Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 4 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 ... ... @@ -16,21 +16,23 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 20 + 22 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 30 31 31 == 1.2 Features == 32 32 33 - 34 34 * LoRaWAN 1.0.3 Class A 35 35 * Ultra-low power consumption 36 36 * Open-Source hardware/software ... ... @@ -43,7 +43,6 @@ 43 43 44 44 == 1.3 Specification == 45 45 46 - 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -80,7 +80,6 @@ 80 80 81 81 == 1.4 Sleep mode and working mode == 82 82 83 - 84 84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 85 85 86 86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -123,7 +123,7 @@ 123 123 == 1.7 Pin Definitions == 124 124 125 125 126 -[[image:image-2023051 3102034-2.png]]125 +[[image:image-20230511203450-2.png||height="443" width="785"]] 127 127 128 128 129 129 == 1.8 Mechanical == ... ... @@ -138,7 +138,6 @@ 138 138 139 139 == Hole Option == 140 140 141 - 142 142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 143 143 144 144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -292,23 +292,23 @@ 292 292 293 293 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 294 294 295 - 296 296 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 297 297 298 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 299 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 300 -|**Value**|Bat|(% style="width:191px" %)((( 301 -Temperature(DS18B20)(PC13) 302 -)))|(% style="width:78px" %)((( 303 -ADC(PA4) 295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 +|**Value**|Bat|((( 297 +Temperature(DS18B20) 298 + 299 +(PC13) 300 +)))|((( 301 +ADC 302 + 303 +(PA4) 304 304 )))|(% style="width:216px" %)((( 305 -Digital in(PB15)&Digital Interrupt(PA8) 306 -)))|(% style="width:308px" %)((( 307 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 308 -)))|(% style="width:154px" %)((( 309 -Humidity(SHT20 or SHT31) 310 -))) 305 +Digital in & Digital Interrupt 311 311 307 + 308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31) 309 + 312 312 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 313 313 314 314 ... ... @@ -316,108 +316,102 @@ 316 316 317 317 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 318 318 319 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 320 -|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 321 -|**Value**|BAT|(% style="width:196px" %)((( 322 -Temperature(DS18B20)(PC13) 323 -)))|(% style="width:87px" %)((( 324 -ADC(PA4) 325 -)))|(% style="width:189px" %)((( 326 -Digital in(PB15) & Digital Interrupt(PA8) 327 -)))|(% style="width:208px" %)((( 328 -Distance measure by:1) LIDAR-Lite V3HP 329 -Or 2) Ultrasonic Sensor 330 -)))|(% style="width:117px" %)Reserved 317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 318 +|**Value**|BAT|((( 319 +Temperature(DS18B20) 320 +)))|ADC|Digital in & Digital Interrupt|((( 321 +Distance measure by: 322 +1) LIDAR-Lite V3HP 323 +Or 324 +2) Ultrasonic Sensor 325 +)))|Reserved 331 331 332 332 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 333 333 334 - (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**329 +**Connection of LIDAR-Lite V3HP:** 335 335 336 336 [[image:image-20230512173758-5.png||height="563" width="712"]] 337 337 338 - (% style="color:blue" %)**Connection to Ultrasonic Sensor:**333 +**Connection to Ultrasonic Sensor:** 339 339 340 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 341 - 342 342 [[image:image-20230512173903-6.png||height="596" width="715"]] 343 343 344 344 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 345 345 346 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 347 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 348 -|**Value**|BAT|(% style="width:183px" %)((( 349 -Temperature(DS18B20)(PC13) 350 -)))|(% style="width:173px" %)((( 351 -Digital in(PB15) & Digital Interrupt(PA8) 352 -)))|(% style="width:84px" %)((( 353 -ADC(PA4) 354 -)))|(% style="width:323px" %)((( 339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 340 +|**Value**|BAT|((( 341 +Temperature(DS18B20) 342 +)))|Digital in & Digital Interrupt|ADC|((( 355 355 Distance measure by:1)TF-Mini plus LiDAR 356 356 Or 357 357 2) TF-Luna LiDAR 358 -)))| (% style="width:188px" %)Distance signal strength346 +)))|Distance signal strength 359 359 360 360 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 361 361 362 362 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 363 363 364 -Need to remove R3 and R4 resistors to get low power ,otherwise there will be 400uA standby current.352 +Need to remove R3 and R4 resistors to get low power. 365 365 366 366 [[image:image-20230512180609-7.png||height="555" width="802"]] 367 367 368 368 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 369 369 370 -Need to remove R3 and R4 resistors to get low power ,otherwise there will be 400uA standby current.358 +Need to remove R3 and R4 resistors to get low power. 371 371 372 -[[image:i mage-20230513105207-4.png||height="469" width="802"]]360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]] 373 373 362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 374 374 364 + 375 375 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 376 376 377 377 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 378 378 379 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 380 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 369 +|=((( 381 381 **Size(bytes)** 382 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1 383 383 |**Value**|(% style="width:68px" %)((( 384 -ADC1(PA4) 373 +ADC 374 + 375 +(PA0) 385 385 )))|(% style="width:75px" %)((( 386 -ADC2(PA5) 387 -)))|((( 388 -ADC3(PA8) 389 -)))|((( 390 -Digital Interrupt(PB15) 391 -)))|(% style="width:304px" %)((( 392 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 393 -)))|(% style="width:163px" %)((( 394 -Humidity(SHT20 or SHT31) 395 -)))|(% style="width:53px" %)Bat 377 +ADC2 396 396 397 -[[image:image-20230513110214-6.png]] 379 +(PA1) 380 +)))|ADC3 (PA4)|((( 381 +Digital in(PA12)&Digital Interrupt1(PB14) 382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat 398 398 384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]] 399 399 386 + 400 400 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 401 401 389 +[[image:image-20230512170701-3.png||height="565" width="743"]] 402 402 403 403 This mode has total 11 bytes. As shown below: 404 404 405 -(% border="1" cellspacing="4" style="background-color:#f2f2f2;width:520px" %)406 -| (% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0;width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0;width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0;width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0;width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0;width:100px" %)**2**393 +(% style="width:1017px" %) 394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 407 407 |**Value**|BAT|(% style="width:186px" %)((( 408 -Temperature1(DS18B20)(PC13) 396 +Temperature1(DS18B20) 397 +(PC13) 409 409 )))|(% style="width:82px" %)((( 410 -ADC(PA4) 399 +ADC 400 + 401 +(PA4) 411 411 )))|(% style="width:210px" %)((( 412 -Digital in(PB15) & Digital Interrupt(PA8) 403 +Digital in & Digital Interrupt 404 + 405 +(PB15) & (PA8) 413 413 )))|(% style="width:191px" %)Temperature2(DS18B20) 414 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 408 +(PB8) 415 415 416 416 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 417 417 418 -[[image:image-20230513134006-1.png||height="559" width="736"]] 419 419 420 - 421 421 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 422 422 423 423 [[image:image-20230512164658-2.png||height="532" width="729"]] ... ... @@ -438,20 +438,26 @@ 438 438 439 439 Check the response of this command and adjust the value to match the real value for thing. 440 440 441 -(% border="1" cellspacing="4" style="background-color:#f2f2f2;width:520px" %)442 -|=( % style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((433 +(% style="width:982px" %) 434 +|=((( 443 443 **Size(bytes)** 444 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 445 -|**Value**|BAT|(% style="width:193px" %)((( 446 -Temperature(DS18B20) 436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4** 437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)((( 438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 439 + 447 447 (PC13) 448 -)))|(% style="width:85px" %)((( 449 -ADC(PA4) 450 -)))|(% style="width:186px" %)((( 451 -Digital in(PB15) & 452 -Digital Interrupt(PA8) 453 -)))|(% style="width:100px" %)Weight 454 454 442 + 443 +)))|(% style="width:119px" %)((( 444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]] 445 + 446 +(PA4) 447 +)))|(% style="width:279px" %)((( 448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]] 449 + 450 +(PB15) & (PA8) 451 +)))|(% style="width:106px" %)Weight 452 + 455 455 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 456 456 457 457 ... ... @@ -463,19 +463,12 @@ 463 463 464 464 [[image:image-20230512181814-9.png||height="543" width="697"]] 465 465 466 - (% style="color:red" %)**Note:**_v3to avoid this happen.464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 467 467 468 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 469 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 470 -|**Value**|BAT|(% style="width:256px" %)((( 471 -Temperature(DS18B20)(PC13) 472 -)))|(% style="width:108px" %)((( 473 -ADC(PA4) 474 -)))|(% style="width:126px" %)((( 475 -Digital in(PB15) 476 -)))|(% style="width:145px" %)((( 477 -Count(PA8) 478 -))) 466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 479 479 480 480 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 481 481 ... ... @@ -482,86 +482,72 @@ 482 482 483 483 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 484 484 485 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 486 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 477 + 478 +|=((( 487 487 **Size(bytes)** 488 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 489 -|**Value**|BAT|(% style="width:188px" %)((( 490 -Temperature(DS18B20) 491 -(PC13) 492 -)))|(% style="width:83px" %)((( 493 -ADC(PA5) 494 -)))|(% style="width:184px" %)((( 495 -Digital Interrupt1(PA8) 496 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 481 +|**Value**|BAT|Temperature(DS18B20)|ADC|((( 482 +Digital in(PA12)&Digital Interrupt1(PB14) 483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 497 497 498 -[[image:image-20230513111203-7.png||height="324" width="975"]] 499 - 500 500 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 501 501 502 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 503 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 487 +|=((( 504 504 **Size(bytes)** 505 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 506 -|**Value**|BAT|(% style="width:207px" %)((( 507 -Temperature(DS18B20) 508 -(PC13) 509 -)))|(% style="width:94px" %)((( 510 -ADC1(PA4) 511 -)))|(% style="width:198px" %)((( 512 -Digital Interrupt(PB15) 513 -)))|(% style="width:84px" %)((( 514 -ADC2(PA5) 515 -)))|(% style="width:82px" %)((( 516 -ADC3(PA8) 489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 490 +|**Value**|BAT|Temperature(DS18B20)|((( 491 +ADC1(PA0) 492 +)))|((( 493 +Digital in 494 +& Digital Interrupt(PB14) 495 +)))|((( 496 +ADC2(PA1) 497 +)))|((( 498 +ADC3(PA4) 517 517 ))) 518 518 519 -[[image:image-202 30513111231-8.png||height="335" width="900"]]501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]] 520 520 521 521 522 522 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 523 523 524 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 525 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 506 +|=((( 526 526 **Size(bytes)** 527 -)))|= (% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 528 528 |**Value**|BAT|((( 529 -Temperature1(DS18B20) 530 -(PC13) 510 +Temperature1(PB3) 531 531 )))|((( 532 -Temperature2(DS18B20) 533 -(PB9) 512 +Temperature2(PA9) 534 534 )))|((( 535 -Digital Interrupt 536 -(PB15) 537 -)))|(% style="width:193px" %)((( 538 -Temperature3(DS18B20) 539 -(PB8) 540 -)))|(% style="width:78px" %)((( 541 -Count1(PA8) 542 -)))|(% style="width:78px" %)((( 543 -Count2(PA4) 514 +Digital in 515 +& Digital Interrupt(PA4) 516 +)))|((( 517 +Temperature3(PA10) 518 +)))|((( 519 +Count1(PB14) 520 +)))|((( 521 +Count2(PB15) 544 544 ))) 545 545 546 -[[image:image-202 30513111255-9.png||height="341"width="899"]]524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]] 547 547 548 - (% style="color:blue" %)**The newly added AT command is issued correspondingly:**526 +**The newly added AT command is issued correspondingly:** 549 549 550 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**528 +**~ AT+INTMOD1** ** PB14** pin: Corresponding downlink: **06 00 00 xx** 551 551 552 - (% style="color:#037691" %)** AT+INTMOD2PA4**(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**530 +**~ AT+INTMOD2** **PB15** pin: Corresponding downlink:** 06 00 01 xx** 553 553 554 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**532 +**~ AT+INTMOD3** **PA4** pin: Corresponding downlink: ** 06 00 02 xx** 555 555 534 +**AT+SETCNT=aa,bb** 556 556 557 - (%style="color:blue"%)**AT+SETCNT=aa,bb**536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb 558 558 559 -When AA is 1, set the count of PA8pin to BB Corresponding downlink:09 01bb bb bb bb538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb 560 560 561 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 562 562 563 563 564 - 565 565 === 2.3.3 Decode payload === 566 566 567 567 While using TTN V3 network, you can add the payload format to decode the payload. ... ... @@ -584,15 +584,15 @@ 584 584 585 585 ==== 2.3.3.2 Temperature (DS18B20) ==== 586 586 587 -If there is a DS18B20 connected to P C13 pin. The temperature will be uploaded in the payload.564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 588 588 589 589 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 590 590 591 - (% style="color:blue" %)**Connection:**568 +**Connection:** 592 592 593 593 [[image:image-20230512180718-8.png||height="538" width="647"]] 594 594 595 - (% style="color:blue" %)**Example**:572 +**Example**: 596 596 597 597 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 598 598 ... ... @@ -610,54 +610,51 @@ 610 610 611 611 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 612 612 ((( 613 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 614 - 615 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 590 +Note:The maximum voltage input supports 3.6V. 616 616 ))) 617 617 593 +(% class="wikigeneratedid" %) 618 618 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 619 619 620 -The measuring range of the ADCis only about 0V to 1.1V The voltage resolution is about 0.24mv.596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 621 621 622 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 598 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 623 623 624 624 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 625 625 626 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 627 627 628 - 629 629 ==== 2.3.3.5 Digital Interrupt ==== 630 630 631 -Digital Interrupt refers to pin P A8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 632 632 633 - (% style="color:blue" %)** Interrupt connection method:**607 +**~ Interrupt connection method:** 634 634 635 -[[image:i mage-20230513105351-5.png||height="147" width="485"]]609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]] 636 636 637 - (% style="color:blue" %)**Example to use with door sensor :**611 +**Example to use with door sensor :** 638 638 639 639 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 640 640 641 641 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 642 642 643 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3interrupt interface to detect the status for the door or window.617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window. 644 644 645 - (% style="color:blue" %)** Below is the installation example:**619 +**~ Below is the installation example:** 646 646 647 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50 _v3as follows:621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows: 648 648 649 649 * ((( 650 -One pin to SN50 _v3's PA8pin624 +One pin to LSN50's PB14 pin 651 651 ))) 652 652 * ((( 653 -The other pin to SN50 _v3's VDDpin627 +The other pin to LSN50's VCC pin 654 654 ))) 655 655 656 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and P A8will be at the VCC voltage.630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage. 657 657 658 658 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 659 659 660 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v 3/1Mohm = 3uA which can be ignored.634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored. 661 661 662 662 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 663 663 ... ... @@ -667,7 +667,7 @@ 667 667 668 668 The command is: 669 669 670 - (% style="color:blue" %)**AT+INTMOD1=1 **(%%)~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)644 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 671 671 672 672 Below shows some screen captures in TTN V3: 673 673 ... ... @@ -682,15 +682,14 @@ 682 682 683 683 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 684 684 685 -We have made an example to show how to use the I2C interface to connect to the SHT20 /SHT31 Temperature and Humidity Sensor.659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 686 686 687 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 /SHT31code in SN50_v3 will be a good reference.661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference. 688 688 689 689 Below is the connection to SHT20/ SHT31. The connection is as below: 690 690 665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]] 691 691 692 -[[image:image-20230513103633-3.png||height="448" width="716"]] 693 - 694 694 The device will be able to get the I2C sensor data now and upload to IoT Server. 695 695 696 696 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -708,7 +708,7 @@ 708 708 709 709 ==== 2.3.3.7 Distance Reading ==== 710 710 711 -Refer [[Ultrasonic Sensor section>> ||anchor="H2.3.3.8UltrasonicSensor"]].684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 712 712 713 713 714 714 ==== 2.3.3.8 Ultrasonic Sensor ==== ... ... @@ -715,15 +715,12 @@ 715 715 716 716 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 717 717 718 -The SN50 _v3detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 719 719 720 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 721 - 722 722 The picture below shows the connection: 723 723 724 -[[image:image-20230512173903-6.png||height="596" width="715"]] 725 725 726 -Connect to the SN50 _v3and run(% style="color:blue" %)**AT+MOD=2**(%%)to switch to ultrasonic mode (ULT).696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 727 727 728 728 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 729 729 ... ... @@ -731,8 +731,20 @@ 731 731 732 732 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 733 733 704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 734 734 706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]] 735 735 708 +You can see the serial output in ULT mode as below: 709 + 710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]] 711 + 712 +**In TTN V3 server:** 713 + 714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]] 715 + 716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 717 + 736 736 ==== 2.3.3.9 Battery Output - BAT pin ==== 737 737 738 738 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. ... ... @@ -744,7 +744,7 @@ 744 744 745 745 The 5V output time can be controlled by AT Command. 746 746 747 - (% style="color:blue" %)**AT+5VT=1000**729 +**AT+5VT=1000** 748 748 749 749 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 750 750 ... ... @@ -756,9 +756,9 @@ 756 756 757 757 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 758 758 759 -[[image:image-20230512172447-4.png||height=" 416" width="712"]]741 +[[image:image-20230512172447-4.png||height="593" width="1015"]] 760 760 761 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 762 762 763 763 764 764 ==== 2.3.3.12 Working MOD ==== ... ... @@ -775,11 +775,7 @@ 775 775 * 3: MOD4 776 776 * 4: MOD5 777 777 * 5: MOD6 778 -* 6: MOD7 779 -* 7: MOD8 780 -* 8: MOD9 781 781 782 - 783 783 == 2.4 Payload Decoder file == 784 784 785 785 ... ... @@ -787,7 +787,7 @@ 787 787 788 788 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 789 789 790 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50 _v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 791 791 792 792 793 793 ... ... @@ -831,6 +831,7 @@ 831 831 832 832 === 3.3.1 Set Transmit Interval Time === 833 833 812 + 834 834 Feature: Change LoRaWAN End Node Transmit Interval. 835 835 836 836 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -856,10 +856,9 @@ 856 856 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 857 857 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 858 858 859 - 860 860 === 3.3.2 Get Device Status === 861 861 862 -Send a LoRaWAN downlink to ask thedevicetosenditsstatus.840 +Send a LoRaWAN downlink to ask device send Alarm settings. 863 863 864 864 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 865 865 ... ... @@ -866,20 +866,21 @@ 866 866 Sensor will upload Device Status via FPORT=5. See payload section for detail. 867 867 868 868 869 -=== 3.3. 3Set Interrupt Mode ===847 +=== 3.3.7 Set Interrupt Mode === 870 870 849 + 871 871 Feature, Set Interrupt mode for GPIO_EXIT. 872 872 873 -(% style="color:blue" %)**AT Command: AT+INTMOD 1,AT+INTMOD2,AT+INTMOD3**852 +(% style="color:blue" %)**AT Command: AT+INTMOD** 874 874 875 875 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 876 876 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 877 -|(% style="width:154px" %)AT+INTMOD 1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 878 878 0 879 879 OK 880 880 the mode is 0 =Disable Interrupt 881 881 ))) 882 -|(% style="width:154px" %)AT+INTMOD 1=2|(% style="width:196px" %)(((861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 883 883 Set Transmit Interval 884 884 0. (Disable Interrupt), 885 885 ~1. (Trigger by rising and falling edge) ... ... @@ -886,13 +886,7 @@ 886 886 2. (Trigger by falling edge) 887 887 3. (Trigger by rising edge) 888 888 )))|(% style="width:157px" %)OK 889 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 890 -Set Transmit Interval 891 891 892 -trigger by rising edge. 893 -)))|(% style="width:157px" %)OK 894 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 895 - 896 896 (% style="color:blue" %)**Downlink Command: 0x06** 897 897 898 898 Format: Command Code (0x06) followed by 3 bytes. ... ... @@ -899,116 +899,9 @@ 899 899 900 900 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 901 901 902 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 903 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 904 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 905 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 875 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 876 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 906 906 907 - 908 -=== 3.3.4 Set Power Output Duration === 909 - 910 -Control the output duration 5V . Before each sampling, device will 911 - 912 -~1. first enable the power output to external sensor, 913 - 914 -2. keep it on as per duration, read sensor value and construct uplink payload 915 - 916 -3. final, close the power output. 917 - 918 -(% style="color:blue" %)**AT Command: AT+5VT** 919 - 920 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 921 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 922 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 923 -500(default) 924 -OK 925 -))) 926 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 927 -Close after a delay of 1000 milliseconds. 928 -)))|(% style="width:157px" %)OK 929 - 930 -(% style="color:blue" %)**Downlink Command: 0x07** 931 - 932 -Format: Command Code (0x07) followed by 2 bytes. 933 - 934 -The first and second bytes are the time to turn on. 935 - 936 -* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 937 -* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 938 - 939 - 940 -=== 3.3.5 Set Weighing parameters === 941 - 942 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 943 - 944 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 945 - 946 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 947 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 948 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 949 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 950 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 951 - 952 -(% style="color:blue" %)**Downlink Command: 0x08** 953 - 954 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 955 - 956 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 957 - 958 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 959 - 960 -* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 961 -* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 962 -* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 963 - 964 - 965 -=== 3.3.6 Set Digital pulse count value === 966 - 967 -Feature: Set the pulse count value. 968 - 969 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 970 - 971 -(% style="color:blue" %)**AT Command: AT+SETCNT** 972 - 973 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 974 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 975 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 976 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 977 - 978 -(% style="color:blue" %)**Downlink Command: 0x09** 979 - 980 -Format: Command Code (0x09) followed by 5 bytes. 981 - 982 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 983 - 984 -* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 985 -* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 986 - 987 - 988 -=== 3.3.7 Set Workmode === 989 - 990 -Feature: Switch working mode. 991 - 992 -(% style="color:blue" %)**AT Command: AT+MOD** 993 - 994 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 995 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 996 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 997 -OK 998 -))) 999 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1000 -OK 1001 -Attention:Take effect after ATZ 1002 -))) 1003 - 1004 -(% style="color:blue" %)**Downlink Command: 0x0A** 1005 - 1006 -Format: Command Code (0x0A) followed by 1 bytes. 1007 - 1008 -* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1009 -* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1010 - 1011 - 1012 1012 = 4. Battery & Power Consumption = 1013 1013 1014 1014 ... ... @@ -1042,6 +1042,7 @@ 1042 1042 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1043 1043 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1044 1044 911 + 1045 1045 = 7. Order Info = 1046 1046 1047 1047 ... ... @@ -1082,5 +1082,4 @@ 1082 1082 1083 1083 1084 1084 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1085 - 1086 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content