Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
Uploaded new attachment "image-20231213102404-1.jpeg", version {1}
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 16 added, 0 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.ting - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,9 +27,9 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 32 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 513102034-2.png]]125 +[[image:image-20230610163213-1.png||height="404" width="699"]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -135,7 +135,7 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== Hole Option == 138 +== 1.9 Hole Option == 139 139 140 140 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.161 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 210 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -215,44 +215,44 @@ 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 217 217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 218 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT218 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 219 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: 228 228 229 - *0x01: EU868229 +0x01: EU868 230 230 231 - *0x02: US915231 +0x02: US915 232 232 233 - *0x03: IN865233 +0x03: IN865 234 234 235 - *0x04: AU915235 +0x04: AU915 236 236 237 - *0x05: KZ865237 +0x05: KZ865 238 238 239 - *0x06: RU864239 +0x06: RU864 240 240 241 - *0x07: AS923241 +0x07: AS923 242 242 243 - *0x08: AS923-1243 +0x08: AS923-1 244 244 245 - *0x09: AS923-2245 +0x09: AS923-2 246 246 247 - *0x0a: AS923-3247 +0x0a: AS923-3 248 248 249 - *0x0b: CN470249 +0x0b: CN470 250 250 251 - *0x0c: EU433251 +0x0c: EU433 252 252 253 - *0x0d: KR920253 +0x0d: KR920 254 254 255 - *0x0e: MA869255 +0x0e: MA869 256 256 257 257 258 258 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -276,19 +276,22 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 279 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 283 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 288 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 291 291 290 +2. All modes share the same Payload Explanation from HERE. 291 + 292 +3. By default, the device will send an uplink message every 20 minutes. 293 + 294 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -295,8 +295,8 @@ 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**299 -| **Value**|Bat|(% style="width:191px" %)(((301 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 302 +|Value|Bat|(% style="width:191px" %)((( 300 300 Temperature(DS18B20)(PC13) 301 301 )))|(% style="width:78px" %)((( 302 302 ADC(PA4) ... ... @@ -313,11 +313,12 @@ 313 313 314 314 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 315 315 319 + 316 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 317 317 318 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 319 -|(% style=" width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**320 -| **Value**|BAT|(% style="width:196px" %)(((323 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 324 +|Value|BAT|(% style="width:196px" %)((( 321 321 Temperature(DS18B20)(PC13) 322 322 )))|(% style="width:87px" %)((( 323 323 ADC(PA4) ... ... @@ -324,27 +324,30 @@ 324 324 )))|(% style="width:189px" %)((( 325 325 Digital in(PB15) & Digital Interrupt(PA8) 326 326 )))|(% style="width:208px" %)((( 327 -Distance measure by:1) LIDAR-Lite V3HP 331 +Distance measure by: 1) LIDAR-Lite V3HP 328 328 Or 2) Ultrasonic Sensor 329 329 )))|(% style="width:117px" %)Reserved 330 330 331 331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 332 332 337 + 333 333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 334 334 335 335 [[image:image-20230512173758-5.png||height="563" width="712"]] 336 336 342 + 337 337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 338 338 339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 345 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 340 340 341 341 [[image:image-20230512173903-6.png||height="596" width="715"]] 342 342 349 + 343 343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 344 344 345 345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 346 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**347 -| **Value**|BAT|(% style="width:183px" %)(((353 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 354 +|Value|BAT|(% style="width:183px" %)((( 348 348 Temperature(DS18B20)(PC13) 349 349 )))|(% style="width:173px" %)((( 350 350 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -352,34 +352,36 @@ 352 352 ADC(PA4) 353 353 )))|(% style="width:323px" %)((( 354 354 Distance measure by:1)TF-Mini plus LiDAR 355 -Or 356 -2) TF-Luna LiDAR 362 +Or 2) TF-Luna LiDAR 357 357 )))|(% style="width:188px" %)Distance signal strength 358 358 359 359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 360 360 367 + 361 361 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 362 362 363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 370 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 364 364 365 365 [[image:image-20230512180609-7.png||height="555" width="802"]] 366 366 374 + 367 367 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 368 368 369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 370 370 371 -[[image:image-20230 513105207-4.png||height="469" width="802"]]379 +[[image:image-20230610170047-1.png||height="452" width="799"]] 372 372 373 373 374 374 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 375 375 384 + 376 376 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 377 377 378 378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 379 379 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 380 380 **Size(bytes)** 381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 40px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1382 -| **Value**|(% style="width:68px" %)(((390 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 391 +|Value|(% style="width:68px" %)((( 383 383 ADC1(PA4) 384 384 )))|(% style="width:75px" %)((( 385 385 ADC2(PA5) ... ... @@ -402,8 +402,8 @@ 402 402 This mode has total 11 bytes. As shown below: 403 403 404 404 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 405 -|(% style=" width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**406 -| **Value**|BAT|(% style="width:186px" %)(((414 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 415 +|Value|BAT|(% style="width:186px" %)((( 407 407 Temperature1(DS18B20)(PC13) 408 408 )))|(% style="width:82px" %)((( 409 409 ADC(PA4) ... ... @@ -414,24 +414,29 @@ 414 414 415 415 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 416 416 426 + 417 417 [[image:image-20230513134006-1.png||height="559" width="736"]] 418 418 419 419 420 420 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 421 421 432 + 422 422 [[image:image-20230512164658-2.png||height="532" width="729"]] 423 423 424 424 Each HX711 need to be calibrated before used. User need to do below two steps: 425 425 426 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 427 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 437 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 438 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 428 428 1. ((( 429 429 Weight has 4 bytes, the unit is g. 441 + 442 + 443 + 430 430 ))) 431 431 432 432 For example: 433 433 434 -**AT+GETSENSORVALUE =0** 448 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 435 435 436 436 Response: Weight is 401 g 437 437 ... ... @@ -441,14 +441,12 @@ 441 441 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 442 442 **Size(bytes)** 443 443 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 444 -|**Value**|BAT|(% style="width:193px" %)((( 445 -Temperature(DS18B20) 446 -(PC13) 458 +|Value|BAT|(% style="width:193px" %)((( 459 +Temperature(DS18B20)(PC13) 447 447 )))|(% style="width:85px" %)((( 448 448 ADC(PA4) 449 449 )))|(% style="width:186px" %)((( 450 -Digital in(PB15) & 451 -Digital Interrupt(PA8) 463 +Digital in(PB15) & Digital Interrupt(PA8) 452 452 )))|(% style="width:100px" %)Weight 453 453 454 454 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] ... ... @@ -456,6 +456,7 @@ 456 456 457 457 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 458 458 471 + 459 459 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 460 460 461 461 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -462,11 +462,12 @@ 462 462 463 463 [[image:image-20230512181814-9.png||height="543" width="697"]] 464 464 465 -(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 466 466 479 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 480 + 467 467 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 468 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**469 -| **Value**|BAT|(% style="width:256px" %)(((482 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 483 +|Value|BAT|(% style="width:256px" %)((( 470 470 Temperature(DS18B20)(PC13) 471 471 )))|(% style="width:108px" %)((( 472 472 ADC(PA4) ... ... @@ -481,11 +481,12 @@ 481 481 482 482 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 483 483 498 + 484 484 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 485 485 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 486 486 **Size(bytes)** 487 487 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 488 -| **Value**|BAT|(% style="width:188px" %)(((503 +|Value|BAT|(% style="width:188px" %)((( 489 489 Temperature(DS18B20) 490 490 (PC13) 491 491 )))|(% style="width:83px" %)((( ... ... @@ -496,13 +496,15 @@ 496 496 497 497 [[image:image-20230513111203-7.png||height="324" width="975"]] 498 498 514 + 499 499 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 500 500 517 + 501 501 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 502 502 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 503 503 **Size(bytes)** 504 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 1 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2505 -| **Value**|BAT|(% style="width:207px" %)(((521 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 522 +|Value|BAT|(% style="width:207px" %)((( 506 506 Temperature(DS18B20) 507 507 (PC13) 508 508 )))|(% style="width:94px" %)((( ... ... @@ -520,22 +520,23 @@ 520 520 521 521 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 522 522 540 + 523 523 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 524 524 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 525 525 **Size(bytes)** 526 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4527 -| **Value**|BAT|(((528 -Temperature 1(DS18B20)529 -(PC13) 544 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 545 +|Value|BAT|((( 546 +Temperature 547 +(DS18B20)(PC13) 530 530 )))|((( 531 -Temperature2 (DS18B20)532 -(PB9) 549 +Temperature2 550 +(DS18B20)(PB9) 533 533 )))|((( 534 534 Digital Interrupt 535 535 (PB15) 536 536 )))|(% style="width:193px" %)((( 537 -Temperature3 (DS18B20)538 -(PB8) 555 +Temperature3 556 +(DS18B20)(PB8) 539 539 )))|(% style="width:78px" %)((( 540 540 Count1(PA8) 541 541 )))|(% style="width:78px" %)((( ... ... @@ -546,22 +546,104 @@ 546 546 547 547 (% style="color:blue" %)**The newly added AT command is issued correspondingly:** 548 548 549 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**567 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 550 550 551 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**569 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 552 552 553 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**571 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 554 554 555 -**AT+SETCNT=aa,bb** 556 556 574 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 575 + 557 557 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 558 558 559 559 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 560 560 561 561 581 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 562 562 583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 + 585 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 + 587 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 + 589 + 590 +===== 2.3.2.10.a Uplink, PWM input capture ===== 591 + 592 + 593 +[[image:image-20230817172209-2.png||height="439" width="683"]] 594 + 595 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 596 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 +|Value|Bat|(% style="width:191px" %)((( 598 +Temperature(DS18B20)(PC13) 599 +)))|(% style="width:78px" %)((( 600 +ADC(PA4) 601 +)))|(% style="width:135px" %)((( 602 +PWM_Setting 603 + 604 +&Digital Interrupt(PA8) 605 +)))|(% style="width:70px" %)((( 606 +Pulse period 607 +)))|(% style="width:89px" %)((( 608 +Duration of high level 609 +))) 610 + 611 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 612 + 613 + 614 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 615 + 616 +**Frequency:** 617 + 618 +(% class="MsoNormal" %) 619 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 620 + 621 +(% class="MsoNormal" %) 622 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 623 + 624 + 625 +(% class="MsoNormal" %) 626 +**Duty cycle:** 627 + 628 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 629 + 630 +[[image:image-20230818092200-1.png||height="344" width="627"]] 631 + 632 +===== 2.3.2.10.b Uplink, PWM output ===== 633 + 634 +[[image:image-20230817172209-2.png||height="439" width="683"]] 635 + 636 + 637 + 638 + 639 + 640 + 641 +===== 2.3.2.10.c Downlink, PWM output ===== 642 + 643 + 644 +[[image:image-20230817173800-3.png||height="412" width="685"]] 645 + 646 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 647 + 648 + xx xx xx is the output frequency, the unit is HZ. 649 + 650 + yy is the duty cycle of the output, the unit is %. 651 + 652 + zz zz is the time delay of the output, the unit is ms. 653 + 654 + 655 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 656 + 657 +The oscilloscope displays as follows: 658 + 659 +[[image:image-20230817173858-5.png||height="694" width="921"]] 660 + 661 + 563 563 === 2.3.3 Decode payload === 564 564 664 + 565 565 While using TTN V3 network, you can add the payload format to decode the payload. 566 566 567 567 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -568,13 +568,14 @@ 568 568 569 569 The payload decoder function for TTN V3 are here: 570 570 571 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 671 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 572 572 573 573 574 574 ==== 2.3.3.1 Battery Info ==== 575 575 576 -Check the battery voltage for SN50v3. 577 577 677 +Check the battery voltage for SN50v3-LB. 678 + 578 578 Ex1: 0x0B45 = 2885mV 579 579 580 580 Ex2: 0x0B49 = 2889mV ... ... @@ -582,16 +582,18 @@ 582 582 583 583 ==== 2.3.3.2 Temperature (DS18B20) ==== 584 584 686 + 585 585 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 586 586 587 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]689 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 588 588 589 -**Connection:** 691 +(% style="color:blue" %)**Connection:** 590 590 591 591 [[image:image-20230512180718-8.png||height="538" width="647"]] 592 592 593 -**Example**: 594 594 696 +(% style="color:blue" %)**Example**: 697 + 595 595 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 596 596 597 597 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -601,6 +601,7 @@ 601 601 602 602 ==== 2.3.3.3 Digital Input ==== 603 603 707 + 604 604 The digital input for pin PB15, 605 605 606 606 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -610,28 +610,38 @@ 610 610 ((( 611 611 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 612 612 613 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 717 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 718 + 719 + 614 614 ))) 615 615 616 616 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 617 617 618 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 619 619 620 - Whenthemeasuredoutput voltage of thesensorisnot withinthe rangeof0Vand1.1V,theoutputvoltageterminal of theensor shall be divided The example in the following figure istoreduce the output voltage of the sensorby three timesIf it is necessary toreduce moretimes,calculate according to the formula in the figure and connect the corresponding resistance in series.725 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 621 621 727 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 728 + 622 622 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 623 623 624 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 625 625 732 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 626 626 734 + 735 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 736 + 737 +[[image:image-20230811113449-1.png||height="370" width="608"]] 738 + 627 627 ==== 2.3.3.5 Digital Interrupt ==== 628 628 629 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 630 630 631 - (% style="color:blue"%)**~Interruptconnection method:**742 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 632 632 744 +(% style="color:blue" %)** Interrupt connection method:** 745 + 633 633 [[image:image-20230513105351-5.png||height="147" width="485"]] 634 634 748 + 635 635 (% style="color:blue" %)**Example to use with door sensor :** 636 636 637 637 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -638,22 +638,23 @@ 638 638 639 639 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 640 640 641 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.755 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 642 642 643 -(% style="color:blue" %)**~ Below is the installation example:** 644 644 645 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:758 +(% style="color:blue" %)**Below is the installation example:** 646 646 760 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 761 + 647 647 * ((( 648 -One pin to SN50 _v3's PA8 pin763 +One pin to SN50v3-LB's PA8 pin 649 649 ))) 650 650 * ((( 651 -The other pin to SN50 _v3's VDD pin766 +The other pin to SN50v3-LB's VDD pin 652 652 ))) 653 653 654 654 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 655 655 656 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 771 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 657 657 658 658 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 659 659 ... ... @@ -665,29 +665,32 @@ 665 665 666 666 The command is: 667 667 668 -(% style="color:blue" %)**AT+INTMOD1=1 783 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 669 669 670 670 Below shows some screen captures in TTN V3: 671 671 672 672 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 673 673 674 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 675 675 790 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 791 + 676 676 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 677 677 678 678 679 679 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 680 680 797 + 681 681 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 682 682 683 683 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 684 684 685 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.802 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 686 686 804 + 687 687 Below is the connection to SHT20/ SHT31. The connection is as below: 688 688 807 +[[image:image-20230610170152-2.png||height="501" width="846"]] 689 689 690 -[[image:image-20230513103633-3.png||height="448" width="716"]] 691 691 692 692 The device will be able to get the I2C sensor data now and upload to IoT Server. 693 693 ... ... @@ -706,23 +706,26 @@ 706 706 707 707 ==== 2.3.3.7 Distance Reading ==== 708 708 709 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 710 710 828 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 711 711 830 + 712 712 ==== 2.3.3.8 Ultrasonic Sensor ==== 713 713 833 + 714 714 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 715 715 716 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.836 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 717 717 718 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 838 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 719 719 720 720 The picture below shows the connection: 721 721 722 722 [[image:image-20230512173903-6.png||height="596" width="715"]] 723 723 724 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 725 725 845 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 846 + 726 726 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 727 727 728 728 **Example:** ... ... @@ -730,16 +730,17 @@ 730 730 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 731 731 732 732 733 - 734 734 ==== 2.3.3.9 Battery Output - BAT pin ==== 735 735 736 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 737 737 857 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 738 738 859 + 739 739 ==== 2.3.3.10 +5V Output ==== 740 740 741 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 742 742 863 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 864 + 743 743 The 5V output time can be controlled by AT Command. 744 744 745 745 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -746,21 +746,54 @@ 746 746 747 747 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 748 748 749 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 871 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 750 750 751 751 752 - 753 753 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 754 754 876 + 755 755 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 756 756 757 757 [[image:image-20230512172447-4.png||height="416" width="712"]] 758 758 881 + 759 759 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 760 760 761 761 762 -==== 2.3.3.12 W orkingMOD ====885 +==== 2.3.3.12 PWM MOD ==== 763 763 887 + 888 +* ((( 889 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 890 +))) 891 +* ((( 892 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 893 +))) 894 + 895 + [[image:image-20230817183249-3.png||height="320" width="417"]] 896 + 897 +* ((( 898 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 899 +))) 900 +* ((( 901 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 902 +))) 903 +* ((( 904 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 905 + 906 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 907 + 908 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 909 + 910 +b) If the output duration is more than 30 seconds, better to use external power source. 911 + 912 + 913 + 914 +))) 915 + 916 +==== 2.3.3.13 Working MOD ==== 917 + 918 + 764 764 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 765 765 766 766 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -776,9 +776,8 @@ 776 776 * 6: MOD7 777 777 * 7: MOD8 778 778 * 8: MOD9 934 +* 9: MOD10 779 779 780 - 781 - 782 782 == 2.4 Payload Decoder file == 783 783 784 784 ... ... @@ -789,7 +789,6 @@ 789 789 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 790 790 791 791 792 - 793 793 == 2.5 Frequency Plans == 794 794 795 795 ... ... @@ -825,17 +825,18 @@ 825 825 == 3.3 Commands special design for SN50v3-LB == 826 826 827 827 828 -These commands only valid for S3 1x-LB, as below:981 +These commands only valid for SN50v3-LB, as below: 829 829 830 830 831 831 === 3.3.1 Set Transmit Interval Time === 832 832 986 + 833 833 Feature: Change LoRaWAN End Node Transmit Interval. 834 834 835 835 (% style="color:blue" %)**AT Command: AT+TDC** 836 836 837 837 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 838 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 992 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 839 839 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 840 840 30000 841 841 OK ... ... @@ -855,25 +855,25 @@ 855 855 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 856 856 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 857 857 858 - 859 - 860 860 === 3.3.2 Get Device Status === 861 861 1014 + 862 862 Send a LoRaWAN downlink to ask the device to send its status. 863 863 864 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 011017 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 865 865 866 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 1019 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 867 867 868 868 869 869 === 3.3.3 Set Interrupt Mode === 870 870 1024 + 871 871 Feature, Set Interrupt mode for GPIO_EXIT. 872 872 873 873 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 874 874 875 875 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 876 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1030 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 877 877 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 878 878 0 879 879 OK ... ... @@ -888,7 +888,6 @@ 888 888 )))|(% style="width:157px" %)OK 889 889 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 890 890 Set Transmit Interval 891 - 892 892 trigger by rising edge. 893 893 )))|(% style="width:157px" %)OK 894 894 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -904,10 +904,9 @@ 904 904 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 905 905 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 906 906 907 - 908 - 909 909 === 3.3.4 Set Power Output Duration === 910 910 1062 + 911 911 Control the output duration 5V . Before each sampling, device will 912 912 913 913 ~1. first enable the power output to external sensor, ... ... @@ -919,7 +919,7 @@ 919 919 (% style="color:blue" %)**AT Command: AT+5VT** 920 920 921 921 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 922 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1074 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 923 923 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 924 924 500(default) 925 925 OK ... ... @@ -937,16 +937,15 @@ 937 937 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 938 938 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 939 939 940 - 941 - 942 942 === 3.3.5 Set Weighing parameters === 943 943 1094 + 944 944 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 945 945 946 946 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 947 947 948 948 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 949 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1100 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 950 950 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 951 951 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 952 952 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -963,10 +963,9 @@ 963 963 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 964 964 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 965 965 966 - 967 - 968 968 === 3.3.6 Set Digital pulse count value === 969 969 1119 + 970 970 Feature: Set the pulse count value. 971 971 972 972 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -974,7 +974,7 @@ 974 974 (% style="color:blue" %)**AT Command: AT+SETCNT** 975 975 976 976 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 977 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1127 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 978 978 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 979 979 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 980 980 ... ... @@ -987,16 +987,15 @@ 987 987 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 988 988 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 989 989 990 - 991 - 992 992 === 3.3.7 Set Workmode === 993 993 1142 + 994 994 Feature: Switch working mode. 995 995 996 996 (% style="color:blue" %)**AT Command: AT+MOD** 997 997 998 998 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 999 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1148 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1000 1000 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1001 1001 OK 1002 1002 ))) ... ... @@ -1012,11 +1012,101 @@ 1012 1012 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1013 1013 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1014 1014 1164 +(% id="H3.3.8PWMsetting" %) 1165 +=== 3.3.8 PWM setting === 1015 1015 1016 1016 1017 -= 4. Battery&PowerConsumption=1168 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1018 1018 1170 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1019 1019 1172 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1173 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1174 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1175 +0(default) 1176 + 1177 +OK 1178 +))) 1179 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1180 +OK 1181 + 1182 +))) 1183 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1184 + 1185 +(% style="color:blue" %)**Downlink Command: 0x0C** 1186 + 1187 +Format: Command Code (0x0C) followed by 1 bytes. 1188 + 1189 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1190 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1191 + 1192 + 1193 + 1194 +(% class="mark" %)Feature: Set the time acquisition unit for PWM output. 1195 + 1196 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1197 + 1198 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1199 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1200 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1201 +0,0,0(default) 1202 + 1203 +OK 1204 +))) 1205 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1206 +OK 1207 + 1208 +))) 1209 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1210 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1211 + 1212 + 1213 +)))|(% style="width:137px" %)((( 1214 +OK 1215 +))) 1216 + 1217 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1218 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1219 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1220 +AT+PWMOUT=a,b,c 1221 + 1222 + 1223 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1224 +Set PWM output time, output frequency and output duty cycle.((( 1225 + 1226 +))) 1227 + 1228 +((( 1229 + 1230 +))) 1231 +)))|(% style="width:242px" %)((( 1232 +a: Output time (unit: seconds) 1233 + 1234 +The value ranges from 0 to 65535. 1235 + 1236 +When a=65535, PWM will always output. 1237 +))) 1238 +|(% style="width:242px" %)((( 1239 +b: Output frequency (unit: HZ) 1240 +))) 1241 +|(% style="width:242px" %)((( 1242 +c: Output duty cycle (unit: %) 1243 + 1244 +The value ranges from 0 to 100. 1245 +))) 1246 + 1247 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1248 + 1249 +Format: Command Code (0x0B01) followed by 6 bytes. 1250 + 1251 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1252 + 1253 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1254 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1255 + 1256 += 4. Battery & Power Cons = 1257 + 1258 + 1020 1020 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1021 1021 1022 1022 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . ... ... @@ -1026,27 +1026,43 @@ 1026 1026 1027 1027 1028 1028 (% class="wikigeneratedid" %) 1029 -User can change firmware SN50v3-LB to: 1268 +**User can change firmware SN50v3-LB to:** 1030 1030 1031 1031 * Change Frequency band/ region. 1032 1032 * Update with new features. 1033 1033 * Fix bugs. 1034 1034 1035 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1274 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]** 1036 1036 1276 +**Methods to Update Firmware:** 1037 1037 1038 -Methods to Update Firmware: 1278 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1279 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1039 1039 1040 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1041 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1042 - 1043 1043 = 6. FAQ = 1044 1044 1045 1045 == 6.1 Where can i find source code of SN50v3-LB? == 1046 1046 1285 + 1047 1047 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1048 1048 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1049 1049 1289 +== 6.2 How to generate PWM Output in SN50v3-LB? == 1290 + 1291 + 1292 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1293 + 1294 + 1295 +== 6.3 How to put several sensors to a SN50v3-LB? == 1296 + 1297 + 1298 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1299 + 1300 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1301 + 1302 +[[image:image-20230810121434-1.png||height="242" width="656"]] 1303 + 1304 + 1050 1050 = 7. Order Info = 1051 1051 1052 1052 ... ... @@ -1072,6 +1072,7 @@ 1072 1072 1073 1073 = 8. Packing Info = 1074 1074 1330 + 1075 1075 (% style="color:#037691" %)**Package Includes**: 1076 1076 1077 1077 * SN50v3-LB LoRaWAN Generic Node
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content