Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 21 removed)
- image-20230511203450-2.png
- image-20230512163509-1.png
- image-20230512164658-2.png
- image-20230512170701-3.png
- image-20230512172447-4.png
- image-20230512173758-5.png
- image-20230512173903-6.png
- image-20230512180609-7.png
- image-20230512180718-8.png
- image-20230512181814-9.png
- image-20230513084523-1.png
- image-20230513102034-2.png
- image-20230513103633-3.png
- image-20230513105207-4.png
- image-20230513105351-5.png
- image-20230513110214-6.png
- image-20230513111203-7.png
- image-20230513111231-8.png
- image-20230513111255-9.png
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Edwin - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 ... ... @@ -16,21 +16,23 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 20 + 22 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 30 31 31 == 1.2 Features == 32 32 33 - 34 34 * LoRaWAN 1.0.3 Class A 35 35 * Ultra-low power consumption 36 36 * Open-Source hardware/software ... ... @@ -43,7 +43,6 @@ 43 43 44 44 == 1.3 Specification == 45 45 46 - 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -80,7 +80,6 @@ 80 80 81 81 == 1.4 Sleep mode and working mode == 82 82 83 - 84 84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 85 85 86 86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -123,7 +123,6 @@ 123 123 == 1.7 Pin Definitions == 124 124 125 125 126 -[[image:image-20230513102034-2.png]] 127 127 128 128 129 129 == 1.8 Mechanical == ... ... @@ -138,7 +138,6 @@ 138 138 139 139 == Hole Option == 140 140 141 - 142 142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 143 143 144 144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -146,12 +146,12 @@ 146 146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 147 147 148 148 149 -= 2. Configure S N50v3-LB to connect to LoRaWAN network =146 += 2. Configure S31x-LB to connect to LoRaWAN network = 150 150 151 151 == 2.1 How it works == 152 152 153 153 154 -The S N50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.151 +The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 155 155 156 156 157 157 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -162,11 +162,11 @@ 162 162 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 163 164 164 165 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S N50v3-LB.162 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB. 166 166 167 -Each S N50v3-LB is shipped with a sticker with the default device EUI as below:164 +Each S31x-LB is shipped with a sticker with the default device EUI as below: 168 168 169 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]166 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 170 170 171 171 172 172 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: ... ... @@ -193,10 +193,10 @@ 193 193 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 194 194 195 195 196 -(% style="color:blue" %)**Step 2:**(%%) Activate S N50v3-LB193 +(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB 197 197 198 198 199 -Press the button for 5 seconds to activate the S N50v3-LB.196 +Press the button for 5 seconds to activate the S31x-LB. 200 200 201 201 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 202 202 ... ... @@ -208,7 +208,7 @@ 208 208 === 2.3.1 Device Status, FPORT~=5 === 209 209 210 210 211 -Users can use the downlink command(**0x26 01**) to ask S N50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.208 +Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server. 212 212 213 213 The Payload format is as below. 214 214 ... ... @@ -220,9 +220,11 @@ 220 220 221 221 Example parse in TTNv3 222 222 220 +[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]] 223 223 224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 225 225 223 +(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A 224 + 226 226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 227 227 228 228 (% style="color:#037691" %)**Frequency Band**: ... ... @@ -274,326 +274,41 @@ 274 274 Ex2: 0x0B49 = 2889mV 275 275 276 276 277 -=== 2.3.2 Working Modes &Sensor Data.Uplink viaFPORT~=2 ===276 +=== 2.3.2 Sensor Data. FPORT~=2 === 278 278 279 279 280 -S N50v3 has different workingmode fortheconnectionsof different type of sensors. This sectiondescribes these modes. Use canuse the AT Command AT+MOD to set SN50v3 to different working modes.279 +Sensor Data is uplink via FPORT=2 281 281 282 -For example: 283 - 284 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 285 - 286 - 287 -(% style="color:red" %) **Important Notice:** 288 - 289 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 290 -1. All modes share the same Payload Explanation from HERE. 291 -1. By default, the device will send an uplink message every 20 minutes. 292 - 293 -==== 2.3.2.1 MOD~=1 (Default Mode) ==== 294 - 295 - 296 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 297 - 298 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 299 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 300 -|**Value**|Bat|(% style="width:191px" %)((( 301 -Temperature(DS18B20)(PC13) 302 -)))|(% style="width:78px" %)((( 303 -ADC(PA4) 304 -)))|(% style="width:216px" %)((( 305 -Digital in(PB15)&Digital Interrupt(PA8) 306 -)))|(% style="width:308px" %)((( 307 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 308 -)))|(% style="width:154px" %)((( 309 -Humidity(SHT20 or SHT31) 310 -))) 311 - 312 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 313 - 314 - 315 -==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 316 - 317 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 318 - 319 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 320 -|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 321 -|**Value**|BAT|(% style="width:196px" %)((( 322 -Temperature(DS18B20)(PC13) 323 -)))|(% style="width:87px" %)((( 324 -ADC(PA4) 325 -)))|(% style="width:189px" %)((( 326 -Digital in(PB15) & Digital Interrupt(PA8) 327 -)))|(% style="width:208px" %)((( 328 -Distance measure by:1) LIDAR-Lite V3HP 329 -Or 2) Ultrasonic Sensor 330 -)))|(% style="width:117px" %)Reserved 331 - 332 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 333 - 334 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 335 - 336 -[[image:image-20230512173758-5.png||height="563" width="712"]] 337 - 338 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 339 - 340 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 341 - 342 -[[image:image-20230512173903-6.png||height="596" width="715"]] 343 - 344 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 345 - 346 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 347 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 348 -|**Value**|BAT|(% style="width:183px" %)((( 349 -Temperature(DS18B20)(PC13) 350 -)))|(% style="width:173px" %)((( 351 -Digital in(PB15) & Digital Interrupt(PA8) 352 -)))|(% style="width:84px" %)((( 353 -ADC(PA4) 354 -)))|(% style="width:323px" %)((( 355 -Distance measure by:1)TF-Mini plus LiDAR 356 -Or 357 -2) TF-Luna LiDAR 358 -)))|(% style="width:188px" %)Distance signal strength 359 - 360 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 361 - 362 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 363 - 364 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 365 - 366 -[[image:image-20230512180609-7.png||height="555" width="802"]] 367 - 368 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 369 - 370 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 371 - 372 -[[image:image-20230513105207-4.png||height="469" width="802"]] 373 - 374 - 375 -==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 376 - 377 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C 378 - 379 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 380 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 281 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %) 282 +|=(% style="width: 90px;background-color:#D9E2F3" %)((( 381 381 **Size(bytes)** 382 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 383 -|**Value**|(% style="width:68px" %)((( 384 -ADC1(PA4) 385 -)))|(% style="width:75px" %)((( 386 -ADC2(PA5) 387 -)))|((( 388 -ADC3(PA8) 389 -)))|((( 390 -Digital Interrupt(PB15) 391 -)))|(% style="width:304px" %)((( 392 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 393 -)))|(% style="width:163px" %)((( 394 -Humidity(SHT20 or SHT31) 395 -)))|(% style="width:53px" %)Bat 396 - 397 -[[image:image-20230513110214-6.png]] 398 - 399 - 400 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 401 - 402 - 403 -This mode has total 11 bytes. As shown below: 404 - 405 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 406 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 407 -|**Value**|BAT|(% style="width:186px" %)((( 408 -Temperature1(DS18B20)(PC13) 409 -)))|(% style="width:82px" %)((( 410 -ADC(PA4) 411 -)))|(% style="width:210px" %)((( 412 -Digital in(PB15) & Digital Interrupt(PA8) 413 -)))|(% style="width:191px" %)Temperature2(DS18B20) 414 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 415 - 416 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 417 - 418 -[[image:image-20230513134006-1.png||height="559" width="736"]] 419 - 420 - 421 -==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 422 - 423 -[[image:image-20230512164658-2.png||height="532" width="729"]] 424 - 425 -Each HX711 need to be calibrated before used. User need to do below two steps: 426 - 427 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 428 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 429 -1. ((( 430 -Weight has 4 bytes, the unit is g. 284 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2 285 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)((( 286 +[[Battery>>||anchor="HBattery:"]] 287 +)))|(% style="width:130px" %)((( 288 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]] 289 +)))|(% style="width:91px" %)((( 290 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]] 291 +)))|(% style="width:103px" %)((( 292 +[[Temperature>>||anchor="HTemperature:"]] 293 +)))|(% style="width:80px" %)((( 294 +[[Humidity>>||anchor="HHumidity:"]] 431 431 ))) 432 432 433 - Forexample:297 +==== (% style="color:#4472c4" %)**Battery**(%%) ==== 434 434 435 - **AT+GETSENSORVALUE=0**299 +Sensor Battery Level. 436 436 437 -Response: Weight is 401 g 438 - 439 -Check the response of this command and adjust the value to match the real value for thing. 440 - 441 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 442 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 443 -**Size(bytes)** 444 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 445 -|**Value**|BAT|(% style="width:193px" %)((( 446 -Temperature(DS18B20) 447 -(PC13) 448 -)))|(% style="width:85px" %)((( 449 -ADC(PA4) 450 -)))|(% style="width:186px" %)((( 451 -Digital in(PB15) & 452 -Digital Interrupt(PA8) 453 -)))|(% style="width:100px" %)Weight 454 - 455 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 456 - 457 - 458 -==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 459 - 460 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 461 - 462 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. 463 - 464 -[[image:image-20230512181814-9.png||height="543" width="697"]] 465 - 466 -(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 467 - 468 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 469 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 470 -|**Value**|BAT|(% style="width:256px" %)((( 471 -Temperature(DS18B20)(PC13) 472 -)))|(% style="width:108px" %)((( 473 -ADC(PA4) 474 -)))|(% style="width:126px" %)((( 475 -Digital in(PB15) 476 -)))|(% style="width:145px" %)((( 477 -Count(PA8) 478 -))) 479 - 480 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 481 - 482 - 483 -==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 484 - 485 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 486 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 487 -**Size(bytes)** 488 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 489 -|**Value**|BAT|(% style="width:188px" %)((( 490 -Temperature(DS18B20) 491 -(PC13) 492 -)))|(% style="width:83px" %)((( 493 -ADC(PA5) 494 -)))|(% style="width:184px" %)((( 495 -Digital Interrupt1(PA8) 496 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 497 - 498 -[[image:image-20230513111203-7.png||height="324" width="975"]] 499 - 500 -==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 501 - 502 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 503 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 504 -**Size(bytes)** 505 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 506 -|**Value**|BAT|(% style="width:207px" %)((( 507 -Temperature(DS18B20) 508 -(PC13) 509 -)))|(% style="width:94px" %)((( 510 -ADC1(PA4) 511 -)))|(% style="width:198px" %)((( 512 -Digital Interrupt(PB15) 513 -)))|(% style="width:84px" %)((( 514 -ADC2(PA5) 515 -)))|(% style="width:82px" %)((( 516 -ADC3(PA8) 517 -))) 518 - 519 -[[image:image-20230513111231-8.png||height="335" width="900"]] 520 - 521 - 522 -==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 523 - 524 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 525 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 526 -**Size(bytes)** 527 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 528 -|**Value**|BAT|((( 529 -Temperature1(DS18B20) 530 -(PC13) 531 -)))|((( 532 -Temperature2(DS18B20) 533 -(PB9) 534 -)))|((( 535 -Digital Interrupt 536 -(PB15) 537 -)))|(% style="width:193px" %)((( 538 -Temperature3(DS18B20) 539 -(PB8) 540 -)))|(% style="width:78px" %)((( 541 -Count1(PA8) 542 -)))|(% style="width:78px" %)((( 543 -Count2(PA4) 544 -))) 545 - 546 -[[image:image-20230513111255-9.png||height="341" width="899"]] 547 - 548 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 549 - 550 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 551 - 552 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 553 - 554 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 555 - 556 - 557 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 558 - 559 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 560 - 561 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 562 - 563 - 564 - 565 -=== 2.3.3 Decode payload === 566 - 567 -While using TTN V3 network, you can add the payload format to decode the payload. 568 - 569 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] 570 - 571 -The payload decoder function for TTN V3 are here: 572 - 573 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 574 - 575 - 576 -==== 2.3.3.1 Battery Info ==== 577 - 578 -Check the battery voltage for SN50v3. 579 - 580 580 Ex1: 0x0B45 = 2885mV 581 581 582 582 Ex2: 0x0B49 = 2889mV 583 583 584 584 585 -==== 2.3.3.2 Temperature (DS18B20) ==== 586 586 587 - Ifthere is a DS18B20connectedto PC13 pin.Thetemperaturewill be uploaded in the payload.307 +==== (% style="color:#4472c4" %)**Temperature**(%%) ==== 588 588 589 - More DS18B20 can check the [[3 DS18B20mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]309 +**Example**: 590 590 591 -(% style="color:blue" %)**Connection:** 592 - 593 -[[image:image-20230512180718-8.png||height="538" width="647"]] 594 - 595 -(% style="color:blue" %)**Example**: 596 - 597 597 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 598 598 599 599 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -601,210 +601,195 @@ 601 601 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative) 602 602 603 603 604 -==== 2.3.3.3DigitalInput ====318 +==== (% style="color:#4472c4" %)**Humidity**(%%) ==== 605 605 606 -The digital input for pin PB15, 607 607 608 -* When PB15 is high, the bit 1 of payload byte 6 is 1. 609 -* When PB15 is low, the bit 1 of payload byte 6 is 0. 321 +Read:0x(0197)=412 Value: 412 / 10=41.2, So 41.2% 610 610 611 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 612 -((( 613 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 614 614 615 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 616 -))) 324 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ==== 617 617 618 -==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 619 619 620 - The measuring range of the ADC is only about 0V to 1.1V Thevoltage resolution is about 0.24mv.327 +**Example:** 621 621 622 - When the measured output voltage ofthe sensor is not within the range of 0V and 1.1V, the output voltage terminalf the sensor shall bedividedTheexampleinthefollowingfigure is to reduce the output voltage of the sensor by three timesIfit isnecessaryto reduce more times, calculate according to the formulain thefigure and connect the corresponding resistancein series.329 +If payload & 0x01 = 0x01 **~-~->** This is an Alarm Message 623 623 624 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png"height="241" width="285"]]331 +If payload & 0x01 = 0x00 **~-~->** This is a normal uplink message, no alarm 625 625 626 - (% style="color:red" %)**Note:**Ifthe ADC type sensor needstobepoweredby SN50_v3,itisrecommended to use+5Vto controlitsswitch.Onlysensorswithlow power consumptioncanbepowered with VDD.333 +If payload >> 2 = 0x00 **~-~->** means MOD=1, This is a sampling uplink message 627 627 335 +If payload >> 2 = 0x31 **~-~->** means MOD=31, this message is a reply message for polling, this message contains the alarm settings. see [[this link>>path:#HPolltheAlarmsettings:]] for detail. 628 628 629 -==== 2.3.3.5 Digital Interrupt ==== 630 630 631 - DigitalInterruptrefers to pinPA8,and therearedifferenttrigger methods. When thereis a trigger, the SN50v3 will senda packet to the server.338 +== 2.4 Payload Decoder file == 632 632 633 -(% style="color:blue" %)** Interrupt connection method:** 634 634 635 - [[image:image-20230513105351-5.png||height="147"width="485"]]341 +In TTN, use can add a custom payload so it shows friendly reading 636 636 637 -(% style="color: blue" %)**Exampletousewithdoorsensor :**343 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 638 638 639 - The doorsensoris shown atright. Itis a twowire magneticcontactswitchsed fordetectingtheopen/closestatus ofdoors orwindows.345 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 640 640 641 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 642 642 643 - Whenthetwo piecesare closeto each other, the 2 wire output will be short or open (dependingon thetype), while if the two piecesare away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interfaceto detect the status for the door or window.348 +== 2.5 Datalog Feature == 644 644 645 -(% style="color:blue" %)** Below is the installation example:** 646 646 647 -Fi xonepiece ofthemagneticsensortothedoorandconnectthetwo pinstoSN50_v3asfollows:351 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes. 648 648 649 -* ((( 650 -One pin to SN50_v3's PA8 pin 651 -))) 652 -* ((( 653 -The other pin to SN50_v3's VDD pin 654 -))) 655 655 656 - Installthe other piece to the door.Findaplace where the two pieceswill be closeto each otherwhen thedoor is closed. For this particular magnetic sensor, when the door is closed,the output willbe short,and PA8will be at the VCC voltage.354 +=== 2.5.1 Ways to get datalog via LoRaWAN === 657 657 658 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 659 659 660 - Whendoorsensor isshorted,therewillextrapower consumptionin thecircuit, the extracurrent is3v3/R14=3v3/1Mohm= 3uA whichcanbeignored.357 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 661 661 662 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 359 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server. 360 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages. 663 663 664 - Theabovephotosshowsthe twopartsof themagneticswitchfittedtoa door.362 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 665 665 666 - The softwareby defaultusesthe falling edge on the signal lineasaninterrupt.Weneedtomodify it toccept both theisingedge (0v ~-~-> VCC ,doorclose)andfallingdge (VCC ~-~->0v , door open)as the interrupt.364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 667 667 668 - Thecommandis:366 +=== 2.5.2 Unix TimeStamp === 669 669 670 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 671 671 672 -B elowshowssomescreen capturesinTTN V3:369 +S31x-LB uses Unix TimeStamp format based on 673 673 674 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L SN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]371 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 675 675 676 - In MOD=1, user canusebyte6toseethestatusfordooropen orlose.TTN V3 decoderis as below:373 +User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 677 677 678 - door= (bytes[6]& 0x80)? "CLOSE":"OPEN";375 +Below is the converter example 679 679 377 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]] 680 680 681 -= ===2.3.3.6I2CInterface(SHT20&SHT31)====379 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 682 682 683 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 684 684 685 - Wehavemadean exampletoshow how to usethe I2Cinterfaceto connect to the SHT20/ SHT31 Temperatureand Humidity Sensor.382 +=== 2.5.3 Set Device Time === 686 686 687 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 688 688 689 - Belowis thennectiontoSHT20/ SHT31.The connectionisasbelow:385 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 690 690 387 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 691 691 692 - [[image:image-20230513103633-3.png||height="448"width="716"]]389 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 693 693 694 -The device will be able to get the I2C sensor data now and upload to IoT Server. 695 695 696 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]392 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) === 697 697 698 -Convert the read byte to decimal and divide it by ten. 699 699 700 - **Example:**395 +The Datalog uplinks will use below payload format. 701 701 702 - Temperature: Read:0116(H)= 278(D) Value:278 /10=27.8℃;397 +**Retrieval data payload:** 703 703 704 -Humidity: Read:0248(H)=584(D) Value: 584 / 10=58.4, So 58.4% 399 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 400 +|=(% style="width: 80px;background-color:#D9E2F3" %)((( 401 +**Size(bytes)** 402 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4** 403 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)((( 404 +[[Temp_Black>>||anchor="HTemperatureBlack:"]] 405 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]] 705 705 706 - If youwant to useother I2C device, pleaserefer the SHT20 partsourcecode as reference.407 +**Poll message flag & Ext:** 707 707 409 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]] 708 708 709 - ====2.3.3.7DistanceReading ====411 +**No ACK Message**: 1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature) 710 710 711 - Refer[[UltrasonicSensorsection>>||anchor="H2.3.3.8UltrasonicSensor"]].413 +**Poll Message Flag**: 1: This message is a poll message reply. 712 712 415 +* Poll Message Flag is set to 1. 713 713 714 - ====2.3.3.8UltrasonicSensor====417 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands. 715 715 716 - ThisFundamental Principlesof this sensorcanbe foundatthislink: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]419 +For example, in US915 band, the max payload for different DR is: 717 717 718 - TheSN50_v3detectsthepulse width of theensorand convertsit tommoutput. The accuracy will be within1 centimeter.Theusable range (the distance between the ultrasonicprobeandthe measured object) is between 24cmand 600cm.421 +**a) DR0:** max is 11 bytes so one entry of data 719 719 720 - Theworkingprincipleofthis sensorissimilarto the(% style="color:blue"%)**HC-SR04**(%%)ultrasonic sensor.423 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 721 721 722 - The picturebelowshowstheconnection:425 +**c) DR2:** total payload includes 11 entries of data 723 723 724 - [[image:image-20230512173903-6.png||height="596" width="715"]]427 +**d) DR3: **total payload includes 22 entries of data. 725 725 726 - ConnecttoSN50_v3andrun(% style="color:blue"%)**AT+MOD=2**(%%)to switchtoultrasonicmode(ULT).429 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0 727 727 728 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 729 729 730 730 **Example:** 731 731 732 - Distance:Read: 0C2D(Hex) =3117(D)Value:3117mm=311.7cm434 +If S31x-LB has below data inside Flash: 733 733 436 +[[image:1682646494051-944.png]] 734 734 438 +If user sends below downlink command: 3160065F9760066DA705 735 735 736 - ====2.3.3.9BatteryOutput-BAT pin====440 +Where : Start time: 60065F97 = time 21/1/19 04:27:03 737 737 738 - TheBATpinofSN50v3isconnectedtotheBatterydirectly.Ifuserswanttouse BATpinto power an external sensor. User need to make sure the external sensoris of low power consumption. Becausethe BATpin is always open. Ifthe external sensoris of high power consumption. thebatteryof SN50v3-LB will run out very soon.442 + Stop time: 60066DA7= time 21/1/19 05:27:03 739 739 740 740 741 - ==== 2.3.3.10+5VOutput====445 +**S31x-LB will uplink this payload.** 742 742 743 - SN50v3willenable+5Voutputbeforeall samplingand disablethe+5v afterl sampling.447 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]] 744 744 745 -The 5V output time can be controlled by AT Command. 449 +((( 450 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E 451 +))) 746 746 747 -(% style="color:blue" %)**AT+5VT=1000** 453 +((( 454 +Where the first 11 bytes is for the first entry: 455 +))) 748 748 749 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 457 +((( 458 +7FFF089801464160065F97 459 +))) 750 750 751 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 461 +((( 462 +**Ext sensor data**=0x7FFF/100=327.67 463 +))) 752 752 465 +((( 466 +**Temp**=0x088E/100=22.00 467 +))) 753 753 469 +((( 470 +**Hum**=0x014B/10=32.6 471 +))) 754 754 755 -==== 2.3.3.11 BH1750 Illumination Sensor ==== 473 +((( 474 +**poll message flag & Ext**=0x41,means reply data,Ext=1 475 +))) 756 756 757 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 477 +((( 478 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03 479 +))) 758 758 759 -[[image:image-20230512172447-4.png||height="416" width="712"]] 760 760 761 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]482 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的 762 762 484 +== 2.6 Temperature Alarm Feature == 763 763 764 -==== 2.3.3.12 Working MOD ==== 765 765 766 - TheworkingMOD info is contained in theDigitalin & Digital Interruptbyte(7^^th^^ Byte).487 +S31x-LB work flow with Alarm feature. 767 767 768 -User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: 769 769 770 - Case7^^th^^ Byte>>2&0x1f:490 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]] 771 771 772 -* 0: MOD1 773 -* 1: MOD2 774 -* 2: MOD3 775 -* 3: MOD4 776 -* 4: MOD5 777 -* 5: MOD6 778 -* 6: MOD7 779 -* 7: MOD8 780 -* 8: MOD9 781 781 493 +== 2.7 Frequency Plans == 782 782 783 -== 2.4 Payload Decoder file == 784 784 496 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 785 785 786 -In TTN, use can add a custom payload so it shows friendly reading 787 - 788 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 789 - 790 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 791 - 792 - 793 - 794 -== 2.5 Frequency Plans == 795 - 796 - 797 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 798 - 799 799 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 800 800 801 801 802 -= 3. Configure S N50v3-LB =501 += 3. Configure S31x-LB = 803 803 804 804 == 3.1 Configure Methods == 805 805 806 806 807 -S N50v3-LB supports below configure method:506 +S31x-LB supports below configure method: 808 808 809 809 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 810 810 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -823,7 +823,7 @@ 823 823 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 824 824 825 825 826 -== 3.3 Commands special design for S N50v3-LB ==525 +== 3.3 Commands special design for S31x-LB == 827 827 828 828 829 829 These commands only valid for S31x-LB, as below: ... ... @@ -831,6 +831,7 @@ 831 831 832 832 === 3.3.1 Set Transmit Interval Time === 833 833 533 + 834 834 Feature: Change LoRaWAN End Node Transmit Interval. 835 835 836 836 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -856,163 +856,122 @@ 856 856 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 857 857 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 858 858 859 - 860 860 === 3.3.2 Get Device Status === 861 861 862 -Send a LoRaWAN downlink to ask the device to send its status. 863 863 562 +Send a LoRaWAN downlink to ask device send Alarm settings. 563 + 864 864 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 865 865 866 866 Sensor will upload Device Status via FPORT=5. See payload section for detail. 867 867 868 868 869 -=== 3.3.3 Set InterruptMode===569 +=== 3.3.3 Set Temperature Alarm Threshold === 870 870 871 - Feature,SetInterrupt modefor GPIO_EXIT.571 +* (% style="color:blue" %)**AT Command:** 872 872 873 -(% style="color: blue" %)**ATCommand: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**573 +(% style="color:#037691" %)**AT+SHTEMP=min,max** 874 874 875 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 876 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 877 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 878 -0 879 -OK 880 -the mode is 0 =Disable Interrupt 881 -))) 882 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)((( 883 -Set Transmit Interval 884 -0. (Disable Interrupt), 885 -~1. (Trigger by rising and falling edge) 886 -2. (Trigger by falling edge) 887 -3. (Trigger by rising edge) 888 -)))|(% style="width:157px" %)OK 889 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 890 -Set Transmit Interval 575 +* When min=0, and max≠0, Alarm higher than max 576 +* When min≠0, and max=0, Alarm lower than min 577 +* When min≠0 and max≠0, Alarm higher than max or lower than min 891 891 892 -trigger by rising edge. 893 -)))|(% style="width:157px" %)OK 894 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 579 +Example: 895 895 896 - (%style="color:blue"%)**DownlinkCommand:0x06**581 + AT+SHTEMP=0,30 ~/~/ Alarm when temperature higher than 30. 897 897 898 - Format:CommandCode(0x06)followedby 3 bytes.583 +* (% style="color:blue" %)**Downlink Payload:** 899 899 900 - Thismeanshat theinterrupt modeofthe end node is set to0x000003=3(risingedgetrigger),andthetypecodeis06.585 +(% style="color:#037691" %)**0x(0C 01 00 1E)** (%%) ~/~/ Set AT+SHTEMP=0,30 901 901 902 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 903 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 904 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 905 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 587 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)** 906 906 907 907 908 -=== 3.3.4 Set Power OutputDuration===590 +=== 3.3.4 Set Humidity Alarm Threshold === 909 909 910 - Controltheoutput duration 5V . Beforeeachsampling,device will592 +* (% style="color:blue" %)**AT Command:** 911 911 912 - ~1.firstenablethe poweroutput to externalsensor,594 +(% style="color:#037691" %)**AT+SHHUM=min,max** 913 913 914 -2. keep it on as per duration, read sensor value and construct uplink payload 596 +* When min=0, and max≠0, Alarm higher than max 597 +* When min≠0, and max=0, Alarm lower than min 598 +* When min≠0 and max≠0, Alarm higher than max or lower than min 915 915 916 - 3. final, closethe power output.600 +Example: 917 917 918 - (%style="color:blue"%)**ATCommand:AT+5VT**602 + AT+SHHUM=70,0 ~/~/ Alarm when humidity lower than 70%. 919 919 920 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 921 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 922 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 923 -500(default) 924 -OK 925 -))) 926 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 927 -Close after a delay of 1000 milliseconds. 928 -)))|(% style="width:157px" %)OK 604 +* (% style="color:blue" %)**Downlink Payload:** 929 929 930 -(% style="color: blue" %)**DownlinkCommand:0x07**606 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%) ~/~/ Set AT+SHTHUM=70,0 931 931 932 - Format:CommandCode(0x07)followedby2bytes.608 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))** 933 933 934 -The first and second bytes are the time to turn on. 935 935 936 -* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 937 -* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 611 +=== 3.3.5 Set Alarm Interval === 938 938 613 +The shortest time of two Alarm packet. (unit: min) 939 939 940 - ===3.3.5SetWeighing parameters===615 +* (% style="color:blue" %)**AT Command:** 941 941 942 - Feature:Workingmode5iseffective,weight initializationandweightfactorsettingofHX711.617 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes. 943 943 944 -(% style="color:blue" %)** ATCommand:AT+WEIGRE,AT+WEIGAP**619 +* (% style="color:blue" %)**Downlink Payload:** 945 945 946 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 947 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 948 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 949 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 950 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 621 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%) **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes 951 951 952 -(% style="color:blue" %)**Downlink Command: 0x08** 953 953 954 - Format:CommandCode(0x08) followed by 2 bytesor4 bytes.624 +=== 3.3.6 Get Alarm settings === 955 955 956 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 957 957 958 - Thesecond andthird bytesaremultipliedby10timesto betheAT+WEIGAP value.627 +Send a LoRaWAN downlink to ask device send Alarm settings. 959 959 960 -* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 961 -* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 962 -* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 629 +* (% style="color:#037691" %)**Downlink Payload: **(%%)0x0E 01 963 963 631 +**Example:** 964 964 965 - === 3.3.6 SetDigitalpulsecountvalue===633 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]] 966 966 967 -Feature: Set the pulse count value. 968 968 969 - Count 1 is PA8pin of mode 6and mode 9. Count 2is PA4 pinof mode 9.636 +**Explain:** 970 970 971 - (%style="color:blue"%)**ATCommand:AT+SETCNT**638 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message. 972 972 973 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 974 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 975 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 976 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 640 +=== 3.3.7 Set Interrupt Mode === 977 977 978 -(% style="color:blue" %)**Downlink Command: 0x09** 979 979 980 -F ormat:CommandCode(0x09)followedby 5 bytes.643 +Feature, Set Interrupt mode for GPIO_EXIT. 981 981 982 - Thefirstbyte is to select which count value toinitialize, and the next fourytes are the count valuetobe initialized.645 +(% style="color:blue" %)**AT Command: AT+INTMOD** 983 983 984 -* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 985 -* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 986 - 987 - 988 -=== 3.3.7 Set Workmode === 989 - 990 -Feature: Switch working mode. 991 - 992 -(% style="color:blue" %)**AT Command: AT+MOD** 993 - 994 994 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 995 995 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 996 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 649 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 650 +0 997 997 OK 652 +the mode is 0 =Disable Interrupt 998 998 ))) 999 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1000 -OK 1001 -Attention:Take effect after ATZ 1002 -))) 654 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 655 +Set Transmit Interval 656 +0. (Disable Interrupt), 657 +~1. (Trigger by rising and falling edge) 658 +2. (Trigger by falling edge) 659 +3. (Trigger by rising edge) 660 +)))|(% style="width:157px" %)OK 1003 1003 1004 -(% style="color:blue" %)**Downlink Command: 0x0 A**662 +(% style="color:blue" %)**Downlink Command: 0x06** 1005 1005 1006 -Format: Command Code (0x0 A) followed by1bytes.664 +Format: Command Code (0x06) followed by 3 bytes. 1007 1007 1008 -* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1009 -* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 666 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1010 1010 668 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 669 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1011 1011 1012 1012 = 4. Battery & Power Consumption = 1013 1013 1014 1014 1015 -S N50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.674 +S31x-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1016 1016 1017 1017 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1018 1018 ... ... @@ -1021,7 +1021,7 @@ 1021 1021 1022 1022 1023 1023 (% class="wikigeneratedid" %) 1024 -User can change firmware S N50v3-LB to:683 +User can change firmware S31x-LB to: 1025 1025 1026 1026 * Change Frequency band/ region. 1027 1027 * Update with new features. ... ... @@ -1037,45 +1037,47 @@ 1037 1037 1038 1038 = 6. FAQ = 1039 1039 1040 -== 6.1 Where can i find source code of SN50v3-LB? == 1041 1041 1042 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1043 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1044 1044 1045 1045 = 7. Order Info = 1046 1046 1047 1047 1048 -Part Number: N50v3-LB-XX-YY**704 +Part Number: (% style="color:blue" %)**S31-LB-XX / S31B-LB-XX** 1049 1049 1050 1050 (% style="color:red" %)**XX**(%%): The default frequency band 1051 1051 1052 1052 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 709 + 1053 1053 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 711 + 1054 1054 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 713 + 1055 1055 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 715 + 1056 1056 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 717 + 1057 1057 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 719 + 1058 1058 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 721 + 1059 1059 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1060 1060 1061 - (% style="color:red"%)**YY:**(%%)Hole Option724 += = 1062 1062 1063 -* (% style="color:red" %)**12**(%%): With M12 waterproof cable hole 1064 -* (% style="color:red" %)**16**(%%): With M16 waterproof cable hole 1065 -* (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1066 -* (% style="color:red" %)**NH**(%%): No Hole 1067 - 1068 1068 = 8. Packing Info = 1069 1069 1070 1070 (% style="color:#037691" %)**Package Includes**: 1071 1071 1072 -* S N50v3-LB LoRaWANGenericNode730 +* S31x-LB LoRaWAN Temperature & Humidity Sensor 1073 1073 1074 1074 (% style="color:#037691" %)**Dimension and weight**: 1075 1075 1076 1076 * Device Size: cm 735 + 1077 1077 * Device Weight: g 737 + 1078 1078 * Package Size / pcs : cm 739 + 1079 1079 * Weight / pcs : g 1080 1080 1081 1081 = 9. Support = ... ... @@ -1082,5 +1082,4 @@ 1082 1082 1083 1083 1084 1084 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1085 - 1086 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 746 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230511203450-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -679.1 KB - Content
- image-20230512163509-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content
- image-20230512164658-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.0 MB - Content
- image-20230512170701-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.5 MB - Content
- image-20230512172447-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.0 MB - Content
- image-20230512173758-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.1 MB - Content
- image-20230512173903-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.3 MB - Content
- image-20230512180609-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.3 MB - Content
- image-20230512180718-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.3 MB - Content
- image-20230512181814-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.2 MB - Content
- image-20230513084523-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -611.3 KB - Content
- image-20230513102034-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -607.1 KB - Content
- image-20230513103633-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -595.5 KB - Content
- image-20230513105207-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -384.7 KB - Content
- image-20230513105351-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.6 KB - Content
- image-20230513110214-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -172.7 KB - Content
- image-20230513111203-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -79.9 KB - Content
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content