Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -30,6 +30,7 @@ 30 30 31 31 == 1.2 Features == 32 32 33 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -276,19 +276,22 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 291 291 291 +2. All modes share the same Payload Explanation from HERE. 292 + 293 +3. By default, the device will send an uplink message every 20 minutes. 294 + 295 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -295,7 +295,7 @@ 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**302 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 299 299 |**Value**|Bat|(% style="width:191px" %)((( 300 300 Temperature(DS18B20)(PC13) 301 301 )))|(% style="width:78px" %)((( ... ... @@ -311,12 +311,14 @@ 311 311 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 312 312 313 313 318 + 314 314 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 315 315 321 + 316 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 317 317 318 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 319 -|(% style=" width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**325 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 320 320 |**Value**|BAT|(% style="width:196px" %)((( 321 321 Temperature(DS18B20)(PC13) 322 322 )))|(% style="width:87px" %)((( ... ... @@ -325,25 +325,29 @@ 325 325 Digital in(PB15) & Digital Interrupt(PA8) 326 326 )))|(% style="width:208px" %)((( 327 327 Distance measure by:1) LIDAR-Lite V3HP 328 -Or 2) Ultrasonic Sensor 334 +Or 335 +2) Ultrasonic Sensor 329 329 )))|(% style="width:117px" %)Reserved 330 330 331 331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 332 332 340 + 333 333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 334 334 335 335 [[image:image-20230512173758-5.png||height="563" width="712"]] 336 336 345 + 337 337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 338 338 339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 348 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 340 340 341 341 [[image:image-20230512173903-6.png||height="596" width="715"]] 342 342 352 + 343 343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 344 344 345 345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 346 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**356 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 347 347 |**Value**|BAT|(% style="width:183px" %)((( 348 348 Temperature(DS18B20)(PC13) 349 349 )))|(% style="width:173px" %)((( ... ... @@ -358,15 +358,17 @@ 358 358 359 359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 360 360 371 + 361 361 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 362 362 363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 374 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 364 364 365 365 [[image:image-20230512180609-7.png||height="555" width="802"]] 366 366 378 + 367 367 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 368 368 369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 370 370 371 371 [[image:image-20230513105207-4.png||height="469" width="802"]] 372 372 ... ... @@ -373,12 +373,13 @@ 373 373 374 374 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 375 375 388 + 376 376 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 377 377 378 378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 379 379 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 380 380 **Size(bytes)** 381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 40px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1394 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 382 382 |**Value**|(% style="width:68px" %)((( 383 383 ADC1(PA4) 384 384 )))|(% style="width:75px" %)((( ... ... @@ -402,7 +402,7 @@ 402 402 This mode has total 11 bytes. As shown below: 403 403 404 404 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 405 -|(% style=" width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**418 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 406 406 |**Value**|BAT|(% style="width:186px" %)((( 407 407 Temperature1(DS18B20)(PC13) 408 408 )))|(% style="width:82px" %)((( ... ... @@ -417,21 +417,26 @@ 417 417 [[image:image-20230513134006-1.png||height="559" width="736"]] 418 418 419 419 433 + 420 420 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 421 421 436 + 422 422 [[image:image-20230512164658-2.png||height="532" width="729"]] 423 423 424 424 Each HX711 need to be calibrated before used. User need to do below two steps: 425 425 426 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 427 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 441 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 442 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 428 428 1. ((( 429 429 Weight has 4 bytes, the unit is g. 445 + 446 + 447 + 430 430 ))) 431 431 432 432 For example: 433 433 434 -**AT+GETSENSORVALUE =0** 452 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 435 435 436 436 Response: Weight is 401 g 437 437 ... ... @@ -442,20 +442,20 @@ 442 442 **Size(bytes)** 443 443 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 444 444 |**Value**|BAT|(% style="width:193px" %)((( 445 -Temperature(DS18B20) 446 -(PC13) 463 +Temperature(DS18B20)(PC13) 447 447 )))|(% style="width:85px" %)((( 448 448 ADC(PA4) 449 449 )))|(% style="width:186px" %)((( 450 -Digital in(PB15) & 451 -Digital Interrupt(PA8) 467 +Digital in(PB15) & Digital Interrupt(PA8) 452 452 )))|(% style="width:100px" %)Weight 453 453 454 454 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 455 455 456 456 473 + 457 457 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 458 458 476 + 459 459 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 460 460 461 461 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -462,10 +462,11 @@ 462 462 463 463 [[image:image-20230512181814-9.png||height="543" width="697"]] 464 464 465 -(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 466 466 484 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 485 + 467 467 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 468 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 469 469 |**Value**|BAT|(% style="width:256px" %)((( 470 470 Temperature(DS18B20)(PC13) 471 471 )))|(% style="width:108px" %)((( ... ... @@ -479,8 +479,10 @@ 479 479 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 480 480 481 481 501 + 482 482 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 483 483 504 + 484 484 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 485 485 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 486 486 **Size(bytes)** ... ... @@ -496,12 +496,14 @@ 496 496 497 497 [[image:image-20230513111203-7.png||height="324" width="975"]] 498 498 520 + 499 499 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 500 500 523 + 501 501 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 502 502 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 503 503 **Size(bytes)** 504 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 1 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2527 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 505 505 |**Value**|BAT|(% style="width:207px" %)((( 506 506 Temperature(DS18B20) 507 507 (PC13) ... ... @@ -520,22 +520,23 @@ 520 520 521 521 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 522 522 546 + 523 523 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 524 524 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 525 525 **Size(bytes)** 526 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4550 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 527 527 |**Value**|BAT|((( 528 -Temperature 1(DS18B20)529 -(PC13) 552 +Temperature 553 +(DS18B20)(PC13) 530 530 )))|((( 531 -Temperature2 (DS18B20)532 -(PB9) 555 +Temperature2 556 +(DS18B20)(PB9) 533 533 )))|((( 534 534 Digital Interrupt 535 535 (PB15) 536 536 )))|(% style="width:193px" %)((( 537 -Temperature3 (DS18B20)538 -(PB8) 561 +Temperature3 562 +(DS18B20)(PB8) 539 539 )))|(% style="width:78px" %)((( 540 540 Count1(PA8) 541 541 )))|(% style="width:78px" %)((( ... ... @@ -546,11 +546,11 @@ 546 546 547 547 (% style="color:blue" %)**The newly added AT command is issued correspondingly:** 548 548 549 -(% style="color:#037691" %)** ~AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx**573 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 550 550 551 -(% style="color:#037691" %)** ~AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**575 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 552 552 553 -(% style="color:#037691" %)** ~AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx**577 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 554 554 555 555 556 556 (% style="color:blue" %)**AT+SETCNT=aa,bb** ... ... @@ -560,9 +560,9 @@ 560 560 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 561 561 562 562 563 - 564 564 === 2.3.3 Decode payload === 565 565 589 + 566 566 While using TTN V3 network, you can add the payload format to decode the payload. 567 567 568 568 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -569,13 +569,14 @@ 569 569 570 570 The payload decoder function for TTN V3 are here: 571 571 572 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 596 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 573 573 574 574 575 575 ==== 2.3.3.1 Battery Info ==== 576 576 577 -Check the battery voltage for SN50v3. 578 578 602 +Check the battery voltage for SN50v3-LB. 603 + 579 579 Ex1: 0x0B45 = 2885mV 580 580 581 581 Ex2: 0x0B49 = 2889mV ... ... @@ -583,14 +583,16 @@ 583 583 584 584 ==== 2.3.3.2 Temperature (DS18B20) ==== 585 585 611 + 586 586 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 587 587 588 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]614 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 589 589 590 590 (% style="color:blue" %)**Connection:** 591 591 592 592 [[image:image-20230512180718-8.png||height="538" width="647"]] 593 593 620 + 594 594 (% style="color:blue" %)**Example**: 595 595 596 596 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree ... ... @@ -602,6 +602,7 @@ 602 602 603 603 ==== 2.3.3.3 Digital Input ==== 604 604 632 + 605 605 The digital input for pin PB15, 606 606 607 607 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -611,11 +611,14 @@ 611 611 ((( 612 612 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 613 613 614 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 642 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 643 + 644 + 615 615 ))) 616 616 617 617 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 618 618 649 + 619 619 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 620 620 621 621 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -622,17 +622,20 @@ 622 622 623 623 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 624 624 625 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 626 626 657 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 627 627 659 + 628 628 ==== 2.3.3.5 Digital Interrupt ==== 629 629 630 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 631 631 632 - (% style="color:blue"%)**~Interruptconnection method:**663 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 633 633 665 +(% style="color:blue" %)** Interrupt connection method:** 666 + 634 634 [[image:image-20230513105351-5.png||height="147" width="485"]] 635 635 669 + 636 636 (% style="color:blue" %)**Example to use with door sensor :** 637 637 638 638 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -639,22 +639,23 @@ 639 639 640 640 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 641 641 642 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.676 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 643 643 644 -(% style="color:blue" %)**~ Below is the installation example:** 645 645 646 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:679 +(% style="color:blue" %)**Below is the installation example:** 647 647 681 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 682 + 648 648 * ((( 649 -One pin to SN50 _v3's PA8 pin684 +One pin to SN50v3-LB's PA8 pin 650 650 ))) 651 651 * ((( 652 -The other pin to SN50 _v3's VDD pin687 +The other pin to SN50v3-LB's VDD pin 653 653 ))) 654 654 655 655 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 656 656 657 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 692 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 658 658 659 659 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 660 660 ... ... @@ -666,12 +666,13 @@ 666 666 667 667 The command is: 668 668 669 -(% style="color:blue" %)**AT+INTMOD1=1 704 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 670 670 671 671 Below shows some screen captures in TTN V3: 672 672 673 673 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 674 674 710 + 675 675 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 676 676 677 677 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; ... ... @@ -679,15 +679,16 @@ 679 679 680 680 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 681 681 718 + 682 682 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 683 683 684 684 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 685 685 686 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.723 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 687 687 725 + 688 688 Below is the connection to SHT20/ SHT31. The connection is as below: 689 689 690 - 691 691 [[image:image-20230513103633-3.png||height="448" width="716"]] 692 692 693 693 The device will be able to get the I2C sensor data now and upload to IoT Server. ... ... @@ -707,23 +707,26 @@ 707 707 708 708 ==== 2.3.3.7 Distance Reading ==== 709 709 747 + 710 710 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 711 711 712 712 713 713 ==== 2.3.3.8 Ultrasonic Sensor ==== 714 714 753 + 715 715 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 716 716 717 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.756 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 718 718 719 -The working principle of this sensor is similar to the **(% style="color:blue" %)HC-SR04**(%%) ultrasonic sensor.758 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 720 720 721 721 The picture below shows the connection: 722 722 723 723 [[image:image-20230512173903-6.png||height="596" width="715"]] 724 724 725 -Connect to the SN50_v3 and run **(% style="color:blue" %)AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 726 726 765 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 766 + 727 727 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 728 728 729 729 **Example:** ... ... @@ -731,16 +731,17 @@ 731 731 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 732 732 733 733 734 - 735 735 ==== 2.3.3.9 Battery Output - BAT pin ==== 736 736 776 + 737 737 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 738 738 739 739 740 740 ==== 2.3.3.10 +5V Output ==== 741 741 742 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 743 743 783 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 784 + 744 744 The 5V output time can be controlled by AT Command. 745 745 746 746 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -750,18 +750,20 @@ 750 750 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 751 751 752 752 753 - 754 754 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 755 755 796 + 756 756 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 757 757 758 758 [[image:image-20230512172447-4.png||height="416" width="712"]] 759 759 801 + 760 760 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 761 761 762 762 763 763 ==== 2.3.3.12 Working MOD ==== 764 764 807 + 765 765 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 766 766 767 767 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -778,8 +778,6 @@ 778 778 * 7: MOD8 779 779 * 8: MOD9 780 780 781 - 782 - 783 783 == 2.4 Payload Decoder file == 784 784 785 785 ... ... @@ -790,7 +790,6 @@ 790 790 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 791 791 792 792 793 - 794 794 == 2.5 Frequency Plans == 795 795 796 796 ... ... @@ -826,11 +826,12 @@ 826 826 == 3.3 Commands special design for SN50v3-LB == 827 827 828 828 829 -These commands only valid for S3 1x-LB, as below:869 +These commands only valid for SN50v3-LB, as below: 830 830 831 831 832 832 === 3.3.1 Set Transmit Interval Time === 833 833 874 + 834 834 Feature: Change LoRaWAN End Node Transmit Interval. 835 835 836 836 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -856,10 +856,9 @@ 856 856 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 857 857 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 858 858 859 - 860 - 861 861 === 3.3.2 Get Device Status === 862 862 902 + 863 863 Send a LoRaWAN downlink to ask the device to send its status. 864 864 865 865 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 ... ... @@ -869,6 +869,7 @@ 869 869 870 870 === 3.3.3 Set Interrupt Mode === 871 871 912 + 872 872 Feature, Set Interrupt mode for GPIO_EXIT. 873 873 874 874 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -889,7 +889,6 @@ 889 889 )))|(% style="width:157px" %)OK 890 890 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 891 891 Set Transmit Interval 892 - 893 893 trigger by rising edge. 894 894 )))|(% style="width:157px" %)OK 895 895 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -905,10 +905,9 @@ 905 905 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 906 906 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 907 907 908 - 909 - 910 910 === 3.3.4 Set Power Output Duration === 911 911 950 + 912 912 Control the output duration 5V . Before each sampling, device will 913 913 914 914 ~1. first enable the power output to external sensor, ... ... @@ -938,10 +938,9 @@ 938 938 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 939 939 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 940 940 941 - 942 - 943 943 === 3.3.5 Set Weighing parameters === 944 944 982 + 945 945 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 946 946 947 947 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -964,10 +964,9 @@ 964 964 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 965 965 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 966 966 967 - 968 - 969 969 === 3.3.6 Set Digital pulse count value === 970 970 1007 + 971 971 Feature: Set the pulse count value. 972 972 973 973 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -988,10 +988,9 @@ 988 988 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 989 989 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 990 990 991 - 992 - 993 993 === 3.3.7 Set Workmode === 994 994 1030 + 995 995 Feature: Switch working mode. 996 996 997 997 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1013,8 +1013,6 @@ 1013 1013 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1014 1014 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1015 1015 1016 - 1017 - 1018 1018 = 4. Battery & Power Consumption = 1019 1019 1020 1020 ... ... @@ -1045,6 +1045,7 @@ 1045 1045 1046 1046 == 6.1 Where can i find source code of SN50v3-LB? == 1047 1047 1082 + 1048 1048 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1049 1049 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1050 1050 ... ... @@ -1073,6 +1073,7 @@ 1073 1073 1074 1074 = 8. Packing Info = 1075 1075 1111 + 1076 1076 (% style="color:#037691" %)**Package Includes**: 1077 1077 1078 1078 * SN50v3-LB LoRaWAN Generic Node