<
From version < 43.44 >
edited by Xiaoling
on 2023/05/16 15:31
To version < 74.5 >
edited by Xiaoling
on 2023/08/19 16:07
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -41,6 +41,8 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 +
45 +
44 44  == 1.3 Specification ==
45 45  
46 46  
... ... @@ -78,6 +78,8 @@
78 78  * Sleep Mode: 5uA @ 3.3v
79 79  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80 80  
83 +
84 +
81 81  == 1.4 Sleep mode and working mode ==
82 82  
83 83  
... ... @@ -105,6 +105,8 @@
105 105  )))
106 106  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107 107  
112 +
113 +
108 108  == 1.6 BLE connection ==
109 109  
110 110  
... ... @@ -123,7 +123,7 @@
123 123  == 1.7 Pin Definitions ==
124 124  
125 125  
126 -[[image:image-20230513102034-2.png]]
132 +[[image:image-20230610163213-1.png||height="404" width="699"]]
127 127  
128 128  
129 129  == 1.8 Mechanical ==
... ... @@ -136,7 +136,7 @@
136 136  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137 137  
138 138  
139 -== Hole Option ==
145 +== 1.9 Hole Option ==
140 140  
141 141  
142 142  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -151,7 +151,7 @@
151 151  == 2.1 How it works ==
152 152  
153 153  
154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155 155  
156 156  
157 157  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -159,7 +159,7 @@
159 159  
160 160  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
161 161  
162 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
168 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163 163  
164 164  
165 165  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -208,7 +208,7 @@
208 208  === 2.3.1 Device Status, FPORT~=5 ===
209 209  
210 210  
211 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
217 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
212 212  
213 213  The Payload format is as below.
214 214  
... ... @@ -216,44 +216,44 @@
216 216  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
217 217  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
218 218  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
219 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
225 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
220 220  
221 221  Example parse in TTNv3
222 222  
223 223  
224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
225 225  
226 226  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227 227  
228 228  (% style="color:#037691" %)**Frequency Band**:
229 229  
230 -*0x01: EU868
236 +0x01: EU868
231 231  
232 -*0x02: US915
238 +0x02: US915
233 233  
234 -*0x03: IN865
240 +0x03: IN865
235 235  
236 -*0x04: AU915
242 +0x04: AU915
237 237  
238 -*0x05: KZ865
244 +0x05: KZ865
239 239  
240 -*0x06: RU864
246 +0x06: RU864
241 241  
242 -*0x07: AS923
248 +0x07: AS923
243 243  
244 -*0x08: AS923-1
250 +0x08: AS923-1
245 245  
246 -*0x09: AS923-2
252 +0x09: AS923-2
247 247  
248 -*0x0a: AS923-3
254 +0x0a: AS923-3
249 249  
250 -*0x0b: CN470
256 +0x0b: CN470
251 251  
252 -*0x0c: EU433
258 +0x0c: EU433
253 253  
254 -*0x0d: KR920
260 +0x0d: KR920
255 255  
256 -*0x0e: MA869
262 +0x0e: MA869
257 257  
258 258  
259 259  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -277,19 +277,22 @@
277 277  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
278 278  
279 279  
280 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
286 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
281 281  
282 282  For example:
283 283  
284 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
290 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
285 285  
286 286  
287 287  (% style="color:red" %) **Important Notice:**
288 288  
289 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
290 -1. All modes share the same Payload Explanation from HERE.
291 -1. By default, the device will send an uplink message every 20 minutes.
295 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
292 292  
297 +2. All modes share the same Payload Explanation from HERE.
298 +
299 +3. By default, the device will send an uplink message every 20 minutes.
300 +
301 +
293 293  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
294 294  
295 295  
... ... @@ -296,8 +296,8 @@
296 296  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
297 297  
298 298  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
299 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
300 -|**Value**|Bat|(% style="width:191px" %)(((
308 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
309 +|Value|Bat|(% style="width:191px" %)(((
301 301  Temperature(DS18B20)(PC13)
302 302  )))|(% style="width:78px" %)(((
303 303  ADC(PA4)
... ... @@ -314,11 +314,12 @@
314 314  
315 315  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
316 316  
326 +
317 317  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
318 318  
319 319  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
320 -|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
321 -|**Value**|BAT|(% style="width:196px" %)(((
330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 +|Value|BAT|(% style="width:196px" %)(((
322 322  Temperature(DS18B20)(PC13)
323 323  )))|(% style="width:87px" %)(((
324 324  ADC(PA4)
... ... @@ -325,27 +325,30 @@
325 325  )))|(% style="width:189px" %)(((
326 326  Digital in(PB15) & Digital Interrupt(PA8)
327 327  )))|(% style="width:208px" %)(((
328 -Distance measure by:1) LIDAR-Lite V3HP
338 +Distance measure by: 1) LIDAR-Lite V3HP
329 329  Or 2) Ultrasonic Sensor
330 330  )))|(% style="width:117px" %)Reserved
331 331  
332 332  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
333 333  
344 +
334 334  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
335 335  
336 336  [[image:image-20230512173758-5.png||height="563" width="712"]]
337 337  
349 +
338 338  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
339 339  
340 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
352 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
341 341  
342 342  [[image:image-20230512173903-6.png||height="596" width="715"]]
343 343  
356 +
344 344  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
345 345  
346 346  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
347 347  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
348 -|**Value**|BAT|(% style="width:183px" %)(((
361 +|Value|BAT|(% style="width:183px" %)(((
349 349  Temperature(DS18B20)(PC13)
350 350  )))|(% style="width:173px" %)(((
351 351  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -353,34 +353,36 @@
353 353  ADC(PA4)
354 354  )))|(% style="width:323px" %)(((
355 355  Distance measure by:1)TF-Mini plus LiDAR
356 -Or 
357 -2) TF-Luna LiDAR
369 +Or 2) TF-Luna LiDAR
358 358  )))|(% style="width:188px" %)Distance signal  strength
359 359  
360 360  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
361 361  
374 +
362 362  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
363 363  
364 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
365 365  
366 366  [[image:image-20230512180609-7.png||height="555" width="802"]]
367 367  
381 +
368 368  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
369 369  
370 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
384 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
371 371  
372 -[[image:image-20230513105207-4.png||height="469" width="802"]]
386 +[[image:image-20230610170047-1.png||height="452" width="799"]]
373 373  
374 374  
375 375  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
376 376  
391 +
377 377  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
378 378  
379 379  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
380 380  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
381 381  **Size(bytes)**
382 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
383 -|**Value**|(% style="width:68px" %)(((
397 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
398 +|Value|(% style="width:68px" %)(((
384 384  ADC1(PA4)
385 385  )))|(% style="width:75px" %)(((
386 386  ADC2(PA5)
... ... @@ -404,7 +404,7 @@
404 404  
405 405  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
406 406  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
407 -|**Value**|BAT|(% style="width:186px" %)(((
422 +|Value|BAT|(% style="width:186px" %)(((
408 408  Temperature1(DS18B20)(PC13)
409 409  )))|(% style="width:82px" %)(((
410 410  ADC(PA4)
... ... @@ -415,24 +415,29 @@
415 415  
416 416  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
417 417  
433 +
418 418  [[image:image-20230513134006-1.png||height="559" width="736"]]
419 419  
420 420  
421 421  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
422 422  
439 +
423 423  [[image:image-20230512164658-2.png||height="532" width="729"]]
424 424  
425 425  Each HX711 need to be calibrated before used. User need to do below two steps:
426 426  
427 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
428 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
444 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
445 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
429 429  1. (((
430 430  Weight has 4 bytes, the unit is g.
448 +
449 +
450 +
431 431  )))
432 432  
433 433  For example:
434 434  
435 -**AT+GETSENSORVALUE =0**
455 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
436 436  
437 437  Response:  Weight is 401 g
438 438  
... ... @@ -442,14 +442,12 @@
442 442  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
443 443  **Size(bytes)**
444 444  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
445 -|**Value**|BAT|(% style="width:193px" %)(((
446 -Temperature(DS18B20)
447 -(PC13)
465 +|Value|BAT|(% style="width:193px" %)(((
466 +Temperature(DS18B20)(PC13)
448 448  )))|(% style="width:85px" %)(((
449 449  ADC(PA4)
450 450  )))|(% style="width:186px" %)(((
451 -Digital in(PB15) &
452 -Digital Interrupt(PA8)
470 +Digital in(PB15) & Digital Interrupt(PA8)
453 453  )))|(% style="width:100px" %)Weight
454 454  
455 455  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -457,6 +457,7 @@
457 457  
458 458  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
459 459  
478 +
460 460  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
461 461  
462 462  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -463,11 +463,12 @@
463 463  
464 464  [[image:image-20230512181814-9.png||height="543" width="697"]]
465 465  
466 -(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
467 467  
486 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
487 +
468 468  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
469 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
470 -|**Value**|BAT|(% style="width:256px" %)(((
489 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
490 +|Value|BAT|(% style="width:256px" %)(((
471 471  Temperature(DS18B20)(PC13)
472 472  )))|(% style="width:108px" %)(((
473 473  ADC(PA4)
... ... @@ -482,11 +482,12 @@
482 482  
483 483  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
484 484  
505 +
485 485  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
486 486  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
487 487  **Size(bytes)**
488 488  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
489 -|**Value**|BAT|(% style="width:188px" %)(((
510 +|Value|BAT|(% style="width:188px" %)(((
490 490  Temperature(DS18B20)
491 491  (PC13)
492 492  )))|(% style="width:83px" %)(((
... ... @@ -497,13 +497,15 @@
497 497  
498 498  [[image:image-20230513111203-7.png||height="324" width="975"]]
499 499  
521 +
500 500  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
501 501  
524 +
502 502  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
503 503  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
504 504  **Size(bytes)**
505 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
506 -|**Value**|BAT|(% style="width:207px" %)(((
528 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 +|Value|BAT|(% style="width:207px" %)(((
507 507  Temperature(DS18B20)
508 508  (PC13)
509 509  )))|(% style="width:94px" %)(((
... ... @@ -521,22 +521,23 @@
521 521  
522 522  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
523 523  
547 +
524 524  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
525 525  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
526 526  **Size(bytes)**
527 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
528 -|**Value**|BAT|(((
529 -Temperature1(DS18B20)
530 -(PC13)
551 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 +|Value|BAT|(((
553 +Temperature
554 +(DS18B20)(PC13)
531 531  )))|(((
532 -Temperature2(DS18B20)
533 -(PB9)
556 +Temperature2
557 +(DS18B20)(PB9)
534 534  )))|(((
535 535  Digital Interrupt
536 536  (PB15)
537 537  )))|(% style="width:193px" %)(((
538 -Temperature3(DS18B20)
539 -(PB8)
562 +Temperature3
563 +(DS18B20)(PB8)
540 540  )))|(% style="width:78px" %)(((
541 541  Count1(PA8)
542 542  )))|(% style="width:78px" %)(((
... ... @@ -561,9 +561,81 @@
561 561  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
562 562  
563 563  
588 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
564 564  
590 +
591 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
592 +
593 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
594 +
595 +
596 +===== 2.3.2.10.a  Uplink, PWM input capture =====
597 +
598 +
599 +[[image:image-20230817172209-2.png||height="439" width="683"]]
600 +
601 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
602 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
603 +|Value|Bat|(% style="width:191px" %)(((
604 +Temperature(DS18B20)(PC13)
605 +)))|(% style="width:78px" %)(((
606 +ADC(PA4)
607 +)))|(% style="width:135px" %)(((
608 +PWM_Setting
609 +
610 +&Digital Interrupt(PA8)
611 +)))|(% style="width:70px" %)(((
612 +Pulse period
613 +)))|(% style="width:89px" %)(((
614 +Duration of high level
615 +)))
616 +
617 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
618 +
619 +
620 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
621 +
622 +**Frequency:**
623 +
624 +(% class="MsoNormal" %)
625 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
626 +
627 +(% class="MsoNormal" %)
628 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
629 +
630 +
631 +(% class="MsoNormal" %)
632 +**Duty cycle:**
633 +
634 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
635 +
636 +[[image:image-20230818092200-1.png||height="344" width="627"]]
637 +
638 +
639 +===== 2.3.2.10.b  Downlink, PWM output =====
640 +
641 +
642 +[[image:image-20230817173800-3.png||height="412" width="685"]]
643 +
644 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
645 +
646 + xx xx xx is the output frequency, the unit is HZ.
647 +
648 + yy is the duty cycle of the output, the unit is %.
649 +
650 + zz zz is the time delay of the output, the unit is ms.
651 +
652 +
653 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
654 +
655 +The oscilloscope displays as follows:
656 +
657 +[[image:image-20230817173858-5.png||height="694" width="921"]]
658 +
659 +
565 565  === 2.3.3  ​Decode payload ===
566 566  
662 +
567 567  While using TTN V3 network, you can add the payload format to decode the payload.
568 568  
569 569  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -570,13 +570,14 @@
570 570  
571 571  The payload decoder function for TTN V3 are here:
572 572  
573 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
669 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
574 574  
575 575  
576 576  ==== 2.3.3.1 Battery Info ====
577 577  
578 -Check the battery voltage for SN50v3.
579 579  
675 +Check the battery voltage for SN50v3-LB.
676 +
580 580  Ex1: 0x0B45 = 2885mV
581 581  
582 582  Ex2: 0x0B49 = 2889mV
... ... @@ -584,14 +584,16 @@
584 584  
585 585  ==== 2.3.3.2  Temperature (DS18B20) ====
586 586  
684 +
587 587  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
588 588  
589 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
687 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
590 590  
591 591  (% style="color:blue" %)**Connection:**
592 592  
593 593  [[image:image-20230512180718-8.png||height="538" width="647"]]
594 594  
693 +
595 595  (% style="color:blue" %)**Example**:
596 596  
597 597  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -603,6 +603,7 @@
603 603  
604 604  ==== 2.3.3.3 Digital Input ====
605 605  
705 +
606 606  The digital input for pin PB15,
607 607  
608 608  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -612,28 +612,38 @@
612 612  (((
613 613  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
614 614  
615 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
715 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
716 +
717 +
616 616  )))
617 617  
618 618  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
619 619  
620 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
621 621  
622 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
723 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
623 623  
725 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
726 +
624 624  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
625 625  
626 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
627 627  
730 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
628 628  
732 +
733 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
734 +
735 +[[image:image-20230811113449-1.png||height="370" width="608"]]
736 +
629 629  ==== 2.3.3.5 Digital Interrupt ====
630 630  
631 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
632 632  
740 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
741 +
633 633  (% style="color:blue" %)** Interrupt connection method:**
634 634  
635 635  [[image:image-20230513105351-5.png||height="147" width="485"]]
636 636  
746 +
637 637  (% style="color:blue" %)**Example to use with door sensor :**
638 638  
639 639  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -640,22 +640,23 @@
640 640  
641 641  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
642 642  
643 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
753 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
644 644  
645 -(% style="color:blue" %)** Below is the installation example:**
646 646  
647 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
756 +(% style="color:blue" %)**Below is the installation example:**
648 648  
758 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
759 +
649 649  * (((
650 -One pin to SN50_v3's PA8 pin
761 +One pin to SN50v3-LB's PA8 pin
651 651  )))
652 652  * (((
653 -The other pin to SN50_v3's VDD pin
764 +The other pin to SN50v3-LB's VDD pin
654 654  )))
655 655  
656 656  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
657 657  
658 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
769 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
659 659  
660 660  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
661 661  
... ... @@ -667,29 +667,32 @@
667 667  
668 668  The command is:
669 669  
670 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
781 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
671 671  
672 672  Below shows some screen captures in TTN V3:
673 673  
674 674  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
675 675  
676 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
677 677  
788 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
789 +
678 678  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
679 679  
680 680  
681 681  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
682 682  
795 +
683 683  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
684 684  
685 685  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
686 686  
687 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
800 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
688 688  
802 +
689 689  Below is the connection to SHT20/ SHT31. The connection is as below:
690 690  
805 +[[image:image-20230610170152-2.png||height="501" width="846"]]
691 691  
692 -[[image:image-20230513103633-3.png||height="448" width="716"]]
693 693  
694 694  The device will be able to get the I2C sensor data now and upload to IoT Server.
695 695  
... ... @@ -708,14 +708,16 @@
708 708  
709 709  ==== 2.3.3.7  ​Distance Reading ====
710 710  
825 +
711 711  Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
712 712  
713 713  
714 714  ==== 2.3.3.8 Ultrasonic Sensor ====
715 715  
831 +
716 716  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
717 717  
718 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
834 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
719 719  
720 720  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
721 721  
... ... @@ -723,8 +723,9 @@
723 723  
724 724  [[image:image-20230512173903-6.png||height="596" width="715"]]
725 725  
726 -Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
727 727  
843 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
844 +
728 728  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
729 729  
730 730  **Example:**
... ... @@ -732,16 +732,17 @@
732 732  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
733 733  
734 734  
735 -
736 736  ==== 2.3.3.9  Battery Output - BAT pin ====
737 737  
738 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
739 739  
855 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
740 740  
857 +
741 741  ==== 2.3.3.10  +5V Output ====
742 742  
743 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
744 744  
861 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
862 +
745 745  The 5V output time can be controlled by AT Command.
746 746  
747 747  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -748,21 +748,45 @@
748 748  
749 749  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
750 750  
751 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
869 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
752 752  
753 753  
754 -
755 755  ==== 2.3.3.11  BH1750 Illumination Sensor ====
756 756  
874 +
757 757  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
758 758  
759 759  [[image:image-20230512172447-4.png||height="416" width="712"]]
760 760  
879 +
761 761  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
762 762  
763 763  
764 -==== 2.3.3.12  Working MOD ====
883 +==== 2.3.3.12  PWM MOD ====
765 765  
885 +
886 +* (((
887 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
888 +)))
889 +* (((
890 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
891 +)))
892 +
893 + [[image:image-20230817183249-3.png||height="320" width="417"]]
894 +
895 +* (((
896 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
897 +)))
898 +* (((
899 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
900 +
901 +
902 +
903 +)))
904 +
905 +==== 2.3.3.13  Working MOD ====
906 +
907 +
766 766  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
767 767  
768 768  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -778,8 +778,10 @@
778 778  * 6: MOD7
779 779  * 7: MOD8
780 780  * 8: MOD9
923 +* 9: MOD10
781 781  
782 782  
926 +
783 783  == 2.4 Payload Decoder file ==
784 784  
785 785  
... ... @@ -790,7 +790,6 @@
790 790  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
791 791  
792 792  
793 -
794 794  == 2.5 Frequency Plans ==
795 795  
796 796  
... ... @@ -810,6 +810,8 @@
810 810  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
811 811  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
812 812  
956 +
957 +
813 813  == 3.2 General Commands ==
814 814  
815 815  
... ... @@ -826,17 +826,18 @@
826 826  == 3.3 Commands special design for SN50v3-LB ==
827 827  
828 828  
829 -These commands only valid for S31x-LB, as below:
974 +These commands only valid for SN50v3-LB, as below:
830 830  
831 831  
832 832  === 3.3.1 Set Transmit Interval Time ===
833 833  
979 +
834 834  Feature: Change LoRaWAN End Node Transmit Interval.
835 835  
836 836  (% style="color:blue" %)**AT Command: AT+TDC**
837 837  
838 838  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
839 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
985 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
840 840  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
841 841  30000
842 842  OK
... ... @@ -857,23 +857,26 @@
857 857  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
858 858  
859 859  
1006 +
860 860  === 3.3.2 Get Device Status ===
861 861  
1009 +
862 862  Send a LoRaWAN downlink to ask the device to send its status.
863 863  
864 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1012 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
865 865  
866 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
1014 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
867 867  
868 868  
869 869  === 3.3.3 Set Interrupt Mode ===
870 870  
1019 +
871 871  Feature, Set Interrupt mode for GPIO_EXIT.
872 872  
873 873  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
874 874  
875 875  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
876 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1025 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
877 877  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
878 878  0
879 879  OK
... ... @@ -888,7 +888,6 @@
888 888  )))|(% style="width:157px" %)OK
889 889  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
890 890  Set Transmit Interval
891 -
892 892  trigger by rising edge.
893 893  )))|(% style="width:157px" %)OK
894 894  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -905,8 +905,10 @@
905 905  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
906 906  
907 907  
1056 +
908 908  === 3.3.4 Set Power Output Duration ===
909 909  
1059 +
910 910  Control the output duration 5V . Before each sampling, device will
911 911  
912 912  ~1. first enable the power output to external sensor,
... ... @@ -918,7 +918,7 @@
918 918  (% style="color:blue" %)**AT Command: AT+5VT**
919 919  
920 920  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
921 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1071 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
922 922  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
923 923  500(default)
924 924  OK
... ... @@ -937,14 +937,16 @@
937 937  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
938 938  
939 939  
1090 +
940 940  === 3.3.5 Set Weighing parameters ===
941 941  
1093 +
942 942  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
943 943  
944 944  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
945 945  
946 946  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
947 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1099 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
948 948  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
949 949  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
950 950  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -962,8 +962,10 @@
962 962  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
963 963  
964 964  
1117 +
965 965  === 3.3.6 Set Digital pulse count value ===
966 966  
1120 +
967 967  Feature: Set the pulse count value.
968 968  
969 969  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -971,7 +971,7 @@
971 971  (% style="color:blue" %)**AT Command: AT+SETCNT**
972 972  
973 973  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
974 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1128 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
975 975  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
976 976  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
977 977  
... ... @@ -985,14 +985,16 @@
985 985  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
986 986  
987 987  
1142 +
988 988  === 3.3.7 Set Workmode ===
989 989  
1145 +
990 990  Feature: Switch working mode.
991 991  
992 992  (% style="color:blue" %)**AT Command: AT+MOD**
993 993  
994 994  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
995 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1151 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
996 996  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
997 997  OK
998 998  )))
... ... @@ -1009,6 +1009,36 @@
1009 1009  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1010 1010  
1011 1011  
1168 +
1169 +=== 3.3.8 PWM setting ===
1170 +
1171 +
1172 +Feature: Set the time acquisition unit for PWM input capture.
1173 +
1174 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1175 +
1176 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1177 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1178 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1179 +0(default)
1180 +
1181 +OK
1182 +)))
1183 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1184 +OK
1185 +
1186 +)))
1187 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1188 +
1189 +(% style="color:blue" %)**Downlink Command: 0x0C**
1190 +
1191 +Format: Command Code (0x0C) followed by 1 bytes.
1192 +
1193 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1194 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1195 +
1196 +
1197 +
1012 1012  = 4. Battery & Power Consumption =
1013 1013  
1014 1014  
... ... @@ -1021,27 +1021,47 @@
1021 1021  
1022 1022  
1023 1023  (% class="wikigeneratedid" %)
1024 -User can change firmware SN50v3-LB to:
1210 +**User can change firmware SN50v3-LB to:**
1025 1025  
1026 1026  * Change Frequency band/ region.
1027 1027  * Update with new features.
1028 1028  * Fix bugs.
1029 1029  
1030 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1216 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1031 1031  
1218 +**Methods to Update Firmware:**
1032 1032  
1033 -Methods to Update Firmware:
1220 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1221 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1034 1034  
1035 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1036 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1037 1037  
1224 +
1038 1038  = 6. FAQ =
1039 1039  
1040 1040  == 6.1 Where can i find source code of SN50v3-LB? ==
1041 1041  
1229 +
1042 1042  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1043 1043  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1044 1044  
1233 +
1234 +
1235 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1236 +
1237 +
1238 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1239 +
1240 +
1241 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1242 +
1243 +
1244 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1245 +
1246 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1247 +
1248 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1249 +
1250 +
1045 1045  = 7. Order Info =
1046 1046  
1047 1047  
... ... @@ -1065,8 +1065,11 @@
1065 1065  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1066 1066  * (% style="color:red" %)**NH**(%%): No Hole
1067 1067  
1274 +
1275 +
1068 1068  = 8. ​Packing Info =
1069 1069  
1278 +
1070 1070  (% style="color:#037691" %)**Package Includes**:
1071 1071  
1072 1072  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1078,6 +1078,8 @@
1078 1078  * Package Size / pcs : cm
1079 1079  * Weight / pcs : g
1080 1080  
1290 +
1291 +
1081 1081  = 9. Support =
1082 1082  
1083 1083  
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0