<
From version < 43.44 >
edited by Xiaoling
on 2023/05/16 15:31
To version < 44.1 >
edited by Ellie Zhang
on 2023/05/17 15:29
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Ellie
Content
... ... @@ -41,6 +41,7 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 +
44 44  == 1.3 Specification ==
45 45  
46 46  
... ... @@ -78,6 +78,7 @@
78 78  * Sleep Mode: 5uA @ 3.3v
79 79  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80 80  
82 +
81 81  == 1.4 Sleep mode and working mode ==
82 82  
83 83  
... ... @@ -105,6 +105,7 @@
105 105  )))
106 106  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107 107  
110 +
108 108  == 1.6 BLE connection ==
109 109  
110 110  
... ... @@ -290,6 +290,7 @@
290 290  1. All modes share the same Payload Explanation from HERE.
291 291  1. By default, the device will send an uplink message every 20 minutes.
292 292  
296 +
293 293  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
294 294  
295 295  
... ... @@ -296,7 +296,7 @@
296 296  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
297 297  
298 298  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
299 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
303 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
300 300  |**Value**|Bat|(% style="width:191px" %)(((
301 301  Temperature(DS18B20)(PC13)
302 302  )))|(% style="width:78px" %)(((
... ... @@ -312,12 +312,14 @@
312 312  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
313 313  
314 314  
319 +
315 315  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
316 316  
322 +
317 317  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
318 318  
319 319  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
320 -|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
326 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
321 321  |**Value**|BAT|(% style="width:196px" %)(((
322 322  Temperature(DS18B20)(PC13)
323 323  )))|(% style="width:87px" %)(((
... ... @@ -326,21 +326,25 @@
326 326  Digital in(PB15) & Digital Interrupt(PA8)
327 327  )))|(% style="width:208px" %)(((
328 328  Distance measure by:1) LIDAR-Lite V3HP
329 -Or 2) Ultrasonic Sensor
335 +Or
336 +2) Ultrasonic Sensor
330 330  )))|(% style="width:117px" %)Reserved
331 331  
332 332  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
333 333  
341 +
334 334  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
335 335  
336 336  [[image:image-20230512173758-5.png||height="563" width="712"]]
337 337  
346 +
338 338  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
339 339  
340 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
349 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
341 341  
342 342  [[image:image-20230512173903-6.png||height="596" width="715"]]
343 343  
353 +
344 344  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
345 345  
346 346  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
... ... @@ -359,15 +359,17 @@
359 359  
360 360  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
361 361  
372 +
362 362  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
363 363  
364 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
375 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
365 365  
366 366  [[image:image-20230512180609-7.png||height="555" width="802"]]
367 367  
379 +
368 368  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
369 369  
370 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
382 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
371 371  
372 372  [[image:image-20230513105207-4.png||height="469" width="802"]]
373 373  
... ... @@ -374,12 +374,13 @@
374 374  
375 375  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
376 376  
389 +
377 377  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
378 378  
379 379  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
380 380  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
381 381  **Size(bytes)**
382 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
395 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
383 383  |**Value**|(% style="width:68px" %)(((
384 384  ADC1(PA4)
385 385  )))|(% style="width:75px" %)(((
... ... @@ -418,8 +418,10 @@
418 418  [[image:image-20230513134006-1.png||height="559" width="736"]]
419 419  
420 420  
434 +
421 421  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
422 422  
437 +
423 423  [[image:image-20230512164658-2.png||height="532" width="729"]]
424 424  
425 425  Each HX711 need to be calibrated before used. User need to do below two steps:
... ... @@ -428,6 +428,9 @@
428 428  1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
429 429  1. (((
430 430  Weight has 4 bytes, the unit is g.
446 +
447 +
448 +
431 431  )))
432 432  
433 433  For example:
... ... @@ -443,20 +443,20 @@
443 443  **Size(bytes)**
444 444  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
445 445  |**Value**|BAT|(% style="width:193px" %)(((
446 -Temperature(DS18B20)
447 -(PC13)
464 +Temperature(DS18B20)(PC13)
448 448  )))|(% style="width:85px" %)(((
449 449  ADC(PA4)
450 450  )))|(% style="width:186px" %)(((
451 -Digital in(PB15) &
452 -Digital Interrupt(PA8)
468 +Digital in(PB15) & Digital Interrupt(PA8)
453 453  )))|(% style="width:100px" %)Weight
454 454  
455 455  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
456 456  
457 457  
474 +
458 458  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
459 459  
477 +
460 460  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
461 461  
462 462  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -463,10 +463,11 @@
463 463  
464 464  [[image:image-20230512181814-9.png||height="543" width="697"]]
465 465  
466 -(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
467 467  
485 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
486 +
468 468  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
469 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
488 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
470 470  |**Value**|BAT|(% style="width:256px" %)(((
471 471  Temperature(DS18B20)(PC13)
472 472  )))|(% style="width:108px" %)(((
... ... @@ -480,8 +480,10 @@
480 480  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
481 481  
482 482  
502 +
483 483  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
484 484  
505 +
485 485  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
486 486  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
487 487  **Size(bytes)**
... ... @@ -497,12 +497,14 @@
497 497  
498 498  [[image:image-20230513111203-7.png||height="324" width="975"]]
499 499  
521 +
500 500  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
501 501  
524 +
502 502  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
503 503  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
504 504  **Size(bytes)**
505 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
528 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
506 506  |**Value**|BAT|(% style="width:207px" %)(((
507 507  Temperature(DS18B20)
508 508  (PC13)
... ... @@ -521,22 +521,23 @@
521 521  
522 522  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
523 523  
547 +
524 524  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
525 525  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
526 526  **Size(bytes)**
527 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
551 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
528 528  |**Value**|BAT|(((
529 -Temperature1(DS18B20)
530 -(PC13)
553 +Temperature
554 +(DS18B20)(PC13)
531 531  )))|(((
532 -Temperature2(DS18B20)
533 -(PB9)
556 +Temperature2
557 +(DS18B20)(PB9)
534 534  )))|(((
535 535  Digital Interrupt
536 536  (PB15)
537 537  )))|(% style="width:193px" %)(((
538 -Temperature3(DS18B20)
539 -(PB8)
562 +Temperature3
563 +(DS18B20)(PB8)
540 540  )))|(% style="width:78px" %)(((
541 541  Count1(PA8)
542 542  )))|(% style="width:78px" %)(((
... ... @@ -561,9 +561,9 @@
561 561  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
562 562  
563 563  
564 -
565 565  === 2.3.3  ​Decode payload ===
566 566  
590 +
567 567  While using TTN V3 network, you can add the payload format to decode the payload.
568 568  
569 569  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -575,6 +575,7 @@
575 575  
576 576  ==== 2.3.3.1 Battery Info ====
577 577  
602 +
578 578  Check the battery voltage for SN50v3.
579 579  
580 580  Ex1: 0x0B45 = 2885mV
... ... @@ -584,14 +584,16 @@
584 584  
585 585  ==== 2.3.3.2  Temperature (DS18B20) ====
586 586  
612 +
587 587  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
588 588  
589 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
615 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
590 590  
591 591  (% style="color:blue" %)**Connection:**
592 592  
593 593  [[image:image-20230512180718-8.png||height="538" width="647"]]
594 594  
621 +
595 595  (% style="color:blue" %)**Example**:
596 596  
597 597  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -603,6 +603,7 @@
603 603  
604 604  ==== 2.3.3.3 Digital Input ====
605 605  
633 +
606 606  The digital input for pin PB15,
607 607  
608 608  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -612,11 +612,14 @@
612 612  (((
613 613  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
614 614  
615 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
643 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
644 +
645 +
616 616  )))
617 617  
618 618  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
619 619  
650 +
620 620  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
621 621  
622 622  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -623,11 +623,12 @@
623 623  
624 624  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
625 625  
626 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
657 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
627 627  
628 628  
629 629  ==== 2.3.3.5 Digital Interrupt ====
630 630  
662 +
631 631  Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
632 632  
633 633  (% style="color:blue" %)** Interrupt connection method:**
... ... @@ -634,6 +634,7 @@
634 634  
635 635  [[image:image-20230513105351-5.png||height="147" width="485"]]
636 636  
669 +
637 637  (% style="color:blue" %)**Example to use with door sensor :**
638 638  
639 639  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -642,8 +642,9 @@
642 642  
643 643  When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
644 644  
645 -(% style="color:blue" %)** Below is the installation example:**
646 646  
679 +(% style="color:blue" %)**Below is the installation example:**
680 +
647 647  Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
648 648  
649 649  * (((
... ... @@ -655,7 +655,7 @@
655 655  
656 656  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
657 657  
658 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
692 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
659 659  
660 660  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
661 661  
... ... @@ -673,6 +673,7 @@
673 673  
674 674  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
675 675  
710 +
676 676  In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
677 677  
678 678  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
... ... @@ -680,6 +680,7 @@
680 680  
681 681  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
682 682  
718 +
683 683  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
684 684  
685 685  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
... ... @@ -708,11 +708,13 @@
708 708  
709 709  ==== 2.3.3.7  ​Distance Reading ====
710 710  
747 +
711 711  Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
712 712  
713 713  
714 714  ==== 2.3.3.8 Ultrasonic Sensor ====
715 715  
753 +
716 716  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
717 717  
718 718  The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
... ... @@ -723,6 +723,7 @@
723 723  
724 724  [[image:image-20230512173903-6.png||height="596" width="715"]]
725 725  
764 +
726 726  Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
727 727  
728 728  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
... ... @@ -732,14 +732,15 @@
732 732  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
733 733  
734 734  
735 -
736 736  ==== 2.3.3.9  Battery Output - BAT pin ====
737 737  
776 +
738 738  The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
739 739  
740 740  
741 741  ==== 2.3.3.10  +5V Output ====
742 742  
782 +
743 743  SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
744 744  
745 745  The 5V output time can be controlled by AT Command.
... ... @@ -751,18 +751,20 @@
751 751  By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
752 752  
753 753  
754 -
755 755  ==== 2.3.3.11  BH1750 Illumination Sensor ====
756 756  
796 +
757 757  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
758 758  
759 759  [[image:image-20230512172447-4.png||height="416" width="712"]]
760 760  
801 +
761 761  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
762 762  
763 763  
764 764  ==== 2.3.3.12  Working MOD ====
765 765  
807 +
766 766  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
767 767  
768 768  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -790,7 +790,6 @@
790 790  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
791 791  
792 792  
793 -
794 794  == 2.5 Frequency Plans ==
795 795  
796 796  
... ... @@ -810,6 +810,7 @@
810 810  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
811 811  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
812 812  
854 +
813 813  == 3.2 General Commands ==
814 814  
815 815  
... ... @@ -831,6 +831,7 @@
831 831  
832 832  === 3.3.1 Set Transmit Interval Time ===
833 833  
876 +
834 834  Feature: Change LoRaWAN End Node Transmit Interval.
835 835  
836 836  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -859,6 +859,7 @@
859 859  
860 860  === 3.3.2 Get Device Status ===
861 861  
905 +
862 862  Send a LoRaWAN downlink to ask the device to send its status.
863 863  
864 864  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
... ... @@ -868,6 +868,7 @@
868 868  
869 869  === 3.3.3 Set Interrupt Mode ===
870 870  
915 +
871 871  Feature, Set Interrupt mode for GPIO_EXIT.
872 872  
873 873  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
... ... @@ -888,7 +888,6 @@
888 888  )))|(% style="width:157px" %)OK
889 889  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
890 890  Set Transmit Interval
891 -
892 892  trigger by rising edge.
893 893  )))|(% style="width:157px" %)OK
894 894  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -907,6 +907,7 @@
907 907  
908 908  === 3.3.4 Set Power Output Duration ===
909 909  
954 +
910 910  Control the output duration 5V . Before each sampling, device will
911 911  
912 912  ~1. first enable the power output to external sensor,
... ... @@ -939,6 +939,7 @@
939 939  
940 940  === 3.3.5 Set Weighing parameters ===
941 941  
987 +
942 942  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
943 943  
944 944  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
... ... @@ -964,6 +964,7 @@
964 964  
965 965  === 3.3.6 Set Digital pulse count value ===
966 966  
1013 +
967 967  Feature: Set the pulse count value.
968 968  
969 969  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -987,6 +987,7 @@
987 987  
988 988  === 3.3.7 Set Workmode ===
989 989  
1037 +
990 990  Feature: Switch working mode.
991 991  
992 992  (% style="color:blue" %)**AT Command: AT+MOD**
... ... @@ -1035,13 +1035,16 @@
1035 1035  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1036 1036  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1037 1037  
1086 +
1038 1038  = 6. FAQ =
1039 1039  
1040 1040  == 6.1 Where can i find source code of SN50v3-LB? ==
1041 1041  
1091 +
1042 1042  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1043 1043  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1044 1044  
1095 +
1045 1045  = 7. Order Info =
1046 1046  
1047 1047  
... ... @@ -1065,8 +1065,10 @@
1065 1065  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1066 1066  * (% style="color:red" %)**NH**(%%): No Hole
1067 1067  
1119 +
1068 1068  = 8. ​Packing Info =
1069 1069  
1122 +
1070 1070  (% style="color:#037691" %)**Package Includes**:
1071 1071  
1072 1072  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1078,6 +1078,7 @@
1078 1078  * Package Size / pcs : cm
1079 1079  * Weight / pcs : g
1080 1080  
1134 +
1081 1081  = 9. Support =
1082 1082  
1083 1083  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0