<
From version < 43.42 >
edited by Xiaoling
on 2023/05/16 15:05
To version < 87.3 >
edited by Xiaoling
on 2024/01/03 10:44
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,22 +14,22 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
37 +
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -88,7 +88,7 @@
88 88  == 1.5 Button & LEDs ==
89 89  
90 90  
91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
96 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
92 92  
93 93  
94 94  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -122,22 +122,27 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230513102034-2.png]]
130 +[[image:image-20230610163213-1.png||height="404" width="699"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
129 129  
135 +=== 1.8.1 for LB version ===
130 130  
131 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132 132  
133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134 134  
140 +
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
143 +=== 1.8.2 for LS version ===
137 137  
138 -== Hole Option ==
145 +[[image:image-20231231203439-3.png||height="385" width="886"]]
139 139  
140 140  
148 +== 1.9 Hole Option ==
149 +
150 +
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
171 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
220 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,44 +215,44 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
228 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
233 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -*0x01: EU868
239 +0x01: EU868
230 230  
231 -*0x02: US915
241 +0x02: US915
232 232  
233 -*0x03: IN865
243 +0x03: IN865
234 234  
235 -*0x04: AU915
245 +0x04: AU915
236 236  
237 -*0x05: KZ865
247 +0x05: KZ865
238 238  
239 -*0x06: RU864
249 +0x06: RU864
240 240  
241 -*0x07: AS923
251 +0x07: AS923
242 242  
243 -*0x08: AS923-1
253 +0x08: AS923-1
244 244  
245 -*0x09: AS923-2
255 +0x09: AS923-2
246 246  
247 -*0x0a: AS923-3
257 +0x0a: AS923-3
248 248  
249 -*0x0b: CN470
259 +0x0b: CN470
250 250  
251 -*0x0c: EU433
261 +0x0c: EU433
252 252  
253 -*0x0d: KR920
263 +0x0d: KR920
254 254  
255 -*0x0e: MA869
265 +0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -276,19 +276,22 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
289 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
293 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
298 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
291 291  
300 +2. All modes share the same Payload Explanation from HERE.
301 +
302 +3. By default, the device will send an uplink message every 20 minutes.
303 +
304 +
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 294  
... ... @@ -295,8 +295,8 @@
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 297  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
311 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
312 +|Value|Bat|(% style="width:191px" %)(((
300 300  Temperature(DS18B20)(PC13)
301 301  )))|(% style="width:78px" %)(((
302 302  ADC(PA4)
... ... @@ -313,11 +313,12 @@
313 313  
314 314  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315 315  
329 +
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 318  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 -|**Value**|BAT|(% style="width:196px" %)(((
333 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
334 +|Value|BAT|(% style="width:196px" %)(((
321 321  Temperature(DS18B20)(PC13)
322 322  )))|(% style="width:87px" %)(((
323 323  ADC(PA4)
... ... @@ -324,27 +324,30 @@
324 324  )))|(% style="width:189px" %)(((
325 325  Digital in(PB15) & Digital Interrupt(PA8)
326 326  )))|(% style="width:208px" %)(((
327 -Distance measure by:1) LIDAR-Lite V3HP
341 +Distance measure by: 1) LIDAR-Lite V3HP
328 328  Or 2) Ultrasonic Sensor
329 329  )))|(% style="width:117px" %)Reserved
330 330  
331 331  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 332  
347 +
333 333  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
334 334  
335 335  [[image:image-20230512173758-5.png||height="563" width="712"]]
336 336  
352 +
337 337  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
338 338  
339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
355 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
340 340  
341 341  [[image:image-20230512173903-6.png||height="596" width="715"]]
342 342  
359 +
343 343  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 344  
345 345  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
347 -|**Value**|BAT|(% style="width:183px" %)(((
363 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
364 +|Value|BAT|(% style="width:183px" %)(((
348 348  Temperature(DS18B20)(PC13)
349 349  )))|(% style="width:173px" %)(((
350 350  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -352,34 +352,36 @@
352 352  ADC(PA4)
353 353  )))|(% style="width:323px" %)(((
354 354  Distance measure by:1)TF-Mini plus LiDAR
355 -Or 
356 -2) TF-Luna LiDAR
372 +Or 2) TF-Luna LiDAR
357 357  )))|(% style="width:188px" %)Distance signal  strength
358 358  
359 359  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
360 360  
377 +
361 361  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
362 362  
363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
380 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
364 364  
365 365  [[image:image-20230512180609-7.png||height="555" width="802"]]
366 366  
384 +
367 367  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
368 368  
369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
387 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
370 370  
371 -[[image:image-20230513105207-4.png||height="469" width="802"]]
389 +[[image:image-20230610170047-1.png||height="452" width="799"]]
372 372  
373 373  
374 374  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
375 375  
394 +
376 376  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377 377  
378 378  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
379 379  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
380 380  **Size(bytes)**
381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 -|**Value**|(% style="width:68px" %)(((
400 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
401 +|Value|(% style="width:68px" %)(((
383 383  ADC1(PA4)
384 384  )))|(% style="width:75px" %)(((
385 385  ADC2(PA5)
... ... @@ -402,8 +402,8 @@
402 402  This mode has total 11 bytes. As shown below:
403 403  
404 404  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
405 -|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
406 -|**Value**|BAT|(% style="width:186px" %)(((
424 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
425 +|Value|BAT|(% style="width:186px" %)(((
407 407  Temperature1(DS18B20)(PC13)
408 408  )))|(% style="width:82px" %)(((
409 409  ADC(PA4)
... ... @@ -414,24 +414,29 @@
414 414  
415 415  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
416 416  
436 +
417 417  [[image:image-20230513134006-1.png||height="559" width="736"]]
418 418  
419 419  
420 420  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
421 421  
442 +
422 422  [[image:image-20230512164658-2.png||height="532" width="729"]]
423 423  
424 424  Each HX711 need to be calibrated before used. User need to do below two steps:
425 425  
426 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
447 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
448 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
428 428  1. (((
429 429  Weight has 4 bytes, the unit is g.
451 +
452 +
453 +
430 430  )))
431 431  
432 432  For example:
433 433  
434 -**AT+GETSENSORVALUE =0**
458 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
435 435  
436 436  Response:  Weight is 401 g
437 437  
... ... @@ -441,14 +441,12 @@
441 441  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
442 442  **Size(bytes)**
443 443  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
444 -|**Value**|BAT|(% style="width:193px" %)(((
445 -Temperature(DS18B20)
446 -(PC13)
468 +|Value|BAT|(% style="width:193px" %)(((
469 +Temperature(DS18B20)(PC13)
447 447  )))|(% style="width:85px" %)(((
448 448  ADC(PA4)
449 449  )))|(% style="width:186px" %)(((
450 -Digital in(PB15) &
451 -Digital Interrupt(PA8)
473 +Digital in(PB15) & Digital Interrupt(PA8)
452 452  )))|(% style="width:100px" %)Weight
453 453  
454 454  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -456,6 +456,7 @@
456 456  
457 457  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
458 458  
481 +
459 459  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
460 460  
461 461  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -462,11 +462,12 @@
462 462  
463 463  [[image:image-20230512181814-9.png||height="543" width="697"]]
464 464  
465 -(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
466 466  
489 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
490 +
467 467  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
468 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 -|**Value**|BAT|(% style="width:256px" %)(((
492 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
493 +|Value|BAT|(% style="width:256px" %)(((
470 470  Temperature(DS18B20)(PC13)
471 471  )))|(% style="width:108px" %)(((
472 472  ADC(PA4)
... ... @@ -481,11 +481,12 @@
481 481  
482 482  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
483 483  
508 +
484 484  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
485 485  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
486 486  **Size(bytes)**
487 487  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
488 -|**Value**|BAT|(% style="width:188px" %)(((
513 +|Value|BAT|(% style="width:188px" %)(((
489 489  Temperature(DS18B20)
490 490  (PC13)
491 491  )))|(% style="width:83px" %)(((
... ... @@ -496,13 +496,15 @@
496 496  
497 497  [[image:image-20230513111203-7.png||height="324" width="975"]]
498 498  
524 +
499 499  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
500 500  
527 +
501 501  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
502 502  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
503 503  **Size(bytes)**
504 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
505 -|**Value**|BAT|(% style="width:207px" %)(((
531 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
532 +|Value|BAT|(% style="width:207px" %)(((
506 506  Temperature(DS18B20)
507 507  (PC13)
508 508  )))|(% style="width:94px" %)(((
... ... @@ -520,22 +520,23 @@
520 520  
521 521  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
522 522  
550 +
523 523  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
524 524  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
525 525  **Size(bytes)**
526 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
527 -|**Value**|BAT|(((
528 -Temperature1(DS18B20)
529 -(PC13)
554 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
555 +|Value|BAT|(((
556 +Temperature
557 +(DS18B20)(PC13)
530 530  )))|(((
531 -Temperature2(DS18B20)
532 -(PB9)
559 +Temperature2
560 +(DS18B20)(PB9)
533 533  )))|(((
534 534  Digital Interrupt
535 535  (PB15)
536 536  )))|(% style="width:193px" %)(((
537 -Temperature3(DS18B20)
538 -(PB8)
565 +Temperature3
566 +(DS18B20)(PB8)
539 539  )))|(% style="width:78px" %)(((
540 540  Count1(PA8)
541 541  )))|(% style="width:78px" %)(((
... ... @@ -546,11 +546,11 @@
546 546  
547 547  (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
548 548  
549 -(% style="color:#037691" %)**~ AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
577 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
550 550  
551 -(% style="color:#037691" %)**~ AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
579 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
552 552  
553 -(% style="color:#037691" %)**~ AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
581 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
554 554  
555 555  
556 556  (% style="color:blue" %)**AT+SETCNT=aa,bb** 
... ... @@ -560,9 +560,108 @@
560 560  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
561 561  
562 562  
591 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
563 563  
593 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
594 +
595 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
596 +
597 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
598 +
599 +
600 +===== 2.3.2.10.a  Uplink, PWM input capture =====
601 +
602 +
603 +[[image:image-20230817172209-2.png||height="439" width="683"]]
604 +
605 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
606 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
607 +|Value|Bat|(% style="width:191px" %)(((
608 +Temperature(DS18B20)(PC13)
609 +)))|(% style="width:78px" %)(((
610 +ADC(PA4)
611 +)))|(% style="width:135px" %)(((
612 +PWM_Setting
613 +&Digital Interrupt(PA8)
614 +)))|(% style="width:70px" %)(((
615 +Pulse period
616 +)))|(% style="width:89px" %)(((
617 +Duration of high level
618 +)))
619 +
620 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
621 +
622 +
623 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
624 +
625 +**Frequency:**
626 +
627 +(% class="MsoNormal" %)
628 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
629 +
630 +(% class="MsoNormal" %)
631 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
632 +
633 +
634 +(% class="MsoNormal" %)
635 +**Duty cycle:**
636 +
637 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
638 +
639 +[[image:image-20230818092200-1.png||height="344" width="627"]]
640 +
641 +===== 2.3.2.10.b  Uplink, PWM output =====
642 +
643 +[[image:image-20230817172209-2.png||height="439" width="683"]]
644 +
645 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
646 +
647 +a is the time delay of the output, the unit is ms.
648 +
649 +b is the output frequency, the unit is HZ.
650 +
651 +c is the duty cycle of the output, the unit is %.
652 +
653 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
654 +
655 +aa is the time delay of the output, the unit is ms.
656 +
657 +bb is the output frequency, the unit is HZ.
658 +
659 +cc is the duty cycle of the output, the unit is %.
660 +
661 +
662 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
663 +
664 +The oscilloscope displays as follows:
665 +
666 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
667 +
668 +
669 +===== 2.3.2.10.c  Downlink, PWM output =====
670 +
671 +
672 +[[image:image-20230817173800-3.png||height="412" width="685"]]
673 +
674 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
675 +
676 + xx xx xx is the output frequency, the unit is HZ.
677 +
678 + yy is the duty cycle of the output, the unit is %.
679 +
680 + zz zz is the time delay of the output, the unit is ms.
681 +
682 +
683 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
684 +
685 +The oscilloscope displays as follows:
686 +
687 +[[image:image-20230817173858-5.png||height="694" width="921"]]
688 +
689 +
564 564  === 2.3.3  ​Decode payload ===
565 565  
692 +
566 566  While using TTN V3 network, you can add the payload format to decode the payload.
567 567  
568 568  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -569,13 +569,14 @@
569 569  
570 570  The payload decoder function for TTN V3 are here:
571 571  
572 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
699 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
573 573  
574 574  
575 575  ==== 2.3.3.1 Battery Info ====
576 576  
577 -Check the battery voltage for SN50v3.
578 578  
705 +Check the battery voltage for SN50v3-LB.
706 +
579 579  Ex1: 0x0B45 = 2885mV
580 580  
581 581  Ex2: 0x0B49 = 2889mV
... ... @@ -583,14 +583,16 @@
583 583  
584 584  ==== 2.3.3.2  Temperature (DS18B20) ====
585 585  
714 +
586 586  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
587 587  
588 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
717 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
589 589  
590 590  (% style="color:blue" %)**Connection:**
591 591  
592 592  [[image:image-20230512180718-8.png||height="538" width="647"]]
593 593  
723 +
594 594  (% style="color:blue" %)**Example**:
595 595  
596 596  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -602,6 +602,7 @@
602 602  
603 603  ==== 2.3.3.3 Digital Input ====
604 604  
735 +
605 605  The digital input for pin PB15,
606 606  
607 607  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -611,28 +611,38 @@
611 611  (((
612 612  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
613 613  
614 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
745 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
746 +
747 +
615 615  )))
616 616  
617 617  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
618 618  
619 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
620 620  
621 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
753 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
622 622  
755 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
756 +
623 623  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
624 624  
625 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
626 626  
760 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
627 627  
762 +
763 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
764 +
765 +[[image:image-20230811113449-1.png||height="370" width="608"]]
766 +
628 628  ==== 2.3.3.5 Digital Interrupt ====
629 629  
630 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
631 631  
632 -(% style="color:blue" %)**~ Interrupt connection method:**
770 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
633 633  
772 +(% style="color:blue" %)** Interrupt connection method:**
773 +
634 634  [[image:image-20230513105351-5.png||height="147" width="485"]]
635 635  
776 +
636 636  (% style="color:blue" %)**Example to use with door sensor :**
637 637  
638 638  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -639,22 +639,23 @@
639 639  
640 640  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
641 641  
642 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
783 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
643 643  
644 -(% style="color:blue" %)**~ Below is the installation example:**
645 645  
646 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
786 +(% style="color:blue" %)**Below is the installation example:**
647 647  
788 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
789 +
648 648  * (((
649 -One pin to SN50_v3's PA8 pin
791 +One pin to SN50v3-LB's PA8 pin
650 650  )))
651 651  * (((
652 -The other pin to SN50_v3's VDD pin
794 +The other pin to SN50v3-LB's VDD pin
653 653  )))
654 654  
655 655  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
656 656  
657 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
799 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
658 658  
659 659  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
660 660  
... ... @@ -666,29 +666,32 @@
666 666  
667 667  The command is:
668 668  
669 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
811 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
670 670  
671 671  Below shows some screen captures in TTN V3:
672 672  
673 673  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
674 674  
675 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
676 676  
818 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
819 +
677 677  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
678 678  
679 679  
680 680  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
681 681  
825 +
682 682  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
683 683  
684 684  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
685 685  
686 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
830 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
687 687  
832 +
688 688  Below is the connection to SHT20/ SHT31. The connection is as below:
689 689  
835 +[[image:image-20230610170152-2.png||height="501" width="846"]]
690 690  
691 -[[image:image-20230513103633-3.png||height="448" width="716"]]
692 692  
693 693  The device will be able to get the I2C sensor data now and upload to IoT Server.
694 694  
... ... @@ -707,23 +707,26 @@
707 707  
708 708  ==== 2.3.3.7  ​Distance Reading ====
709 709  
855 +
710 710  Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
711 711  
712 712  
713 713  ==== 2.3.3.8 Ultrasonic Sensor ====
714 714  
861 +
715 715  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
716 716  
717 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
864 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
718 718  
719 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
866 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
720 720  
721 721  The picture below shows the connection:
722 722  
723 723  [[image:image-20230512173903-6.png||height="596" width="715"]]
724 724  
725 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
726 726  
873 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
874 +
727 727  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
728 728  
729 729  **Example:**
... ... @@ -731,16 +731,17 @@
731 731  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
732 732  
733 733  
734 -
735 735  ==== 2.3.3.9  Battery Output - BAT pin ====
736 736  
737 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
738 738  
885 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
739 739  
887 +
740 740  ==== 2.3.3.10  +5V Output ====
741 741  
742 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
743 743  
891 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
892 +
744 744  The 5V output time can be controlled by AT Command.
745 745  
746 746  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -747,21 +747,54 @@
747 747  
748 748  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
749 749  
750 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
899 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
751 751  
752 752  
753 -
754 754  ==== 2.3.3.11  BH1750 Illumination Sensor ====
755 755  
904 +
756 756  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
757 757  
758 758  [[image:image-20230512172447-4.png||height="416" width="712"]]
759 759  
909 +
760 760  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
761 761  
762 762  
763 -==== 2.3.3.12  Working MOD ====
913 +==== 2.3.3.12  PWM MOD ====
764 764  
915 +
916 +* (((
917 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
918 +)))
919 +* (((
920 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
921 +)))
922 +
923 + [[image:image-20230817183249-3.png||height="320" width="417"]]
924 +
925 +* (((
926 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
927 +)))
928 +* (((
929 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
930 +)))
931 +* (((
932 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
933 +
934 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
935 +
936 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
937 +
938 +b) If the output duration is more than 30 seconds, better to use external power source. 
939 +
940 +
941 +
942 +)))
943 +
944 +==== 2.3.3.13  Working MOD ====
945 +
946 +
765 765  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
766 766  
767 767  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -777,9 +777,8 @@
777 777  * 6: MOD7
778 778  * 7: MOD8
779 779  * 8: MOD9
962 +* 9: MOD10
780 780  
781 -
782 -
783 783  == 2.4 Payload Decoder file ==
784 784  
785 785  
... ... @@ -790,7 +790,6 @@
790 790  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
791 791  
792 792  
793 -
794 794  == 2.5 Frequency Plans ==
795 795  
796 796  
... ... @@ -826,17 +826,18 @@
826 826  == 3.3 Commands special design for SN50v3-LB ==
827 827  
828 828  
829 -These commands only valid for S31x-LB, as below:
1009 +These commands only valid for SN50v3-LB, as below:
830 830  
831 831  
832 832  === 3.3.1 Set Transmit Interval Time ===
833 833  
1014 +
834 834  Feature: Change LoRaWAN End Node Transmit Interval.
835 835  
836 836  (% style="color:blue" %)**AT Command: AT+TDC**
837 837  
838 838  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
839 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1020 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
840 840  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
841 841  30000
842 842  OK
... ... @@ -856,25 +856,25 @@
856 856  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
857 857  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
858 858  
859 -
860 -
861 861  === 3.3.2 Get Device Status ===
862 862  
1042 +
863 863  Send a LoRaWAN downlink to ask the device to send its status.
864 864  
865 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1045 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
866 866  
867 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
1047 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
868 868  
869 869  
870 870  === 3.3.3 Set Interrupt Mode ===
871 871  
1052 +
872 872  Feature, Set Interrupt mode for GPIO_EXIT.
873 873  
874 874  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
875 875  
876 876  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
877 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1058 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
878 878  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
879 879  0
880 880  OK
... ... @@ -889,7 +889,6 @@
889 889  )))|(% style="width:157px" %)OK
890 890  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
891 891  Set Transmit Interval
892 -
893 893  trigger by rising edge.
894 894  )))|(% style="width:157px" %)OK
895 895  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -905,10 +905,9 @@
905 905  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
906 906  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
907 907  
908 -
909 -
910 910  === 3.3.4 Set Power Output Duration ===
911 911  
1090 +
912 912  Control the output duration 5V . Before each sampling, device will
913 913  
914 914  ~1. first enable the power output to external sensor,
... ... @@ -920,7 +920,7 @@
920 920  (% style="color:blue" %)**AT Command: AT+5VT**
921 921  
922 922  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
923 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1102 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
924 924  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
925 925  500(default)
926 926  OK
... ... @@ -938,16 +938,15 @@
938 938  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
939 939  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
940 940  
941 -
942 -
943 943  === 3.3.5 Set Weighing parameters ===
944 944  
1122 +
945 945  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
946 946  
947 947  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
948 948  
949 949  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
950 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1128 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
951 951  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
952 952  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
953 953  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -964,10 +964,9 @@
964 964  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
965 965  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
966 966  
967 -
968 -
969 969  === 3.3.6 Set Digital pulse count value ===
970 970  
1147 +
971 971  Feature: Set the pulse count value.
972 972  
973 973  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -975,7 +975,7 @@
975 975  (% style="color:blue" %)**AT Command: AT+SETCNT**
976 976  
977 977  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
978 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1155 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
979 979  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
980 980  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
981 981  
... ... @@ -988,16 +988,15 @@
988 988  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
989 989  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
990 990  
991 -
992 -
993 993  === 3.3.7 Set Workmode ===
994 994  
1170 +
995 995  Feature: Switch working mode.
996 996  
997 997  (% style="color:blue" %)**AT Command: AT+MOD**
998 998  
999 999  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1000 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1176 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1001 1001  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1002 1002  OK
1003 1003  )))
... ... @@ -1013,11 +1013,101 @@
1013 1013  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1014 1014  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1015 1015  
1192 +(% id="H3.3.8PWMsetting" %)
1193 +=== 3.3.8 PWM setting ===
1016 1016  
1017 1017  
1018 -= 4. Battery & Power Consumption =
1196 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1019 1019  
1198 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1020 1020  
1200 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1201 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1202 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1203 +0(default)
1204 +
1205 +OK
1206 +)))
1207 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1208 +OK
1209 +
1210 +)))
1211 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1212 +
1213 +(% style="color:blue" %)**Downlink Command: 0x0C**
1214 +
1215 +Format: Command Code (0x0C) followed by 1 bytes.
1216 +
1217 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219 +
1220 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1221 +
1222 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1223 +
1224 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1226 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 +0,0,0(default)
1228 +
1229 +OK
1230 +)))
1231 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1232 +OK
1233 +
1234 +)))
1235 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1236 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1237 +
1238 +
1239 +)))|(% style="width:137px" %)(((
1240 +OK
1241 +)))
1242 +
1243 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1244 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1245 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 +AT+PWMOUT=a,b,c
1247 +
1248 +
1249 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1250 +Set PWM output time, output frequency and output duty cycle.
1251 +
1252 +(((
1253 +
1254 +)))
1255 +
1256 +(((
1257 +
1258 +)))
1259 +)))|(% style="width:242px" %)(((
1260 +a: Output time (unit: seconds)
1261 +
1262 +The value ranges from 0 to 65535.
1263 +
1264 +When a=65535, PWM will always output.
1265 +)))
1266 +|(% style="width:242px" %)(((
1267 +b: Output frequency (unit: HZ)
1268 +)))
1269 +|(% style="width:242px" %)(((
1270 +c: Output duty cycle (unit: %)
1271 +
1272 +The value ranges from 0 to 100.
1273 +)))
1274 +
1275 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1276 +
1277 +Format: Command Code (0x0B01) followed by 6 bytes.
1278 +
1279 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1280 +
1281 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1282 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1283 +
1284 += 4. Battery & Power Cons =
1285 +
1286 +
1021 1021  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1022 1022  
1023 1023  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1027,27 +1027,43 @@
1027 1027  
1028 1028  
1029 1029  (% class="wikigeneratedid" %)
1030 -User can change firmware SN50v3-LB to:
1296 +**User can change firmware SN50v3-LB to:**
1031 1031  
1032 1032  * Change Frequency band/ region.
1033 1033  * Update with new features.
1034 1034  * Fix bugs.
1035 1035  
1036 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1302 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1037 1037  
1304 +**Methods to Update Firmware:**
1038 1038  
1039 -Methods to Update Firmware:
1306 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1307 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1040 1040  
1041 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1042 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1043 -
1044 1044  = 6. FAQ =
1045 1045  
1046 1046  == 6.1 Where can i find source code of SN50v3-LB? ==
1047 1047  
1313 +
1048 1048  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1049 1049  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1050 1050  
1317 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1318 +
1319 +
1320 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1321 +
1322 +
1323 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1324 +
1325 +
1326 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1327 +
1328 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1329 +
1330 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1331 +
1332 +
1051 1051  = 7. Order Info =
1052 1052  
1053 1053  
... ... @@ -1073,6 +1073,7 @@
1073 1073  
1074 1074  = 8. ​Packing Info =
1075 1075  
1358 +
1076 1076  (% style="color:#037691" %)**Package Includes**:
1077 1077  
1078 1078  * SN50v3-LB LoRaWAN Generic Node
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0