<
From version < 43.42 >
edited by Xiaoling
on 2023/05/16 15:05
To version < 9.1 >
edited by Edwin Chen
on 2023/05/11 20:37
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,15 +16,18 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
... ... @@ -42,7 +42,6 @@
42 42  
43 43  == 1.3 Specification ==
44 44  
45 -
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 48  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,7 +79,6 @@
79 79  
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 -
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -122,7 +122,7 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230513102034-2.png]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -137,7 +137,6 @@
137 137  
138 138  == Hole Option ==
139 139  
140 -
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -145,12 +145,12 @@
145 145  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146 146  
147 147  
148 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
147 += 2. Configure S31x-LB to connect to LoRaWAN network =
149 149  
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -161,11 +161,11 @@
161 161  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
165 165  
166 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
165 +Each S31x-LB is shipped with a sticker with the default device EUI as below:
167 167  
168 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
167 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
169 169  
170 170  
171 171  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -192,10 +192,10 @@
192 192  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193 193  
194 194  
195 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
194 +(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
196 196  
197 197  
198 -Press the button for 5 seconds to activate the SN50v3-LB.
197 +Press the button for 5 seconds to activate the S31x-LB.
199 199  
200 200  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201 201  
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -219,9 +219,11 @@
219 219  
220 220  Example parse in TTNv3
221 221  
221 +[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
224 224  
224 +(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
225 +
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
... ... @@ -273,326 +273,41 @@
273 273  Ex2: 0x0B49 = 2889mV
274 274  
275 275  
276 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 +=== 2.3.2  Sensor Data. FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 +Sensor Data is uplink via FPORT=2
280 280  
281 -For example:
282 -
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 -
285 -
286 -(% style="color:red" %) **Important Notice:**
287 -
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
291 -
292 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 -
294 -
295 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 -
297 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
300 -Temperature(DS18B20)(PC13)
301 -)))|(% style="width:78px" %)(((
302 -ADC(PA4)
303 -)))|(% style="width:216px" %)(((
304 -Digital in(PB15)&Digital Interrupt(PA8)
305 -)))|(% style="width:308px" %)(((
306 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
307 -)))|(% style="width:154px" %)(((
308 -Humidity(SHT20 or SHT31)
309 -)))
310 -
311 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
312 -
313 -
314 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315 -
316 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 -
318 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 -|**Value**|BAT|(% style="width:196px" %)(((
321 -Temperature(DS18B20)(PC13)
322 -)))|(% style="width:87px" %)(((
323 -ADC(PA4)
324 -)))|(% style="width:189px" %)(((
325 -Digital in(PB15) & Digital Interrupt(PA8)
326 -)))|(% style="width:208px" %)(((
327 -Distance measure by:1) LIDAR-Lite V3HP
328 -Or 2) Ultrasonic Sensor
329 -)))|(% style="width:117px" %)Reserved
330 -
331 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 -
333 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
334 -
335 -[[image:image-20230512173758-5.png||height="563" width="712"]]
336 -
337 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
338 -
339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
340 -
341 -[[image:image-20230512173903-6.png||height="596" width="715"]]
342 -
343 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 -
345 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
347 -|**Value**|BAT|(% style="width:183px" %)(((
348 -Temperature(DS18B20)(PC13)
349 -)))|(% style="width:173px" %)(((
350 -Digital in(PB15) & Digital Interrupt(PA8)
351 -)))|(% style="width:84px" %)(((
352 -ADC(PA4)
353 -)))|(% style="width:323px" %)(((
354 -Distance measure by:1)TF-Mini plus LiDAR
355 -Or 
356 -2) TF-Luna LiDAR
357 -)))|(% style="width:188px" %)Distance signal  strength
358 -
359 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
360 -
361 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
362 -
363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
364 -
365 -[[image:image-20230512180609-7.png||height="555" width="802"]]
366 -
367 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
368 -
369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
370 -
371 -[[image:image-20230513105207-4.png||height="469" width="802"]]
372 -
373 -
374 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
375 -
376 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377 -
378 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
379 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
282 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
283 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
380 380  **Size(bytes)**
381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 -|**Value**|(% style="width:68px" %)(((
383 -ADC1(PA4)
384 -)))|(% style="width:75px" %)(((
385 -ADC2(PA5)
386 -)))|(((
387 -ADC3(PA8)
388 -)))|(((
389 -Digital Interrupt(PB15)
390 -)))|(% style="width:304px" %)(((
391 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
392 -)))|(% style="width:163px" %)(((
393 -Humidity(SHT20 or SHT31)
394 -)))|(% style="width:53px" %)Bat
395 -
396 -[[image:image-20230513110214-6.png]]
397 -
398 -
399 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
400 -
401 -
402 -This mode has total 11 bytes. As shown below:
403 -
404 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
405 -|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
406 -|**Value**|BAT|(% style="width:186px" %)(((
407 -Temperature1(DS18B20)(PC13)
408 -)))|(% style="width:82px" %)(((
409 -ADC(PA4)
410 -)))|(% style="width:210px" %)(((
411 -Digital in(PB15) & Digital Interrupt(PA8) 
412 -)))|(% style="width:191px" %)Temperature2(DS18B20)
413 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
414 -
415 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
416 -
417 -[[image:image-20230513134006-1.png||height="559" width="736"]]
418 -
419 -
420 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
421 -
422 -[[image:image-20230512164658-2.png||height="532" width="729"]]
423 -
424 -Each HX711 need to be calibrated before used. User need to do below two steps:
425 -
426 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
428 -1. (((
429 -Weight has 4 bytes, the unit is g.
285 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
286 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
287 +[[Battery>>||anchor="HBattery:"]]
288 +)))|(% style="width:130px" %)(((
289 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
290 +)))|(% style="width:91px" %)(((
291 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
292 +)))|(% style="width:103px" %)(((
293 +[[Temperature>>||anchor="HTemperature:"]]
294 +)))|(% style="width:80px" %)(((
295 +[[Humidity>>||anchor="HHumidity:"]]
430 430  )))
431 431  
432 -For example:
298 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
433 433  
434 -**AT+GETSENSORVALUE =0**
300 +Sensor Battery Level.
435 435  
436 -Response:  Weight is 401 g
437 -
438 -Check the response of this command and adjust the value to match the real value for thing.
439 -
440 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
441 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
442 -**Size(bytes)**
443 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
444 -|**Value**|BAT|(% style="width:193px" %)(((
445 -Temperature(DS18B20)
446 -(PC13)
447 -)))|(% style="width:85px" %)(((
448 -ADC(PA4)
449 -)))|(% style="width:186px" %)(((
450 -Digital in(PB15) &
451 -Digital Interrupt(PA8)
452 -)))|(% style="width:100px" %)Weight
453 -
454 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
455 -
456 -
457 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
458 -
459 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
460 -
461 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
462 -
463 -[[image:image-20230512181814-9.png||height="543" width="697"]]
464 -
465 -(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
466 -
467 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
468 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 -|**Value**|BAT|(% style="width:256px" %)(((
470 -Temperature(DS18B20)(PC13)
471 -)))|(% style="width:108px" %)(((
472 -ADC(PA4)
473 -)))|(% style="width:126px" %)(((
474 -Digital in(PB15)
475 -)))|(% style="width:145px" %)(((
476 -Count(PA8)
477 -)))
478 -
479 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
480 -
481 -
482 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
483 -
484 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
485 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
486 -**Size(bytes)**
487 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
488 -|**Value**|BAT|(% style="width:188px" %)(((
489 -Temperature(DS18B20)
490 -(PC13)
491 -)))|(% style="width:83px" %)(((
492 -ADC(PA5)
493 -)))|(% style="width:184px" %)(((
494 -Digital Interrupt1(PA8)
495 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
496 -
497 -[[image:image-20230513111203-7.png||height="324" width="975"]]
498 -
499 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
500 -
501 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
502 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
503 -**Size(bytes)**
504 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
505 -|**Value**|BAT|(% style="width:207px" %)(((
506 -Temperature(DS18B20)
507 -(PC13)
508 -)))|(% style="width:94px" %)(((
509 -ADC1(PA4)
510 -)))|(% style="width:198px" %)(((
511 -Digital Interrupt(PB15)
512 -)))|(% style="width:84px" %)(((
513 -ADC2(PA5)
514 -)))|(% style="width:82px" %)(((
515 -ADC3(PA8)
516 -)))
517 -
518 -[[image:image-20230513111231-8.png||height="335" width="900"]]
519 -
520 -
521 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
522 -
523 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
524 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
525 -**Size(bytes)**
526 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
527 -|**Value**|BAT|(((
528 -Temperature1(DS18B20)
529 -(PC13)
530 -)))|(((
531 -Temperature2(DS18B20)
532 -(PB9)
533 -)))|(((
534 -Digital Interrupt
535 -(PB15)
536 -)))|(% style="width:193px" %)(((
537 -Temperature3(DS18B20)
538 -(PB8)
539 -)))|(% style="width:78px" %)(((
540 -Count1(PA8)
541 -)))|(% style="width:78px" %)(((
542 -Count2(PA4)
543 -)))
544 -
545 -[[image:image-20230513111255-9.png||height="341" width="899"]]
546 -
547 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
548 -
549 -(% style="color:#037691" %)**~ AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
550 -
551 -(% style="color:#037691" %)**~ AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
552 -
553 -(% style="color:#037691" %)**~ AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
554 -
555 -
556 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
557 -
558 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
559 -
560 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
561 -
562 -
563 -
564 -=== 2.3.3  ​Decode payload ===
565 -
566 -While using TTN V3 network, you can add the payload format to decode the payload.
567 -
568 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
569 -
570 -The payload decoder function for TTN V3 are here:
571 -
572 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
573 -
574 -
575 -==== 2.3.3.1 Battery Info ====
576 -
577 -Check the battery voltage for SN50v3.
578 -
579 579  Ex1: 0x0B45 = 2885mV
580 580  
581 581  Ex2: 0x0B49 = 2889mV
582 582  
583 583  
584 -==== 2.3.3.2  Temperature (DS18B20) ====
585 585  
586 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
308 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
587 587  
588 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
310 +**Example**:
589 589  
590 -(% style="color:blue" %)**Connection:**
591 -
592 -[[image:image-20230512180718-8.png||height="538" width="647"]]
593 -
594 -(% style="color:blue" %)**Example**:
595 -
596 596  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
597 597  
598 598  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -600,211 +600,195 @@
600 600  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
601 601  
602 602  
603 -==== 2.3.3.3 Digital Input ====
319 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
604 604  
605 -The digital input for pin PB15,
606 606  
607 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
608 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
322 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
609 609  
610 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
611 -(((
612 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
613 613  
614 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
615 -)))
325 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
616 616  
617 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
618 618  
619 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
328 +**Example:**
620 620  
621 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
330 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
622 622  
623 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
332 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
624 624  
625 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
334 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
626 626  
336 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settings. see [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
627 627  
628 -==== 2.3.3.5 Digital Interrupt ====
629 629  
630 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
339 +== 2.4 Payload Decoder file ==
631 631  
632 -(% style="color:blue" %)**~ Interrupt connection method:**
633 633  
634 -[[image:image-20230513105351-5.png||height="147" width="485"]]
342 +In TTN, use can add a custom payload so it shows friendly reading
635 635  
636 -(% style="color:blue" %)**Example to use with door sensor :**
344 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
637 637  
638 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
346 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
639 639  
640 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
641 641  
642 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
349 +== 2.5 Datalog Feature ==
643 643  
644 -(% style="color:blue" %)**~ Below is the installation example:**
645 645  
646 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
352 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
647 647  
648 -* (((
649 -One pin to SN50_v3's PA8 pin
650 -)))
651 -* (((
652 -The other pin to SN50_v3's VDD pin
653 -)))
654 654  
655 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
355 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
656 656  
657 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
658 658  
659 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
358 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
660 660  
661 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
360 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
361 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
662 662  
663 -The above photos shows the two parts of the magnetic switch fitted to a door.
363 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
664 664  
665 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
365 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
666 666  
667 -The command is:
367 +=== 2.5.2 Unix TimeStamp ===
668 668  
669 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
670 670  
671 -Below shows some screen captures in TTN V3:
370 +S31x-LB uses Unix TimeStamp format based on
672 672  
673 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
372 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
674 674  
675 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
374 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
676 676  
677 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
376 +Below is the converter example
678 678  
378 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
679 679  
680 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
380 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 Jan ~-~- 29 Friday 03:03:25
681 681  
682 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
683 683  
684 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
383 +=== 2.5.3 Set Device Time ===
685 685  
686 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
687 687  
688 -Below is the connection to SHT20/ SHT31. The connection is as below:
386 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
689 689  
388 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
690 690  
691 -[[image:image-20230513103633-3.png||height="448" width="716"]]
390 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
692 692  
693 -The device will be able to get the I2C sensor data now and upload to IoT Server.
694 694  
695 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
393 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
696 696  
697 -Convert the read byte to decimal and divide it by ten.
698 698  
699 -**Example:**
396 +The Datalog uplinks will use below payload format.
700 700  
701 -Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
398 +**Retrieval data payload:**
702 702  
703 -Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
400 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
401 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
402 +**Size(bytes)**
403 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
404 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
405 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
406 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
704 704  
705 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
408 +**Poll message flag & Ext:**
706 706  
410 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
707 707  
708 -==== 2.3.3.7  ​Distance Reading ====
412 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
709 709  
710 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
414 +**Poll Message Flag**: 1: This message is a poll message reply.
711 711  
416 +* Poll Message Flag is set to 1.
712 712  
713 -==== 2.3.3.8 Ultrasonic Sensor ====
418 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
714 714  
715 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
420 +For example, in US915 band, the max payload for different DR is:
716 716  
717 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
422 +**a) DR0:** max is 11 bytes so one entry of data
718 718  
719 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
424 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
720 720  
721 -The picture below shows the connection:
426 +**c) DR2:** total payload includes 11 entries of data
722 722  
723 -[[image:image-20230512173903-6.png||height="596" width="715"]]
428 +**d) DR3: **total payload includes 22 entries of data.
724 724  
725 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
430 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
726 726  
727 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
728 728  
729 729  **Example:**
730 730  
731 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
435 +If S31x-LB has below data inside Flash:
732 732  
437 +[[image:1682646494051-944.png]]
733 733  
439 +If user sends below downlink command: 3160065F9760066DA705
734 734  
735 -==== 2.3.3.9  Battery Output - BAT pin ====
441 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
736 736  
737 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
443 + Stop time: 60066DA7= time 21/1/19 05:27:03
738 738  
739 739  
740 -==== 2.3.3.1 +5V Output ====
446 +**S31x-LB will uplink this payload.**
741 741  
742 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling
448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
743 743  
744 -The 5V output time can be controlled by AT Command.
450 +(((
451 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
452 +)))
745 745  
746 -(% style="color:blue" %)**AT+5VT=1000**
454 +(((
455 +Where the first 11 bytes is for the first entry:
456 +)))
747 747  
748 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
458 +(((
459 +7FFF089801464160065F97
460 +)))
749 749  
750 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
462 +(((
463 +**Ext sensor data**=0x7FFF/100=327.67
464 +)))
751 751  
466 +(((
467 +**Temp**=0x088E/100=22.00
468 +)))
752 752  
470 +(((
471 +**Hum**=0x014B/10=32.6
472 +)))
753 753  
754 -==== 2.3.3.11  BH1750 Illumination Sensor ====
474 +(((
475 +**poll message flag & Ext**=0x41,means reply data,Ext=1
476 +)))
755 755  
756 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
478 +(((
479 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
480 +)))
757 757  
758 -[[image:image-20230512172447-4.png||height="416" width="712"]]
759 759  
760 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
483 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
761 761  
485 +== 2.6 Temperature Alarm Feature ==
762 762  
763 -==== 2.3.3.12  Working MOD ====
764 764  
765 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
488 +S31x-LB work flow with Alarm feature.
766 766  
767 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
768 768  
769 -Case 7^^th^^ Byte >> 2 & 0x1f:
491 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
770 770  
771 -* 0: MOD1
772 -* 1: MOD2
773 -* 2: MOD3
774 -* 3: MOD4
775 -* 4: MOD5
776 -* 5: MOD6
777 -* 6: MOD7
778 -* 7: MOD8
779 -* 8: MOD9
780 780  
494 +== 2.7 Frequency Plans ==
781 781  
782 782  
783 -== 2.4 Payload Decoder file ==
497 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
784 784  
785 -
786 -In TTN, use can add a custom payload so it shows friendly reading
787 -
788 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
789 -
790 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
791 -
792 -
793 -
794 -== 2.5 Frequency Plans ==
795 -
796 -
797 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
798 -
799 799  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
800 800  
801 801  
802 -= 3. Configure SN50v3-LB =
502 += 3. Configure S31x-LB =
803 803  
804 804  == 3.1 Configure Methods ==
805 805  
806 806  
807 -SN50v3-LB supports below configure method:
507 +S31x-LB supports below configure method:
808 808  
809 809  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
810 810  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -823,7 +823,7 @@
823 823  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
824 824  
825 825  
826 -== 3.3 Commands special design for SN50v3-LB ==
526 +== 3.3 Commands special design for S31x-LB ==
827 827  
828 828  
829 829  These commands only valid for S31x-LB, as below:
... ... @@ -831,6 +831,7 @@
831 831  
832 832  === 3.3.1 Set Transmit Interval Time ===
833 833  
534 +
834 834  Feature: Change LoRaWAN End Node Transmit Interval.
835 835  
836 836  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -856,169 +856,122 @@
856 856  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
857 857  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
858 858  
859 -
860 -
861 861  === 3.3.2 Get Device Status ===
862 862  
863 -Send a LoRaWAN downlink to ask the device to send its status.
864 864  
563 +Send a LoRaWAN downlink to ask device send Alarm settings.
564 +
865 865  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
866 866  
867 867  Sensor will upload Device Status via FPORT=5. See payload section for detail.
868 868  
869 869  
870 -=== 3.3.3 Set Interrupt Mode ===
570 +=== 3.3.3 Set Temperature Alarm Threshold ===
871 871  
872 -Feature, Set Interrupt mode for GPIO_EXIT.
572 +* (% style="color:blue" %)**AT Command:**
873 873  
874 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
574 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
875 875  
876 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
877 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
878 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
879 -0
880 -OK
881 -the mode is 0 =Disable Interrupt
882 -)))
883 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
884 -Set Transmit Interval
885 -0. (Disable Interrupt),
886 -~1. (Trigger by rising and falling edge)
887 -2. (Trigger by falling edge)
888 -3. (Trigger by rising edge)
889 -)))|(% style="width:157px" %)OK
890 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
891 -Set Transmit Interval
576 +* When min=0, and max≠0, Alarm higher than max
577 +* When min≠0, and max=0, Alarm lower than min
578 +* When min≠0 and max≠0, Alarm higher than max or lower than min
892 892  
893 -trigger by rising edge.
894 -)))|(% style="width:157px" %)OK
895 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
580 +Example:
896 896  
897 -(% style="color:blue" %)**Downlink Command: 0x06**
582 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
898 898  
899 -Format: Command Code (0x06) followed by 3 bytes.
584 +* (% style="color:blue" %)**Downlink Payload:**
900 900  
901 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
586 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
902 902  
903 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
904 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
905 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
906 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
588 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
907 907  
908 908  
591 +=== 3.3.4 Set Humidity Alarm Threshold ===
909 909  
910 -=== 3.3.4 Set Power Output Duration ===
593 +* (% style="color:blue" %)**AT Command:**
911 911  
912 -Control the output duration 5V . Before each sampling, device will
595 +(% style="color:#037691" %)**AT+SHHUM=min,max**
913 913  
914 -~1. first enable the power output to external sensor,
597 +* When min=0, and max≠0, Alarm higher than max
598 +* When min≠0, and max=0, Alarm lower than min
599 +* When min≠0 and max≠0, Alarm higher than max or lower than min
915 915  
916 -2. keep it on as per duration, read sensor value and construct uplink payload
601 +Example:
917 917  
918 -3. final, close the power output.
603 + AT+SHHUM=70, ~/~/ Alarm when humidity lower than 70%.
919 919  
920 -(% style="color:blue" %)**AT Command: AT+5VT**
605 +* (% style="color:blue" %)**Downlink Payload:**
921 921  
922 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
923 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
924 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
925 -500(default)
926 -OK
927 -)))
928 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
929 -Close after a delay of 1000 milliseconds.
930 -)))|(% style="width:157px" %)OK
607 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
931 931  
932 -(% style="color:blue" %)**Downlink Command: 0x07**
609 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
933 933  
934 -Format: Command Code (0x07) followed by 2 bytes.
935 935  
936 -The first and second bytes are the time to turn on.
612 +=== 3.3.5 Set Alarm Interval ===
937 937  
938 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
939 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
614 +The shortest time of two Alarm packet. (unit: min)
940 940  
616 +* (% style="color:blue" %)**AT Command:**
941 941  
618 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
942 942  
943 -=== 3.3.5 Set Weighing parameters ===
620 +* (% style="color:blue" %)**Downlink Payload:**
944 944  
945 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
622 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
946 946  
947 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
948 948  
949 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
950 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
951 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
952 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
953 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
625 +=== 3.3.6 Get Alarm settings ===
954 954  
955 -(% style="color:blue" %)**Downlink Command: 0x08**
956 956  
957 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
628 +Send a LoRaWAN downlink to ask device send Alarm settings.
958 958  
959 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
630 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
960 960  
961 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
632 +**Example:**
962 962  
963 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
964 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
965 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
634 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
966 966  
967 967  
637 +**Explain:**
968 968  
969 -=== 3.3.6 Set Digital pulse count value ===
639 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
970 970  
971 -Feature: Set the pulse count value.
641 +=== 3.3.7 Set Interrupt Mode ===
972 972  
973 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
974 974  
975 -(% style="color:blue" %)**AT Command: AT+SETCNT**
644 +Feature, Set Interrupt mode for GPIO_EXIT.
976 976  
977 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
978 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
979 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
980 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
646 +(% style="color:blue" %)**AT Command: AT+INTMOD**
981 981  
982 -(% style="color:blue" %)**Downlink Command: 0x09**
983 -
984 -Format: Command Code (0x09) followed by 5 bytes.
985 -
986 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
987 -
988 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
989 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
990 -
991 -
992 -
993 -=== 3.3.7 Set Workmode ===
994 -
995 -Feature: Switch working mode.
996 -
997 -(% style="color:blue" %)**AT Command: AT+MOD**
998 -
999 999  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1000 1000  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1001 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
650 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
651 +0
1002 1002  OK
653 +the mode is 0 =Disable Interrupt
1003 1003  )))
1004 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1005 -OK
1006 -Attention:Take effect after ATZ
1007 -)))
655 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
656 +Set Transmit Interval
657 +0. (Disable Interrupt),
658 +~1. (Trigger by rising and falling edge)
659 +2. (Trigger by falling edge)
660 +3. (Trigger by rising edge)
661 +)))|(% style="width:157px" %)OK
1008 1008  
1009 -(% style="color:blue" %)**Downlink Command: 0x0A**
663 +(% style="color:blue" %)**Downlink Command: 0x06**
1010 1010  
1011 -Format: Command Code (0x0A) followed by 1 bytes.
665 +Format: Command Code (0x06) followed by 3 bytes.
1012 1012  
1013 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1014 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
667 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1015 1015  
669 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
670 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1016 1016  
1017 -
1018 1018  = 4. Battery & Power Consumption =
1019 1019  
1020 1020  
1021 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
675 +S31x-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1022 1022  
1023 1023  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1024 1024  
... ... @@ -1027,7 +1027,7 @@
1027 1027  
1028 1028  
1029 1029  (% class="wikigeneratedid" %)
1030 -User can change firmware SN50v3-LB to:
684 +User can change firmware S31x-LB to:
1031 1031  
1032 1032  * Change Frequency band/ region.
1033 1033  * Update with new features.
... ... @@ -1043,45 +1043,47 @@
1043 1043  
1044 1044  = 6. FAQ =
1045 1045  
1046 -== 6.1 Where can i find source code of SN50v3-LB? ==
1047 1047  
1048 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1049 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1050 1050  
1051 1051  = 7. Order Info =
1052 1052  
1053 1053  
1054 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
705 +Part Number: (% style="color:blue" %)**S31-LB-XX  / S31B-LB-XX**
1055 1055  
1056 1056  (% style="color:red" %)**XX**(%%): The default frequency band
1057 1057  
1058 1058  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
710 +
1059 1059  * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
712 +
1060 1060  * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
714 +
1061 1061  * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
716 +
1062 1062  * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
718 +
1063 1063  * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
720 +
1064 1064  * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
722 +
1065 1065  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1066 1066  
1067 -(% style="color:red" %)**YY: ** (%%)Hole Option
725 += =
1068 1068  
1069 -* (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1070 -* (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1071 -* (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1072 -* (% style="color:red" %)**NH**(%%): No Hole
1073 -
1074 1074  = 8. ​Packing Info =
1075 1075  
1076 1076  (% style="color:#037691" %)**Package Includes**:
1077 1077  
1078 -* SN50v3-LB LoRaWAN Generic Node
731 +* S31x-LB LoRaWAN Temperature & Humidity Sensor
1079 1079  
1080 1080  (% style="color:#037691" %)**Dimension and weight**:
1081 1081  
1082 1082  * Device Size: cm
736 +
1083 1083  * Device Weight: g
738 +
1084 1084  * Package Size / pcs : cm
740 +
1085 1085  * Weight / pcs : g
1086 1086  
1087 1087  = 9. Support =
... ... @@ -1088,5 +1088,4 @@
1088 1088  
1089 1089  
1090 1090  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1091 -
1092 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
747 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0