Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 15 added, 0 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.ting - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,7 +27,6 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -123,7 +123,7 @@ 123 123 == 1.7 Pin Definitions == 124 124 125 125 126 -[[image:image-20230 513102034-2.png]]125 +[[image:image-20230610163213-1.png||height="404" width="699"]] 127 127 128 128 129 129 == 1.8 Mechanical == ... ... @@ -136,7 +136,7 @@ 136 136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 137 137 138 138 139 -== Hole Option == 138 +== 1.9 Hole Option == 140 140 141 141 142 142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -151,7 +151,7 @@ 151 151 == 2.1 How it works == 152 152 153 153 154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 155 155 156 156 157 157 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -159,7 +159,7 @@ 159 159 160 160 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 161 161 162 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.161 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 163 164 164 165 165 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -208,7 +208,7 @@ 208 208 === 2.3.1 Device Status, FPORT~=5 === 209 209 210 210 211 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 210 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 212 212 213 213 The Payload format is as below. 214 214 ... ... @@ -216,44 +216,44 @@ 216 216 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 217 217 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 218 218 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 219 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT218 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 220 220 221 221 Example parse in TTNv3 222 222 223 223 224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 225 225 226 226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 227 227 228 228 (% style="color:#037691" %)**Frequency Band**: 229 229 230 - *0x01: EU868229 +0x01: EU868 231 231 232 - *0x02: US915231 +0x02: US915 233 233 234 - *0x03: IN865233 +0x03: IN865 235 235 236 - *0x04: AU915235 +0x04: AU915 237 237 238 - *0x05: KZ865237 +0x05: KZ865 239 239 240 - *0x06: RU864239 +0x06: RU864 241 241 242 - *0x07: AS923241 +0x07: AS923 243 243 244 - *0x08: AS923-1243 +0x08: AS923-1 245 245 246 - *0x09: AS923-2245 +0x09: AS923-2 247 247 248 - *0x0a: AS923-3247 +0x0a: AS923-3 249 249 250 - *0x0b: CN470249 +0x0b: CN470 251 251 252 - *0x0c: EU433251 +0x0c: EU433 253 253 254 - *0x0d: KR920253 +0x0d: KR920 255 255 256 - *0x0e: MA869255 +0x0e: MA869 257 257 258 258 259 259 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -277,19 +277,22 @@ 277 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 278 278 279 279 280 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 279 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 281 281 282 282 For example: 283 283 284 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 283 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 285 285 286 286 287 287 (% style="color:red" %) **Important Notice:** 288 288 289 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 290 -1. All modes share the same Payload Explanation from HERE. 291 -1. By default, the device will send an uplink message every 20 minutes. 288 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 292 292 290 +2. All modes share the same Payload Explanation from HERE. 291 + 292 +3. By default, the device will send an uplink message every 20 minutes. 293 + 294 + 293 293 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 294 294 295 295 ... ... @@ -296,8 +296,8 @@ 296 296 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 297 297 298 298 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 299 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width: 40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**300 -| **Value**|Bat|(% style="width:191px" %)(((301 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 302 +|Value|Bat|(% style="width:191px" %)((( 301 301 Temperature(DS18B20)(PC13) 302 302 )))|(% style="width:78px" %)((( 303 303 ADC(PA4) ... ... @@ -314,11 +314,12 @@ 314 314 315 315 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 316 316 319 + 317 317 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 318 318 319 319 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 320 -|(% style="background-color:#d9e2f3; color:#0070c0; width: 40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**321 -| **Value**|BAT|(% style="width:196px" %)(((323 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 324 +|Value|BAT|(% style="width:196px" %)((( 322 322 Temperature(DS18B20)(PC13) 323 323 )))|(% style="width:87px" %)((( 324 324 ADC(PA4) ... ... @@ -325,27 +325,30 @@ 325 325 )))|(% style="width:189px" %)((( 326 326 Digital in(PB15) & Digital Interrupt(PA8) 327 327 )))|(% style="width:208px" %)((( 328 -Distance measure by:1) LIDAR-Lite V3HP 331 +Distance measure by: 1) LIDAR-Lite V3HP 329 329 Or 2) Ultrasonic Sensor 330 330 )))|(% style="width:117px" %)Reserved 331 331 332 332 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 333 333 337 + 334 334 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 335 335 336 336 [[image:image-20230512173758-5.png||height="563" width="712"]] 337 337 342 + 338 338 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 339 339 340 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 345 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 341 341 342 342 [[image:image-20230512173903-6.png||height="596" width="715"]] 343 343 349 + 344 344 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 345 345 346 346 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 347 347 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 348 -| **Value**|BAT|(% style="width:183px" %)(((354 +|Value|BAT|(% style="width:183px" %)((( 349 349 Temperature(DS18B20)(PC13) 350 350 )))|(% style="width:173px" %)((( 351 351 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -353,34 +353,36 @@ 353 353 ADC(PA4) 354 354 )))|(% style="width:323px" %)((( 355 355 Distance measure by:1)TF-Mini plus LiDAR 356 -Or 357 -2) TF-Luna LiDAR 362 +Or 2) TF-Luna LiDAR 358 358 )))|(% style="width:188px" %)Distance signal strength 359 359 360 360 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 361 361 367 + 362 362 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 363 363 364 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 370 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 365 365 366 366 [[image:image-20230512180609-7.png||height="555" width="802"]] 367 367 374 + 368 368 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 369 369 370 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 371 371 372 -[[image:image-20230 513105207-4.png||height="469" width="802"]]379 +[[image:image-20230610170047-1.png||height="452" width="799"]] 373 373 374 374 375 375 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 376 376 384 + 377 377 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 378 378 379 379 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 380 380 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 381 381 **Size(bytes)** 382 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 40px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1383 -| **Value**|(% style="width:68px" %)(((390 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 391 +|Value|(% style="width:68px" %)((( 384 384 ADC1(PA4) 385 385 )))|(% style="width:75px" %)((( 386 386 ADC2(PA5) ... ... @@ -404,7 +404,7 @@ 404 404 405 405 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 406 406 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 407 -| **Value**|BAT|(% style="width:186px" %)(((415 +|Value|BAT|(% style="width:186px" %)((( 408 408 Temperature1(DS18B20)(PC13) 409 409 )))|(% style="width:82px" %)((( 410 410 ADC(PA4) ... ... @@ -415,24 +415,29 @@ 415 415 416 416 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 417 417 426 + 418 418 [[image:image-20230513134006-1.png||height="559" width="736"]] 419 419 420 420 421 421 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 422 422 432 + 423 423 [[image:image-20230512164658-2.png||height="532" width="729"]] 424 424 425 425 Each HX711 need to be calibrated before used. User need to do below two steps: 426 426 427 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 428 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 437 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 438 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 429 429 1. ((( 430 430 Weight has 4 bytes, the unit is g. 441 + 442 + 443 + 431 431 ))) 432 432 433 433 For example: 434 434 435 -**AT+GETSENSORVALUE =0** 448 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 436 436 437 437 Response: Weight is 401 g 438 438 ... ... @@ -442,14 +442,12 @@ 442 442 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 443 443 **Size(bytes)** 444 444 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 445 -|**Value**|BAT|(% style="width:193px" %)((( 446 -Temperature(DS18B20) 447 -(PC13) 458 +|Value|BAT|(% style="width:193px" %)((( 459 +Temperature(DS18B20)(PC13) 448 448 )))|(% style="width:85px" %)((( 449 449 ADC(PA4) 450 450 )))|(% style="width:186px" %)((( 451 -Digital in(PB15) & 452 -Digital Interrupt(PA8) 463 +Digital in(PB15) & Digital Interrupt(PA8) 453 453 )))|(% style="width:100px" %)Weight 454 454 455 455 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] ... ... @@ -457,6 +457,7 @@ 457 457 458 458 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 459 459 471 + 460 460 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 461 461 462 462 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -463,11 +463,12 @@ 463 463 464 464 [[image:image-20230512181814-9.png||height="543" width="697"]] 465 465 466 -(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 467 467 479 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 480 + 468 468 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 469 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**470 -| **Value**|BAT|(% style="width:256px" %)(((482 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 483 +|Value|BAT|(% style="width:256px" %)((( 471 471 Temperature(DS18B20)(PC13) 472 472 )))|(% style="width:108px" %)((( 473 473 ADC(PA4) ... ... @@ -482,11 +482,12 @@ 482 482 483 483 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 484 484 498 + 485 485 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 486 486 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 487 487 **Size(bytes)** 488 488 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 489 -| **Value**|BAT|(% style="width:188px" %)(((503 +|Value|BAT|(% style="width:188px" %)((( 490 490 Temperature(DS18B20) 491 491 (PC13) 492 492 )))|(% style="width:83px" %)((( ... ... @@ -497,13 +497,15 @@ 497 497 498 498 [[image:image-20230513111203-7.png||height="324" width="975"]] 499 499 514 + 500 500 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 501 501 517 + 502 502 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 503 503 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 504 504 **Size(bytes)** 505 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 1 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2506 -| **Value**|BAT|(% style="width:207px" %)(((521 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 522 +|Value|BAT|(% style="width:207px" %)((( 507 507 Temperature(DS18B20) 508 508 (PC13) 509 509 )))|(% style="width:94px" %)((( ... ... @@ -521,22 +521,23 @@ 521 521 522 522 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 523 523 540 + 524 524 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 525 525 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 526 526 **Size(bytes)** 527 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4528 -| **Value**|BAT|(((529 -Temperature 1(DS18B20)530 -(PC13) 544 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 545 +|Value|BAT|((( 546 +Temperature 547 +(DS18B20)(PC13) 531 531 )))|((( 532 -Temperature2 (DS18B20)533 -(PB9) 549 +Temperature2 550 +(DS18B20)(PB9) 534 534 )))|((( 535 535 Digital Interrupt 536 536 (PB15) 537 537 )))|(% style="width:193px" %)((( 538 -Temperature3 (DS18B20)539 -(PB8) 555 +Temperature3 556 +(DS18B20)(PB8) 540 540 )))|(% style="width:78px" %)((( 541 541 Count1(PA8) 542 542 )))|(% style="width:78px" %)((( ... ... @@ -561,9 +561,89 @@ 561 561 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 562 562 563 563 581 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 564 564 583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 + 585 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 + 587 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 + 589 + 590 +===== 2.3.2.10.a Uplink, PWM input capture ===== 591 + 592 + 593 +[[image:image-20230817172209-2.png||height="439" width="683"]] 594 + 595 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 596 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 +|Value|Bat|(% style="width:191px" %)((( 598 +Temperature(DS18B20)(PC13) 599 +)))|(% style="width:78px" %)((( 600 +ADC(PA4) 601 +)))|(% style="width:135px" %)((( 602 +PWM_Setting 603 + 604 +&Digital Interrupt(PA8) 605 +)))|(% style="width:70px" %)((( 606 +Pulse period 607 +)))|(% style="width:89px" %)((( 608 +Duration of high level 609 +))) 610 + 611 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 612 + 613 + 614 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 615 + 616 +**Frequency:** 617 + 618 +(% class="MsoNormal" %) 619 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 620 + 621 +(% class="MsoNormal" %) 622 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 623 + 624 + 625 +(% class="MsoNormal" %) 626 +**Duty cycle:** 627 + 628 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 629 + 630 +[[image:image-20230818092200-1.png||height="344" width="627"]] 631 + 632 +===== 2.3.2.10.b Uplink, PWM input capture ===== 633 + 634 + 635 + 636 + 637 + 638 + 639 + 640 +===== 2.3.2.10.c Downlink, PWM output ===== 641 + 642 + 643 +[[image:image-20230817173800-3.png||height="412" width="685"]] 644 + 645 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 646 + 647 + xx xx xx is the output frequency, the unit is HZ. 648 + 649 + yy is the duty cycle of the output, the unit is %. 650 + 651 + zz zz is the time delay of the output, the unit is ms. 652 + 653 + 654 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 655 + 656 +The oscilloscope displays as follows: 657 + 658 +[[image:image-20230817173858-5.png||height="694" width="921"]] 659 + 660 + 565 565 === 2.3.3 Decode payload === 566 566 663 + 567 567 While using TTN V3 network, you can add the payload format to decode the payload. 568 568 569 569 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -570,13 +570,14 @@ 570 570 571 571 The payload decoder function for TTN V3 are here: 572 572 573 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 670 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 574 574 575 575 576 576 ==== 2.3.3.1 Battery Info ==== 577 577 578 -Check the battery voltage for SN50v3. 579 579 676 +Check the battery voltage for SN50v3-LB. 677 + 580 580 Ex1: 0x0B45 = 2885mV 581 581 582 582 Ex2: 0x0B49 = 2889mV ... ... @@ -584,14 +584,16 @@ 584 584 585 585 ==== 2.3.3.2 Temperature (DS18B20) ==== 586 586 685 + 587 587 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 588 588 589 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]688 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 590 590 591 591 (% style="color:blue" %)**Connection:** 592 592 593 593 [[image:image-20230512180718-8.png||height="538" width="647"]] 594 594 694 + 595 595 (% style="color:blue" %)**Example**: 596 596 597 597 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree ... ... @@ -603,6 +603,7 @@ 603 603 604 604 ==== 2.3.3.3 Digital Input ==== 605 605 706 + 606 606 The digital input for pin PB15, 607 607 608 608 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -612,28 +612,38 @@ 612 612 ((( 613 613 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 614 614 615 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 716 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 717 + 718 + 616 616 ))) 617 617 618 618 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 619 619 620 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 621 621 622 - Whenthemeasuredoutput voltage of thesensorisnot withinthe rangeof0Vand1.1V,theoutputvoltageterminal of theensor shall be divided The example in the following figure istoreduce the output voltage of the sensorby three timesIf it is necessary toreduce moretimes,calculate according to the formula in the figure and connect the corresponding resistance in series.724 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 623 623 726 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 727 + 624 624 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 625 625 626 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 627 627 731 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 628 628 733 + 734 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 735 + 736 +[[image:image-20230811113449-1.png||height="370" width="608"]] 737 + 629 629 ==== 2.3.3.5 Digital Interrupt ==== 630 630 631 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 632 632 741 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 742 + 633 633 (% style="color:blue" %)** Interrupt connection method:** 634 634 635 635 [[image:image-20230513105351-5.png||height="147" width="485"]] 636 636 747 + 637 637 (% style="color:blue" %)**Example to use with door sensor :** 638 638 639 639 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -640,22 +640,23 @@ 640 640 641 641 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 642 642 643 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.754 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 644 644 645 -(% style="color:blue" %)** Below is the installation example:** 646 646 647 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:757 +(% style="color:blue" %)**Below is the installation example:** 648 648 759 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 760 + 649 649 * ((( 650 -One pin to SN50 _v3's PA8 pin762 +One pin to SN50v3-LB's PA8 pin 651 651 ))) 652 652 * ((( 653 -The other pin to SN50 _v3's VDD pin765 +The other pin to SN50v3-LB's VDD pin 654 654 ))) 655 655 656 656 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 657 657 658 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 770 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 659 659 660 660 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 661 661 ... ... @@ -667,29 +667,32 @@ 667 667 668 668 The command is: 669 669 670 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 782 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 671 671 672 672 Below shows some screen captures in TTN V3: 673 673 674 674 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 675 675 676 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 677 677 789 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 790 + 678 678 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 679 679 680 680 681 681 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 682 682 796 + 683 683 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 684 684 685 685 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 686 686 687 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.801 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 688 688 803 + 689 689 Below is the connection to SHT20/ SHT31. The connection is as below: 690 690 806 +[[image:image-20230610170152-2.png||height="501" width="846"]] 691 691 692 -[[image:image-20230513103633-3.png||height="448" width="716"]] 693 693 694 694 The device will be able to get the I2C sensor data now and upload to IoT Server. 695 695 ... ... @@ -708,14 +708,16 @@ 708 708 709 709 ==== 2.3.3.7 Distance Reading ==== 710 710 826 + 711 711 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 712 712 713 713 714 714 ==== 2.3.3.8 Ultrasonic Sensor ==== 715 715 832 + 716 716 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 717 717 718 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.835 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 719 719 720 720 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 721 721 ... ... @@ -723,8 +723,9 @@ 723 723 724 724 [[image:image-20230512173903-6.png||height="596" width="715"]] 725 725 726 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 727 727 844 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 845 + 728 728 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 729 729 730 730 **Example:** ... ... @@ -732,16 +732,17 @@ 732 732 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 733 733 734 734 735 - 736 736 ==== 2.3.3.9 Battery Output - BAT pin ==== 737 737 738 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 739 739 856 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 740 740 858 + 741 741 ==== 2.3.3.10 +5V Output ==== 742 742 743 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 744 744 862 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 863 + 745 745 The 5V output time can be controlled by AT Command. 746 746 747 747 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -748,21 +748,54 @@ 748 748 749 749 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 750 750 751 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 870 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 752 752 753 753 754 - 755 755 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 756 756 875 + 757 757 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 758 758 759 759 [[image:image-20230512172447-4.png||height="416" width="712"]] 760 760 880 + 761 761 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 762 762 763 763 764 -==== 2.3.3.12 W orkingMOD ====884 +==== 2.3.3.12 PWM MOD ==== 765 765 886 + 887 +* ((( 888 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 889 +))) 890 +* ((( 891 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 892 +))) 893 + 894 + [[image:image-20230817183249-3.png||height="320" width="417"]] 895 + 896 +* ((( 897 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 898 +))) 899 +* ((( 900 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 901 +))) 902 +* ((( 903 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 904 + 905 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 906 + 907 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 908 + 909 +b) If the output duration is more than 30 seconds, better to use external power source. 910 + 911 + 912 + 913 +))) 914 + 915 +==== 2.3.3.13 Working MOD ==== 916 + 917 + 766 766 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 767 767 768 768 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -778,8 +778,8 @@ 778 778 * 6: MOD7 779 779 * 7: MOD8 780 780 * 8: MOD9 933 +* 9: MOD10 781 781 782 - 783 783 == 2.4 Payload Decoder file == 784 784 785 785 ... ... @@ -790,7 +790,6 @@ 790 790 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 791 791 792 792 793 - 794 794 == 2.5 Frequency Plans == 795 795 796 796 ... ... @@ -826,17 +826,18 @@ 826 826 == 3.3 Commands special design for SN50v3-LB == 827 827 828 828 829 -These commands only valid for S3 1x-LB, as below:980 +These commands only valid for SN50v3-LB, as below: 830 830 831 831 832 832 === 3.3.1 Set Transmit Interval Time === 833 833 985 + 834 834 Feature: Change LoRaWAN End Node Transmit Interval. 835 835 836 836 (% style="color:blue" %)**AT Command: AT+TDC** 837 837 838 838 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 839 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 991 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 840 840 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 841 841 30000 842 842 OK ... ... @@ -856,24 +856,25 @@ 856 856 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 857 857 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 858 858 859 - 860 860 === 3.3.2 Get Device Status === 861 861 1013 + 862 862 Send a LoRaWAN downlink to ask the device to send its status. 863 863 864 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 011016 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 865 865 866 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 1018 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 867 867 868 868 869 869 === 3.3.3 Set Interrupt Mode === 870 870 1023 + 871 871 Feature, Set Interrupt mode for GPIO_EXIT. 872 872 873 873 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 874 874 875 875 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 876 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1029 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 877 877 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 878 878 0 879 879 OK ... ... @@ -888,7 +888,6 @@ 888 888 )))|(% style="width:157px" %)OK 889 889 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 890 890 Set Transmit Interval 891 - 892 892 trigger by rising edge. 893 893 )))|(% style="width:157px" %)OK 894 894 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -904,9 +904,9 @@ 904 904 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 905 905 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 906 906 907 - 908 908 === 3.3.4 Set Power Output Duration === 909 909 1061 + 910 910 Control the output duration 5V . Before each sampling, device will 911 911 912 912 ~1. first enable the power output to external sensor, ... ... @@ -918,7 +918,7 @@ 918 918 (% style="color:blue" %)**AT Command: AT+5VT** 919 919 920 920 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 921 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1073 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 922 922 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 923 923 500(default) 924 924 OK ... ... @@ -936,15 +936,15 @@ 936 936 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 937 937 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 938 938 939 - 940 940 === 3.3.5 Set Weighing parameters === 941 941 1093 + 942 942 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 943 943 944 944 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 945 945 946 946 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 947 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1099 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 948 948 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 949 949 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 950 950 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -961,9 +961,9 @@ 961 961 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 962 962 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 963 963 964 - 965 965 === 3.3.6 Set Digital pulse count value === 966 966 1118 + 967 967 Feature: Set the pulse count value. 968 968 969 969 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -971,7 +971,7 @@ 971 971 (% style="color:blue" %)**AT Command: AT+SETCNT** 972 972 973 973 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 974 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1126 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 975 975 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 976 976 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 977 977 ... ... @@ -984,15 +984,15 @@ 984 984 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 985 985 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 986 986 987 - 988 988 === 3.3.7 Set Workmode === 989 989 1141 + 990 990 Feature: Switch working mode. 991 991 992 992 (% style="color:blue" %)**AT Command: AT+MOD** 993 993 994 994 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 995 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1147 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 996 996 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 997 997 OK 998 998 ))) ... ... @@ -1008,7 +1008,70 @@ 1008 1008 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1009 1009 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1010 1010 1163 +=== 3.3.8 PWM setting === 1011 1011 1165 + 1166 +* Feature: Set the time acquisition unit for PWM input capture. 1167 + 1168 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1169 + 1170 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1171 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1172 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1173 +0(default) 1174 + 1175 +OK 1176 +))) 1177 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1178 +OK 1179 + 1180 +))) 1181 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1182 + 1183 +(% style="color:blue" %)**Downlink Command: 0x0C** 1184 + 1185 +Format: Command Code (0x0C) followed by 1 bytes. 1186 + 1187 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1188 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1189 + 1190 +* Feature: Set the time acquisition unit for PWM input capture. 1191 + 1192 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1193 + 1194 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:580px" %) 1195 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1196 +|(% style="width:154px" %)AT+PWMOUT=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1197 +0,0,0(default) 1198 + 1199 +OK 1200 +))) 1201 +|(% style="width:154px" %)AT+PWMOUT=0,0,0|(% style="width:196px" %)The default is PWM input detection|(% style="width:157px" %)((( 1202 +OK 1203 + 1204 +))) 1205 +|(% style="width:154px" %)AT+PWMOUT=a,b,c|(% style="width:250px" %)((( 1206 +PWM output. 1207 + 1208 +a: Output time (unit: seconds) 1209 + 1210 +b: Output frequency (unit: HZ) 1211 + 1212 +c: Output duty cycle (unit: %) 1213 +)))|(% style="width:157px" %)((( 1214 +OK 1215 +))) 1216 + 1217 + 1218 +(% style="color:blue" %)**Downlink Command: 0x0C** 1219 + 1220 + 1221 +Format: Command Code (0x0C) followed by 1 bytes. 1222 + 1223 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1224 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1225 + 1226 + 1012 1012 = 4. Battery & Power Consumption = 1013 1013 1014 1014 ... ... @@ -1021,27 +1021,43 @@ 1021 1021 1022 1022 1023 1023 (% class="wikigeneratedid" %) 1024 -User can change firmware SN50v3-LB to: 1239 +**User can change firmware SN50v3-LB to:** 1025 1025 1026 1026 * Change Frequency band/ region. 1027 1027 * Update with new features. 1028 1028 * Fix bugs. 1029 1029 1030 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1245 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]** 1031 1031 1247 +**Methods to Update Firmware:** 1032 1032 1033 -Methods to Update Firmware: 1249 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1250 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1034 1034 1035 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1036 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1037 - 1038 1038 = 6. FAQ = 1039 1039 1040 1040 == 6.1 Where can i find source code of SN50v3-LB? == 1041 1041 1256 + 1042 1042 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1043 1043 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1044 1044 1260 +== 6.2 How to generate PWM Output in SN50v3-LB? == 1261 + 1262 + 1263 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1264 + 1265 + 1266 +== 6.3 How to put several sensors to a SN50v3-LB? == 1267 + 1268 + 1269 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1270 + 1271 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1272 + 1273 +[[image:image-20230810121434-1.png||height="242" width="656"]] 1274 + 1275 + 1045 1045 = 7. Order Info = 1046 1046 1047 1047 ... ... @@ -1067,6 +1067,7 @@ 1067 1067 1068 1068 = 8. Packing Info = 1069 1069 1301 + 1070 1070 (% style="color:#037691" %)**Package Includes**: 1071 1071 1072 1072 * SN50v3-LB LoRaWAN Generic Node
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content