.
1206 +
1207 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1208 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1209 +
1210 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1211 +
1212 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1213 +
1214 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1215 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1216 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1217 +0,0,0(default)
1218 +
1219 +OK
1220 +)))
1221 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1222 +OK
1223 +
1224 +)))
1225 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1226 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1227 +
1228 +
1229 +)))|(% style="width:137px" %)(((
1230 +OK
1231 +)))
1232 +
1233 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1234 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1235 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1236 +AT+PWMOUT=a,b,c
1237 +
1238 +
1239 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1240 +Set PWM output time, output frequency and output duty cycle.
1241 +
1242 +(((
1243 +
1244 +)))
1245 +
1246 +(((
1247 +
1248 +)))
1249 +)))|(% style="width:242px" %)(((
1250 +a: Output time (unit: seconds)
1251 +
1252 +The value ranges from 0 to 65535.
1253 +
1254 +When a=65535, PWM will always output.
1255 +)))
1256 +|(% style="width:242px" %)(((
1257 +b: Output frequency (unit: HZ)
1258 +)))
1259 +|(% style="width:242px" %)(((
1260 +c: Output duty cycle (unit: %)
1261 +
1262 +The value ranges from 0 to 100.
1263 +)))
1264 +
1265 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1266 +
1267 +Format: Command Code (0x0B01) followed by 6 bytes.
1268 +
1269 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1270 +
1271 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1272 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1273 +
1274 += 4. Battery & Power Cons =
1275 +
1276 +
1042 1042  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1043 1043  
1044 1044  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1048,27 +1048,43 @@
1048 1048  
1049 1049  
1050 1050  (% class="wikigeneratedid" %)
1051 -User can change firmware SN50v3-LB to:
1286 +**User can change firmware SN50v3-LB to:**
1052 1052  
1053 1053  * Change Frequency band/ region.
1054 1054  * Update with new features.
1055 1055  * Fix bugs.
1056 1056  
1057 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1292 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1058 1058  
1294 +**Methods to Update Firmware:**
1059 1059  
1060 -Methods to Update Firmware:
1296 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1297 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1061 1061  
1062 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1063 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1064 -
1065 1065  = 6. FAQ =
1066 1066  
1067 1067  == 6.1 Where can i find source code of SN50v3-LB? ==
1068 1068  
1303 +
1069 1069  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1070 1070  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1071 1071  
1307 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1308 +
1309 +
1310 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1311 +
1312 +
1313 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1314 +
1315 +
1316 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1317 +
1318 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1319 +
1320 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1321 +
1322 +
1072 1072  = 7. Order Info =
1073 1073  
1074 1074  
... ... @@ -1094,6 +1094,7 @@
1094 1094  
1095 1095  = 8. ​Packing Info =
1096 1096  
1348 +
1097 1097  (% style="color:#037691" %)**Package Includes**:
1098 1098  
1099 1099  * SN50v3-LB LoRaWAN Generic Node
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0