Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 4 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Edwin - Content
-
... ... @@ -42,7 +42,6 @@ 42 42 * 8500mAh Battery for long term use 43 43 44 44 45 - 46 46 == 1.3 Specification == 47 47 48 48 ... ... @@ -81,7 +81,6 @@ 81 81 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 82 82 83 83 84 - 85 85 == 1.4 Sleep mode and working mode == 86 86 87 87 ... ... @@ -110,7 +110,6 @@ 110 110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 111 111 112 112 113 - 114 114 == 1.6 BLE connection == 115 115 116 116 ... ... @@ -129,7 +129,7 @@ 129 129 == 1.7 Pin Definitions == 130 130 131 131 132 -[[image:image-20230 513102034-2.png]]129 +[[image:image-20230610163213-1.png||height="404" width="699"]] 133 133 134 134 135 135 == 1.8 Mechanical == ... ... @@ -142,7 +142,7 @@ 142 142 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 143 143 144 144 145 -== Hole Option == 142 +== 1.9 Hole Option == 146 146 147 147 148 148 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -157,7 +157,7 @@ 157 157 == 2.1 How it works == 158 158 159 159 160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 161 161 162 162 163 163 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -165,7 +165,7 @@ 165 165 166 166 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 167 167 168 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.165 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 169 169 170 170 171 171 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -214,7 +214,7 @@ 214 214 === 2.3.1 Device Status, FPORT~=5 === 215 215 216 216 217 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 214 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 218 218 219 219 The Payload format is as below. 220 220 ... ... @@ -222,44 +222,44 @@ 222 222 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 223 223 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 224 224 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 225 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT222 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 226 226 227 227 Example parse in TTNv3 228 228 229 229 230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 231 231 232 232 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 233 233 234 234 (% style="color:#037691" %)**Frequency Band**: 235 235 236 - *0x01: EU868233 +0x01: EU868 237 237 238 - *0x02: US915235 +0x02: US915 239 239 240 - *0x03: IN865237 +0x03: IN865 241 241 242 - *0x04: AU915239 +0x04: AU915 243 243 244 - *0x05: KZ865241 +0x05: KZ865 245 245 246 - *0x06: RU864243 +0x06: RU864 247 247 248 - *0x07: AS923245 +0x07: AS923 249 249 250 - *0x08: AS923-1247 +0x08: AS923-1 251 251 252 - *0x09: AS923-2249 +0x09: AS923-2 253 253 254 - *0x0a: AS923-3251 +0x0a: AS923-3 255 255 256 - *0x0b: CN470253 +0x0b: CN470 257 257 258 - *0x0c: EU433255 +0x0c: EU433 259 259 260 - *0x0d: KR920257 +0x0d: KR920 261 261 262 - *0x0e: MA869259 +0x0e: MA869 263 263 264 264 265 265 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -283,21 +283,22 @@ 283 283 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 284 284 285 285 286 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 283 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 287 287 288 288 For example: 289 289 290 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 287 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 291 291 292 292 293 293 (% style="color:red" %) **Important Notice:** 294 294 295 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 296 -1. All modes share the same Payload Explanation from HERE. 297 -1. By default, the device will send an uplink message every 20 minutes. 292 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 298 298 294 +2. All modes share the same Payload Explanation from HERE. 299 299 296 +3. By default, the device will send an uplink message every 20 minutes. 300 300 298 + 301 301 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 302 302 303 303 ... ... @@ -304,8 +304,8 @@ 304 304 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 305 305 306 306 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 307 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width: 40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**308 -| **Value**|Bat|(% style="width:191px" %)(((305 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 306 +|Value|Bat|(% style="width:191px" %)((( 309 309 Temperature(DS18B20)(PC13) 310 310 )))|(% style="width:78px" %)((( 311 311 ADC(PA4) ... ... @@ -320,7 +320,6 @@ 320 320 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 321 321 322 322 323 - 324 324 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 325 325 326 326 ... ... @@ -327,8 +327,8 @@ 327 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 328 328 329 329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 330 -|(% style="background-color:#d9e2f3; color:#0070c0; width: 40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**331 -| **Value**|BAT|(% style="width:196px" %)(((327 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 328 +|Value|BAT|(% style="width:196px" %)((( 332 332 Temperature(DS18B20)(PC13) 333 333 )))|(% style="width:87px" %)((( 334 334 ADC(PA4) ... ... @@ -335,7 +335,7 @@ 335 335 )))|(% style="width:189px" %)((( 336 336 Digital in(PB15) & Digital Interrupt(PA8) 337 337 )))|(% style="width:208px" %)((( 338 -Distance measure by:1) LIDAR-Lite V3HP 335 +Distance measure by: 1) LIDAR-Lite V3HP 339 339 Or 2) Ultrasonic Sensor 340 340 )))|(% style="width:117px" %)Reserved 341 341 ... ... @@ -349,7 +349,7 @@ 349 349 350 350 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 351 351 352 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 349 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 353 353 354 354 [[image:image-20230512173903-6.png||height="596" width="715"]] 355 355 ... ... @@ -358,7 +358,7 @@ 358 358 359 359 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 360 360 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 361 -| **Value**|BAT|(% style="width:183px" %)(((358 +|Value|BAT|(% style="width:183px" %)((( 362 362 Temperature(DS18B20)(PC13) 363 363 )))|(% style="width:173px" %)((( 364 364 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -366,8 +366,7 @@ 366 366 ADC(PA4) 367 367 )))|(% style="width:323px" %)((( 368 368 Distance measure by:1)TF-Mini plus LiDAR 369 -Or 370 -2) TF-Luna LiDAR 366 +Or 2) TF-Luna LiDAR 371 371 )))|(% style="width:188px" %)Distance signal strength 372 372 373 373 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] ... ... @@ -375,7 +375,7 @@ 375 375 376 376 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 377 377 378 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 374 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 379 379 380 380 [[image:image-20230512180609-7.png||height="555" width="802"]] 381 381 ... ... @@ -382,9 +382,9 @@ 382 382 383 383 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 384 384 385 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 386 386 387 -[[image:image-20230 513105207-4.png||height="469" width="802"]]383 +[[image:image-20230610170047-1.png||height="452" width="799"]] 388 388 389 389 390 390 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== ... ... @@ -395,8 +395,8 @@ 395 395 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 396 396 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 397 397 **Size(bytes)** 398 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 40px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1399 -| **Value**|(% style="width:68px" %)(((394 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 395 +|Value|(% style="width:68px" %)((( 400 400 ADC1(PA4) 401 401 )))|(% style="width:75px" %)((( 402 402 ADC2(PA5) ... ... @@ -420,7 +420,7 @@ 420 420 421 421 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 422 422 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 423 -| **Value**|BAT|(% style="width:186px" %)(((419 +|Value|BAT|(% style="width:186px" %)((( 424 424 Temperature1(DS18B20)(PC13) 425 425 )))|(% style="width:82px" %)((( 426 426 ADC(PA4) ... ... @@ -431,10 +431,10 @@ 431 431 432 432 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 433 433 430 + 434 434 [[image:image-20230513134006-1.png||height="559" width="736"]] 435 435 436 436 437 - 438 438 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 439 439 440 440 ... ... @@ -442,15 +442,18 @@ 442 442 443 443 Each HX711 need to be calibrated before used. User need to do below two steps: 444 444 445 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 446 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 441 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 442 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 447 447 1. ((( 448 448 Weight has 4 bytes, the unit is g. 445 + 446 + 447 + 449 449 ))) 450 450 451 451 For example: 452 452 453 -**AT+GETSENSORVALUE =0** 452 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 454 454 455 455 Response: Weight is 401 g 456 456 ... ... @@ -460,14 +460,12 @@ 460 460 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 461 461 **Size(bytes)** 462 462 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 463 -|**Value**|BAT|(% style="width:193px" %)((( 464 -Temperature(DS18B20) 465 -(PC13) 462 +|Value|BAT|(% style="width:193px" %)((( 463 +Temperature(DS18B20)(PC13) 466 466 )))|(% style="width:85px" %)((( 467 467 ADC(PA4) 468 468 )))|(% style="width:186px" %)((( 469 -Digital in(PB15) & 470 -Digital Interrupt(PA8) 467 +Digital in(PB15) & Digital Interrupt(PA8) 471 471 )))|(% style="width:100px" %)Weight 472 472 473 473 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] ... ... @@ -483,11 +483,12 @@ 483 483 484 484 [[image:image-20230512181814-9.png||height="543" width="697"]] 485 485 483 + 486 486 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 487 487 488 488 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 489 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**490 -| **Value**|BAT|(% style="width:256px" %)(((487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 488 +|Value|BAT|(% style="width:256px" %)((( 491 491 Temperature(DS18B20)(PC13) 492 492 )))|(% style="width:108px" %)((( 493 493 ADC(PA4) ... ... @@ -500,7 +500,6 @@ 500 500 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 501 501 502 502 503 - 504 504 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 505 505 506 506 ... ... @@ -508,7 +508,7 @@ 508 508 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 509 509 **Size(bytes)** 510 510 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 511 -| **Value**|BAT|(% style="width:188px" %)(((508 +|Value|BAT|(% style="width:188px" %)((( 512 512 Temperature(DS18B20) 513 513 (PC13) 514 514 )))|(% style="width:83px" %)((( ... ... @@ -526,8 +526,8 @@ 526 526 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 527 527 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 528 528 **Size(bytes)** 529 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 1 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2530 -| **Value**|BAT|(% style="width:207px" %)(((526 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 527 +|Value|BAT|(% style="width:207px" %)((( 531 531 Temperature(DS18B20) 532 532 (PC13) 533 533 )))|(% style="width:94px" %)((( ... ... @@ -549,19 +549,19 @@ 549 549 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 550 550 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 551 551 **Size(bytes)** 552 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4553 -| **Value**|BAT|(((554 -Temperature 1(DS18B20)555 -(PC13) 549 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 550 +|Value|BAT|((( 551 +Temperature 552 +(DS18B20)(PC13) 556 556 )))|((( 557 -Temperature2 (DS18B20)558 -(PB9) 554 +Temperature2 555 +(DS18B20)(PB9) 559 559 )))|((( 560 560 Digital Interrupt 561 561 (PB15) 562 562 )))|(% style="width:193px" %)((( 563 -Temperature3 (DS18B20)564 -(PB8) 560 +Temperature3 561 +(DS18B20)(PB8) 565 565 )))|(% style="width:78px" %)((( 566 566 Count1(PA8) 567 567 )))|(% style="width:78px" %)((( ... ... @@ -595,13 +595,13 @@ 595 595 596 596 The payload decoder function for TTN V3 are here: 597 597 598 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 595 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 599 599 600 600 601 601 ==== 2.3.3.1 Battery Info ==== 602 602 603 603 604 -Check the battery voltage for SN50v3. 601 +Check the battery voltage for SN50v3-LB. 605 605 606 606 Ex1: 0x0B45 = 2885mV 607 607 ... ... @@ -619,6 +619,7 @@ 619 619 620 620 [[image:image-20230512180718-8.png||height="538" width="647"]] 621 621 619 + 622 622 (% style="color:blue" %)**Example**: 623 623 624 624 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree ... ... @@ -630,6 +630,7 @@ 630 630 631 631 ==== 2.3.3.3 Digital Input ==== 632 632 631 + 633 633 The digital input for pin PB15, 634 634 635 635 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -639,28 +639,34 @@ 639 639 ((( 640 640 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 641 641 642 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 641 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 642 + 643 + 643 643 ))) 644 644 645 645 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 646 646 647 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 648 648 649 - Whenthemeasuredoutput voltage of thesensorisnot withinthe rangeof0Vand1.1V,theoutputvoltageterminal of theensor shall be divided The example in the following figure istoreduce the output voltage of the sensorby three timesIf it is necessary toreduce moretimes,calculate according to the formula in the figure and connect the corresponding resistance in series.649 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 650 650 651 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 652 + 651 651 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 652 652 653 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 654 654 656 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 655 655 658 + 656 656 ==== 2.3.3.5 Digital Interrupt ==== 657 657 658 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 659 659 662 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 663 + 660 660 (% style="color:blue" %)** Interrupt connection method:** 661 661 662 662 [[image:image-20230513105351-5.png||height="147" width="485"]] 663 663 668 + 664 664 (% style="color:blue" %)**Example to use with door sensor :** 665 665 666 666 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -667,22 +667,23 @@ 667 667 668 668 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 669 669 670 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.675 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 671 671 672 -(% style="color:blue" %)** Below is the installation example:** 673 673 674 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:678 +(% style="color:blue" %)**Below is the installation example:** 675 675 680 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 681 + 676 676 * ((( 677 -One pin to SN50 _v3's PA8 pin683 +One pin to SN50v3-LB's PA8 pin 678 678 ))) 679 679 * ((( 680 -The other pin to SN50 _v3's VDD pin686 +The other pin to SN50v3-LB's VDD pin 681 681 ))) 682 682 683 683 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 684 684 685 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 691 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 686 686 687 687 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 688 688 ... ... @@ -694,29 +694,32 @@ 694 694 695 695 The command is: 696 696 697 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 703 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 698 698 699 699 Below shows some screen captures in TTN V3: 700 700 701 701 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 702 702 703 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 704 704 710 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 711 + 705 705 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 706 706 707 707 708 708 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 709 709 717 + 710 710 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 711 711 712 712 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 713 713 714 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.722 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 715 715 724 + 716 716 Below is the connection to SHT20/ SHT31. The connection is as below: 717 717 727 +[[image:image-20230610170152-2.png||height="501" width="846"]] 718 718 719 -[[image:image-20230513103633-3.png||height="448" width="716"]] 720 720 721 721 The device will be able to get the I2C sensor data now and upload to IoT Server. 722 722 ... ... @@ -735,14 +735,16 @@ 735 735 736 736 ==== 2.3.3.7 Distance Reading ==== 737 737 747 + 738 738 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 739 739 740 740 741 741 ==== 2.3.3.8 Ultrasonic Sensor ==== 742 742 753 + 743 743 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 744 744 745 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.756 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 746 746 747 747 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 748 748 ... ... @@ -750,8 +750,9 @@ 750 750 751 751 [[image:image-20230512173903-6.png||height="596" width="715"]] 752 752 753 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 754 754 765 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 766 + 755 755 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 756 756 757 757 **Example:** ... ... @@ -759,16 +759,17 @@ 759 759 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 760 760 761 761 762 - 763 763 ==== 2.3.3.9 Battery Output - BAT pin ==== 764 764 765 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 766 766 777 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 767 767 779 + 768 768 ==== 2.3.3.10 +5V Output ==== 769 769 770 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 771 771 783 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 784 + 772 772 The 5V output time can be controlled by AT Command. 773 773 774 774 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -775,21 +775,23 @@ 775 775 776 776 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 777 777 778 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 791 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 779 779 780 780 781 - 782 782 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 783 783 796 + 784 784 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 785 785 786 786 [[image:image-20230512172447-4.png||height="416" width="712"]] 787 787 801 + 788 788 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 789 789 790 790 791 791 ==== 2.3.3.12 Working MOD ==== 792 792 807 + 793 793 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 794 794 795 795 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -817,7 +817,6 @@ 817 817 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 818 818 819 819 820 - 821 821 == 2.5 Frequency Plans == 822 822 823 823 ... ... @@ -837,6 +837,7 @@ 837 837 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 838 838 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 839 839 854 + 840 840 == 3.2 General Commands == 841 841 842 842 ... ... @@ -853,17 +853,18 @@ 853 853 == 3.3 Commands special design for SN50v3-LB == 854 854 855 855 856 -These commands only valid for S3 1x-LB, as below:871 +These commands only valid for SN50v3-LB, as below: 857 857 858 858 859 859 === 3.3.1 Set Transmit Interval Time === 860 860 876 + 861 861 Feature: Change LoRaWAN End Node Transmit Interval. 862 862 863 863 (% style="color:blue" %)**AT Command: AT+TDC** 864 864 865 865 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 866 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 882 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 867 867 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 868 868 30000 869 869 OK ... ... @@ -886,21 +886,23 @@ 886 886 887 887 === 3.3.2 Get Device Status === 888 888 905 + 889 889 Send a LoRaWAN downlink to ask the device to send its status. 890 890 891 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01908 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 892 892 893 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 910 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 894 894 895 895 896 896 === 3.3.3 Set Interrupt Mode === 897 897 915 + 898 898 Feature, Set Interrupt mode for GPIO_EXIT. 899 899 900 900 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 901 901 902 902 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 903 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**921 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 904 904 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 905 905 0 906 906 OK ... ... @@ -915,7 +915,6 @@ 915 915 )))|(% style="width:157px" %)OK 916 916 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 917 917 Set Transmit Interval 918 - 919 919 trigger by rising edge. 920 920 )))|(% style="width:157px" %)OK 921 921 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -934,6 +934,7 @@ 934 934 935 935 === 3.3.4 Set Power Output Duration === 936 936 954 + 937 937 Control the output duration 5V . Before each sampling, device will 938 938 939 939 ~1. first enable the power output to external sensor, ... ... @@ -945,7 +945,7 @@ 945 945 (% style="color:blue" %)**AT Command: AT+5VT** 946 946 947 947 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 948 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**966 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 949 949 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 950 950 500(default) 951 951 OK ... ... @@ -966,12 +966,13 @@ 966 966 967 967 === 3.3.5 Set Weighing parameters === 968 968 987 + 969 969 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 970 970 971 971 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 972 972 973 973 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 974 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**993 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 975 975 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 976 976 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 977 977 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -991,6 +991,7 @@ 991 991 992 992 === 3.3.6 Set Digital pulse count value === 993 993 1013 + 994 994 Feature: Set the pulse count value. 995 995 996 996 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -998,7 +998,7 @@ 998 998 (% style="color:blue" %)**AT Command: AT+SETCNT** 999 999 1000 1000 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1001 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1021 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1002 1002 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1003 1003 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1004 1004 ... ... @@ -1014,12 +1014,13 @@ 1014 1014 1015 1015 === 3.3.7 Set Workmode === 1016 1016 1037 + 1017 1017 Feature: Switch working mode. 1018 1018 1019 1019 (% style="color:blue" %)**AT Command: AT+MOD** 1020 1020 1021 1021 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1022 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1043 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1023 1023 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1024 1024 OK 1025 1025 ))) ... ... @@ -1048,27 +1048,34 @@ 1048 1048 1049 1049 1050 1050 (% class="wikigeneratedid" %) 1051 -User can change firmware SN50v3-LB to: 1072 +**User can change firmware SN50v3-LB to:** 1052 1052 1053 1053 * Change Frequency band/ region. 1054 1054 * Update with new features. 1055 1055 * Fix bugs. 1056 1056 1057 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1078 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]** 1058 1058 1080 +**Methods to Update Firmware:** 1059 1059 1060 -Methods to Update Firmware: 1082 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1083 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1061 1061 1062 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1063 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1064 1064 1065 1065 = 6. FAQ = 1066 1066 1067 1067 == 6.1 Where can i find source code of SN50v3-LB? == 1068 1068 1090 + 1069 1069 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1070 1070 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1071 1071 1094 + 1095 +== 6.2 How to generate PWM Output in SN50v3-L? == 1096 + 1097 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1098 + 1099 + 1072 1072 = 7. Order Info = 1073 1073 1074 1074 ... ... @@ -1092,8 +1092,10 @@ 1092 1092 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1093 1093 * (% style="color:red" %)**NH**(%%): No Hole 1094 1094 1123 + 1095 1095 = 8. Packing Info = 1096 1096 1126 + 1097 1097 (% style="color:#037691" %)**Package Includes**: 1098 1098 1099 1099 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1105,6 +1105,7 @@ 1105 1105 * Package Size / pcs : cm 1106 1106 * Weight / pcs : g 1107 1107 1138 + 1108 1108 = 9. Support = 1109 1109 1110 1110
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +359.5 KB - Content