<
From version < 43.45 >
edited by Xiaoling
on 2023/05/16 15:37
To version < 44.2 >
edited by Xiaoling
on 2023/05/18 08:57
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -41,8 +41,6 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 48  
... ... @@ -80,8 +80,6 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -109,8 +109,6 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 -
113 -
114 114  == 1.6 BLE connection ==
115 115  
116 116  
... ... @@ -283,21 +283,22 @@
283 283  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284 284  
285 285  
286 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
287 287  
288 288  For example:
289 289  
290 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
291 291  
292 292  
293 293  (% style="color:red" %) **Important Notice:**
294 294  
295 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
296 -1. All modes share the same Payload Explanation from HERE.
297 -1. By default, the device will send an uplink message every 20 minutes.
289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
298 298  
291 +2. All modes share the same Payload Explanation from HERE.
299 299  
293 +3. By default, the device will send an uplink message every 20 minutes.
300 300  
295 +
301 301  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
302 302  
303 303  
... ... @@ -304,7 +304,7 @@
304 304  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
305 305  
306 306  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
307 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
302 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
308 308  |**Value**|Bat|(% style="width:191px" %)(((
309 309  Temperature(DS18B20)(PC13)
310 310  )))|(% style="width:78px" %)(((
... ... @@ -327,7 +327,7 @@
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 329  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 -|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
325 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 331  |**Value**|BAT|(% style="width:196px" %)(((
332 332  Temperature(DS18B20)(PC13)
333 333  )))|(% style="width:87px" %)(((
... ... @@ -336,7 +336,8 @@
336 336  Digital in(PB15) & Digital Interrupt(PA8)
337 337  )))|(% style="width:208px" %)(((
338 338  Distance measure by:1) LIDAR-Lite V3HP
339 -Or 2) Ultrasonic Sensor
334 +Or
335 +2) Ultrasonic Sensor
340 340  )))|(% style="width:117px" %)Reserved
341 341  
342 342  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -349,7 +349,7 @@
349 349  
350 350  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
351 351  
352 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
348 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
353 353  
354 354  [[image:image-20230512173903-6.png||height="596" width="715"]]
355 355  
... ... @@ -375,7 +375,7 @@
375 375  
376 376  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
377 377  
378 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
374 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
379 379  
380 380  [[image:image-20230512180609-7.png||height="555" width="802"]]
381 381  
... ... @@ -382,7 +382,7 @@
382 382  
383 383  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
384 384  
385 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
386 386  
387 387  [[image:image-20230513105207-4.png||height="469" width="802"]]
388 388  
... ... @@ -395,7 +395,7 @@
395 395  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
396 396  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
397 397  **Size(bytes)**
398 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
394 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
399 399  |**Value**|(% style="width:68px" %)(((
400 400  ADC1(PA4)
401 401  )))|(% style="width:75px" %)(((
... ... @@ -442,15 +442,18 @@
442 442  
443 443  Each HX711 need to be calibrated before used. User need to do below two steps:
444 444  
445 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
446 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
441 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
447 447  1. (((
448 448  Weight has 4 bytes, the unit is g.
445 +
446 +
447 +
449 449  )))
450 450  
451 451  For example:
452 452  
453 -**AT+GETSENSORVALUE =0**
452 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
454 454  
455 455  Response:  Weight is 401 g
456 456  
... ... @@ -461,13 +461,11 @@
461 461  **Size(bytes)**
462 462  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
463 463  |**Value**|BAT|(% style="width:193px" %)(((
464 -Temperature(DS18B20)
465 -(PC13)
463 +Temperature(DS18B20)(PC13)
466 466  )))|(% style="width:85px" %)(((
467 467  ADC(PA4)
468 468  )))|(% style="width:186px" %)(((
469 -Digital in(PB15) &
470 -Digital Interrupt(PA8)
467 +Digital in(PB15) & Digital Interrupt(PA8)
471 471  )))|(% style="width:100px" %)Weight
472 472  
473 473  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -483,10 +483,11 @@
483 483  
484 484  [[image:image-20230512181814-9.png||height="543" width="697"]]
485 485  
483 +
486 486  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
487 487  
488 488  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
489 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
490 490  |**Value**|BAT|(% style="width:256px" %)(((
491 491  Temperature(DS18B20)(PC13)
492 492  )))|(% style="width:108px" %)(((
... ... @@ -526,7 +526,7 @@
526 526  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
527 527  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
528 528  **Size(bytes)**
529 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
527 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
530 530  |**Value**|BAT|(% style="width:207px" %)(((
531 531  Temperature(DS18B20)
532 532  (PC13)
... ... @@ -549,19 +549,19 @@
549 549  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
550 550  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
551 551  **Size(bytes)**
552 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
550 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
553 553  |**Value**|BAT|(((
554 -Temperature1(DS18B20)
555 -(PC13)
552 +Temperature
553 +(DS18B20)(PC13)
556 556  )))|(((
557 -Temperature2(DS18B20)
558 -(PB9)
555 +Temperature2
556 +(DS18B20)(PB9)
559 559  )))|(((
560 560  Digital Interrupt
561 561  (PB15)
562 562  )))|(% style="width:193px" %)(((
563 -Temperature3(DS18B20)
564 -(PB8)
561 +Temperature3
562 +(DS18B20)(PB8)
565 565  )))|(% style="width:78px" %)(((
566 566  Count1(PA8)
567 567  )))|(% style="width:78px" %)(((
... ... @@ -595,13 +595,13 @@
595 595  
596 596  The payload decoder function for TTN V3 are here:
597 597  
598 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
596 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
599 599  
600 600  
601 601  ==== 2.3.3.1 Battery Info ====
602 602  
603 603  
604 -Check the battery voltage for SN50v3.
602 +Check the battery voltage for SN50v3-LB.
605 605  
606 606  Ex1: 0x0B45 = 2885mV
607 607  
... ... @@ -619,6 +619,7 @@
619 619  
620 620  [[image:image-20230512180718-8.png||height="538" width="647"]]
621 621  
620 +
622 622  (% style="color:blue" %)**Example**:
623 623  
624 624  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -630,6 +630,7 @@
630 630  
631 631  ==== 2.3.3.3 Digital Input ====
632 632  
632 +
633 633  The digital input for pin PB15,
634 634  
635 635  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -639,11 +639,14 @@
639 639  (((
640 640  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
641 641  
642 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
642 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
643 +
644 +
643 643  )))
644 644  
645 645  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
646 646  
649 +
647 647  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
648 648  
649 649  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -650,17 +650,20 @@
650 650  
651 651  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
652 652  
653 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
654 654  
657 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
655 655  
659 +
656 656  ==== 2.3.3.5 Digital Interrupt ====
657 657  
658 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
659 659  
663 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
664 +
660 660  (% style="color:blue" %)** Interrupt connection method:**
661 661  
662 662  [[image:image-20230513105351-5.png||height="147" width="485"]]
663 663  
669 +
664 664  (% style="color:blue" %)**Example to use with door sensor :**
665 665  
666 666  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -667,22 +667,23 @@
667 667  
668 668  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
669 669  
670 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
676 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
671 671  
672 -(% style="color:blue" %)** Below is the installation example:**
673 673  
674 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
679 +(% style="color:blue" %)**Below is the installation example:**
675 675  
681 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
682 +
676 676  * (((
677 -One pin to SN50_v3's PA8 pin
684 +One pin to SN50v3-LB's PA8 pin
678 678  )))
679 679  * (((
680 -The other pin to SN50_v3's VDD pin
687 +The other pin to SN50v3-LB's VDD pin
681 681  )))
682 682  
683 683  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
684 684  
685 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
692 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
686 686  
687 687  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
688 688  
... ... @@ -694,12 +694,13 @@
694 694  
695 695  The command is:
696 696  
697 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
704 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
698 698  
699 699  Below shows some screen captures in TTN V3:
700 700  
701 701  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
702 702  
710 +
703 703  In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
704 704  
705 705  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
... ... @@ -707,15 +707,16 @@
707 707  
708 708  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
709 709  
718 +
710 710  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
711 711  
712 712  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
713 713  
714 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
723 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
715 715  
725 +
716 716  Below is the connection to SHT20/ SHT31. The connection is as below:
717 717  
718 -
719 719  [[image:image-20230513103633-3.png||height="448" width="716"]]
720 720  
721 721  The device will be able to get the I2C sensor data now and upload to IoT Server.
... ... @@ -735,14 +735,16 @@
735 735  
736 736  ==== 2.3.3.7  ​Distance Reading ====
737 737  
747 +
738 738  Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
739 739  
740 740  
741 741  ==== 2.3.3.8 Ultrasonic Sensor ====
742 742  
753 +
743 743  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
744 744  
745 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
756 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
746 746  
747 747  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
748 748  
... ... @@ -750,8 +750,9 @@
750 750  
751 751  [[image:image-20230512173903-6.png||height="596" width="715"]]
752 752  
753 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
754 754  
765 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
766 +
755 755  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
756 756  
757 757  **Example:**
... ... @@ -759,16 +759,17 @@
759 759  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
760 760  
761 761  
762 -
763 763  ==== 2.3.3.9  Battery Output - BAT pin ====
764 764  
776 +
765 765  The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
766 766  
767 767  
768 768  ==== 2.3.3.10  +5V Output ====
769 769  
770 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
771 771  
783 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
784 +
772 772  The 5V output time can be controlled by AT Command.
773 773  
774 774  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -778,18 +778,20 @@
778 778  By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
779 779  
780 780  
781 -
782 782  ==== 2.3.3.11  BH1750 Illumination Sensor ====
783 783  
796 +
784 784  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
785 785  
786 786  [[image:image-20230512172447-4.png||height="416" width="712"]]
787 787  
801 +
788 788  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
789 789  
790 790  
791 791  ==== 2.3.3.12  Working MOD ====
792 792  
807 +
793 793  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
794 794  
795 795  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -806,7 +806,6 @@
806 806  * 7: MOD8
807 807  * 8: MOD9
808 808  
809 -
810 810  == 2.4 Payload Decoder file ==
811 811  
812 812  
... ... @@ -817,7 +817,6 @@
817 817  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
818 818  
819 819  
820 -
821 821  == 2.5 Frequency Plans ==
822 822  
823 823  
... ... @@ -853,11 +853,12 @@
853 853  == 3.3 Commands special design for SN50v3-LB ==
854 854  
855 855  
856 -These commands only valid for S31x-LB, as below:
869 +These commands only valid for SN50v3-LB, as below:
857 857  
858 858  
859 859  === 3.3.1 Set Transmit Interval Time ===
860 860  
874 +
861 861  Feature: Change LoRaWAN End Node Transmit Interval.
862 862  
863 863  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -883,9 +883,9 @@
883 883  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
884 884  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
885 885  
886 -
887 887  === 3.3.2 Get Device Status ===
888 888  
902 +
889 889  Send a LoRaWAN downlink to ask the device to send its status.
890 890  
891 891  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
... ... @@ -895,6 +895,7 @@
895 895  
896 896  === 3.3.3 Set Interrupt Mode ===
897 897  
912 +
898 898  Feature, Set Interrupt mode for GPIO_EXIT.
899 899  
900 900  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
... ... @@ -915,7 +915,6 @@
915 915  )))|(% style="width:157px" %)OK
916 916  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
917 917  Set Transmit Interval
918 -
919 919  trigger by rising edge.
920 920  )))|(% style="width:157px" %)OK
921 921  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -931,9 +931,9 @@
931 931  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
932 932  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
933 933  
934 -
935 935  === 3.3.4 Set Power Output Duration ===
936 936  
950 +
937 937  Control the output duration 5V . Before each sampling, device will
938 938  
939 939  ~1. first enable the power output to external sensor,
... ... @@ -963,9 +963,9 @@
963 963  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
964 964  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
965 965  
966 -
967 967  === 3.3.5 Set Weighing parameters ===
968 968  
982 +
969 969  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
970 970  
971 971  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
... ... @@ -988,9 +988,9 @@
988 988  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
989 989  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
990 990  
991 -
992 992  === 3.3.6 Set Digital pulse count value ===
993 993  
1007 +
994 994  Feature: Set the pulse count value.
995 995  
996 996  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1011,9 +1011,9 @@
1011 1011  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1012 1012  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1013 1013  
1014 -
1015 1015  === 3.3.7 Set Workmode ===
1016 1016  
1030 +
1017 1017  Feature: Switch working mode.
1018 1018  
1019 1019  (% style="color:blue" %)**AT Command: AT+MOD**
... ... @@ -1035,7 +1035,6 @@
1035 1035  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1036 1036  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1037 1037  
1038 -
1039 1039  = 4. Battery & Power Consumption =
1040 1040  
1041 1041  
... ... @@ -1066,6 +1066,7 @@
1066 1066  
1067 1067  == 6.1 Where can i find source code of SN50v3-LB? ==
1068 1068  
1082 +
1069 1069  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1070 1070  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1071 1071  
... ... @@ -1094,6 +1094,7 @@
1094 1094  
1095 1095  = 8. ​Packing Info =
1096 1096  
1111 +
1097 1097  (% style="color:#037691" %)**Package Includes**:
1098 1098  
1099 1099  * SN50v3-LB LoRaWAN Generic Node
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0