<
From version < 43.40 >
edited by Xiaoling
on 2023/05/16 15:00
To version < 26.1 >
edited by Saxer Lin
on 2023/05/12 18:18
>
Change comment: Uploaded new attachment "image-20230512181814-9.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,15 +16,18 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
... ... @@ -42,7 +42,6 @@
42 42  
43 43  == 1.3 Specification ==
44 44  
45 -
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 48  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,7 +79,6 @@
79 79  
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 -
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -122,7 +122,7 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230513102034-2.png]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -137,7 +137,6 @@
137 137  
138 138  == Hole Option ==
139 139  
140 -
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -291,22 +291,10 @@
291 291  
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 -
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
300 -Temperature(DS18B20)(PC13)
301 -)))|(% style="width:78px" %)(((
302 -ADC(PA4)
303 -)))|(% style="width:216px" %)(((
304 -Digital in(PB15)&Digital Interrupt(PA8)
305 -)))|(% style="width:308px" %)(((
306 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
307 -)))|(% style="width:154px" %)(((
308 -Humidity(SHT20 or SHT31)
309 -)))
295 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
296 +|**Value**|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|Humidity(SHT20)
310 310  
311 311  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
312 312  
... ... @@ -315,141 +315,126 @@
315 315  
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 -|**Value**|BAT|(% style="width:196px" %)(((
321 -Temperature(DS18B20)(PC13)
322 -)))|(% style="width:87px" %)(((
323 -ADC(PA4)
324 -)))|(% style="width:189px" %)(((
325 -Digital in(PB15) & Digital Interrupt(PA8)
326 -)))|(% style="width:208px" %)(((
327 -Distance measure by:1) LIDAR-Lite V3HP
328 -Or 2) Ultrasonic Sensor
329 -)))|(% style="width:117px" %)Reserved
305 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
306 +|**Value**|BAT|(((
307 +Temperature(DS18B20)
308 +)))|ADC|Digital in & Digital Interrupt|(((
309 +Distance measure by:
310 +1) LIDAR-Lite V3HP
311 +Or
312 +2) Ultrasonic Sensor
313 +)))|Reserved
330 330  
331 331  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 332  
333 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
317 +**Connection of LIDAR-Lite V3HP:**
334 334  
335 -[[image:image-20230512173758-5.png||height="563" width="712"]]
319 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324581381-162.png?rev=1.1||alt="1656324581381-162.png"]]
336 336  
337 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
321 +**Connection to Ultrasonic Sensor:**
338 338  
339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
323 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324598488-204.png?rev=1.1||alt="1656324598488-204.png"]]
340 340  
341 -[[image:image-20230512173903-6.png||height="596" width="715"]]
342 -
343 343  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 344  
345 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
347 -|**Value**|BAT|(% style="width:183px" %)(((
348 -Temperature(DS18B20)(PC13)
349 -)))|(% style="width:173px" %)(((
350 -Digital in(PB15) & Digital Interrupt(PA8)
351 -)))|(% style="width:84px" %)(((
352 -ADC(PA4)
353 -)))|(% style="width:323px" %)(((
327 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
328 +|**Value**|BAT|(((
329 +Temperature(DS18B20)
330 +)))|Digital in & Digital Interrupt|ADC|(((
354 354  Distance measure by:1)TF-Mini plus LiDAR
355 355  Or 
356 356  2) TF-Luna LiDAR
357 -)))|(% style="width:188px" %)Distance signal  strength
334 +)))|Distance signal  strength
358 358  
359 359  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
360 360  
361 361  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
362 362  
363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
340 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
364 364  
365 -[[image:image-20230512180609-7.png||height="555" width="802"]]
342 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376795715-436.png?rev=1.1||alt="1656376795715-436.png"]]
366 366  
367 367  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
368 368  
369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
346 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
370 370  
371 -[[image:image-20230513105207-4.png||height="469" width="802"]]
348 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
372 372  
350 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
373 373  
352 +
374 374  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
375 375  
376 376  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377 377  
378 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
379 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
357 +|=(((
380 380  **Size(bytes)**
381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 -|**Value**|(% style="width:68px" %)(((
383 -ADC1(PA4)
384 -)))|(% style="width:75px" %)(((
385 -ADC2(PA5)
386 -)))|(((
387 -ADC3(PA8)
388 -)))|(((
389 -Digital Interrupt(PB15)
390 -)))|(% style="width:304px" %)(((
391 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
392 -)))|(% style="width:163px" %)(((
393 -Humidity(SHT20 or SHT31)
394 -)))|(% style="width:53px" %)Bat
359 +)))|=**2**|=**2**|=**2**|=**1**|=2|=2|=1
360 +|**Value**|ADC(Pin PA0)|ADC2(PA1)|ADC3 (PA4)|(((
361 +Digital in(PA12)&Digital Interrupt1(PB14)
362 +)))|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20 or SHT31)|Bat
395 395  
396 -[[image:image-20230513110214-6.png]]
364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
397 397  
398 398  
399 399  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
400 400  
369 +This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4
401 401  
371 +Hardware connection is as below,
372 +
373 +**( Note:**
374 +
375 +* In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes.
376 +* In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already.
377 +
378 +See [[here>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H1.6A0HardwareChangelog]] for hardware changelog. **) **
379 +
380 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377461619-156.png?rev=1.1||alt="1656377461619-156.png"]]
381 +
402 402  This mode has total 11 bytes. As shown below:
403 403  
404 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
405 -|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
406 -|**Value**|BAT|(% style="width:186px" %)(((
407 -Temperature1(DS18B20)(PC13)
408 -)))|(% style="width:82px" %)(((
409 -ADC(PA4)
410 -)))|(% style="width:210px" %)(((
411 -Digital in(PB15) & Digital Interrupt(PA8) 
412 -)))|(% style="width:191px" %)Temperature2(DS18B20)
413 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
384 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
385 +|**Value**|BAT|(((
386 +Temperature1
387 +(DS18B20)
388 +(PB3)
389 +)))|ADC|Digital in & Digital Interrupt|Temperature2
390 +(DS18B20)
391 +(PA9)|Temperature3
392 +(DS18B20)
393 +(PA10)
414 414  
415 415  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
416 416  
417 -[[image:image-20230513134006-1.png||height="559" width="736"]]
418 418  
419 -
420 420  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
421 421  
422 -[[image:image-20230512164658-2.png||height="532" width="729"]]
400 +This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection.
423 423  
402 +
403 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378224664-860.png?rev=1.1||alt="1656378224664-860.png"]]
404 +
424 424  Each HX711 need to be calibrated before used. User need to do below two steps:
425 425  
426 426  1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 427  1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
428 428  1. (((
429 -Weight has 4 bytes, the unit is g.
410 +Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes, the unit is g.(Since v1.8.0)
430 430  )))
431 431  
432 432  For example:
433 433  
434 -**AT+GETSENSORVALUE =0**
415 +**AT+WEIGAP =403.0**
435 435  
436 436  Response:  Weight is 401 g
437 437  
438 438  Check the response of this command and adjust the value to match the real value for thing.
439 439  
440 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
441 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
421 +|=(((
442 442  **Size(bytes)**
443 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
444 -|**Value**|BAT|(% style="width:193px" %)(((
445 -Temperature(DS18B20)
446 -(PC13)
447 -)))|(% style="width:85px" %)(((
448 -ADC(PA4)
449 -)))|(% style="width:186px" %)(((
450 -Digital in(PB15) &
451 -Digital Interrupt(PA8)
452 -)))|(% style="width:100px" %)Weight
423 +)))|=**2**|=**2**|=**2**|=**1**|=**4**|=2
424 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Weight|Reserved
453 453  
454 454  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
455 455  
... ... @@ -460,21 +460,14 @@
460 460  
461 461  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
462 462  
463 -[[image:image-20230512181814-9.png||height="543" width="697"]]
435 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378351863-572.png?rev=1.1||alt="1656378351863-572.png"]]
464 464  
465 -(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
437 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
466 466  
467 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
468 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 -|**Value**|BAT|(% style="width:256px" %)(((
470 -Temperature(DS18B20)(PC13)
471 -)))|(% style="width:108px" %)(((
472 -ADC(PA4)
473 -)))|(% style="width:126px" %)(((
474 -Digital in(PB15)
475 -)))|(% style="width:145px" %)(((
476 -Count(PA8)
477 -)))
439 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
440 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
441 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
442 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
478 478  
479 479  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
480 480  
... ... @@ -481,82 +481,69 @@
481 481  
482 482  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
483 483  
484 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
485 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
449 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
450 +
451 +|=(((
486 486  **Size(bytes)**
487 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
488 -|**Value**|BAT|(% style="width:188px" %)(((
489 -Temperature(DS18B20)
490 -(PC13)
491 -)))|(% style="width:83px" %)(((
492 -ADC(PA5)
493 -)))|(% style="width:184px" %)(((
494 -Digital Interrupt1(PA8)
495 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
453 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
454 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
455 +Digital in(PA12)&Digital Interrupt1(PB14)
456 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
496 496  
497 -[[image:image-20230513111203-7.png||height="324" width="975"]]
498 -
499 499  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
500 500  
501 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
502 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
460 +|=(((
503 503  **Size(bytes)**
504 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
505 -|**Value**|BAT|(% style="width:207px" %)(((
506 -Temperature(DS18B20)
507 -(PC13)
508 -)))|(% style="width:94px" %)(((
509 -ADC1(PA4)
510 -)))|(% style="width:198px" %)(((
511 -Digital Interrupt(PB15)
512 -)))|(% style="width:84px" %)(((
513 -ADC2(PA5)
514 -)))|(% style="width:82px" %)(((
515 -ADC3(PA8)
462 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
463 +|**Value**|BAT|Temperature(DS18B20)|(((
464 +ADC1(PA0)
465 +)))|(((
466 +Digital in
467 +& Digital Interrupt(PB14)
468 +)))|(((
469 +ADC2(PA1)
470 +)))|(((
471 +ADC3(PA4)
516 516  )))
517 517  
518 -[[image:image-20230513111231-8.png||height="335" width="900"]]
474 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
519 519  
520 520  
521 521  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
522 522  
523 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
524 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
479 +|=(((
525 525  **Size(bytes)**
526 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
481 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
527 527  |**Value**|BAT|(((
528 -Temperature1(DS18B20)
529 -(PC13)
483 +Temperature1(PB3)
530 530  )))|(((
531 -Temperature2(DS18B20)
532 -(PB9)
485 +Temperature2(PA9)
533 533  )))|(((
534 -Digital Interrupt
535 -(PB15)
536 -)))|(% style="width:193px" %)(((
537 -Temperature3(DS18B20)
538 -(PB8)
539 -)))|(% style="width:78px" %)(((
540 -Count1(PA8)
541 -)))|(% style="width:78px" %)(((
542 -Count2(PA4)
487 +Digital in
488 +& Digital Interrupt(PA4)
489 +)))|(((
490 +Temperature3(PA10)
491 +)))|(((
492 +Count1(PB14)
493 +)))|(((
494 +Count2(PB15)
543 543  )))
544 544  
545 -[[image:image-20230513111255-9.png||height="341" width="899"]]
497 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
546 546  
547 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
499 +**The newly added AT command is issued correspondingly:**
548 548  
549 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
501 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
550 550  
551 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
503 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
552 552  
553 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
505 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
554 554  
555 555  **AT+SETCNT=aa,bb** 
556 556  
557 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
509 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
558 558  
559 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
511 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
560 560  
561 561  
562 562  
... ... @@ -582,13 +582,13 @@
582 582  
583 583  ==== 2.3.3.2  Temperature (DS18B20) ====
584 584  
585 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
537 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
586 586  
587 587  More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
588 588  
589 589  **Connection:**
590 590  
591 -[[image:image-20230512180718-8.png||height="538" width="647"]]
543 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378573379-646.png?rev=1.1||alt="1656378573379-646.png"]]
592 592  
593 593  **Example**:
594 594  
... ... @@ -601,61 +601,87 @@
601 601  
602 602  ==== 2.3.3.3 Digital Input ====
603 603  
604 -The digital input for pin PB15,
556 +The digital input for pin PA12,
605 605  
606 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
607 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
558 +* When PA12 is high, the bit 1 of payload byte 6 is 1.
559 +* When PA12 is low, the bit 1 of payload byte 6 is 0.
608 608  
609 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
610 -(((
611 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
561 +==== 2.3.3.4  Analogue Digital Converter (ADC) ====
612 612  
613 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
614 -)))
563 +The ADC pins in LSN50 can measure range from 0~~Vbat, it use reference voltage from . If user need to measure a voltage > VBat, please use resistors to divide this voltage to lower than VBat, otherwise, it may destroy the ADC pin.
615 615  
616 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
565 +Note: minimum VBat is 2.5v, when batrrey lower than this value. Device won't be able to send LoRa Uplink.
617 617  
618 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
567 +The ADC monitors the voltage on the PA0 line, in mV.
619 619  
620 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
569 +Ex: 0x021F = 543mv,
621 621  
622 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
571 +**~ Example1:**  Reading an Oil Sensor (Read a resistance value):
623 623  
624 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
625 625  
574 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172409-28.png?rev=1.1||alt="image-20220627172409-28.png"]]
626 626  
576 +In the LSN50, we can use PB4 and PA0 pin to calculate the resistance for the oil sensor.
577 +
578 +
579 +**Steps:**
580 +
581 +1. Solder a 10K resistor between PA0 and VCC.
582 +1. Screw oil sensor's two pins to PA0 and PB4.
583 +
584 +The equipment circuit is as below:
585 +
586 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172500-29.png?rev=1.1||alt="image-20220627172500-29.png"]]
587 +
588 +According to above diagram:
589 +
590 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091043-4.png?rev=1.1||alt="image-20220628091043-4.png"]]
591 +
592 +So
593 +
594 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091344-6.png?rev=1.1||alt="image-20220628091344-6.png"]]
595 +
596 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091621-8.png?rev=1.1||alt="image-20220628091621-8.png"]] is the reading of ADC. So if ADC=0x05DC=0.9 v and VCC (BAT) is 2.9v
597 +
598 +The [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091702-9.png?rev=1.1||alt="image-20220628091702-9.png"]] 4.5K ohm
599 +
600 +Since the Bouy is linear resistance from 10 ~~ 70cm.
601 +
602 +The position of Bouy is [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091824-10.png?rev=1.1||alt="image-20220628091824-10.png"]] , from the bottom of Bouy.
603 +
604 +
627 627  ==== 2.3.3.5 Digital Interrupt ====
628 628  
629 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
607 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
630 630  
631 -(% style="color:blue" %)**~ Interrupt connection method:**
609 +**~ Interrupt connection method:**
632 632  
633 -[[image:image-20230513105351-5.png||height="147" width="485"]]
611 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
634 634  
635 -(% style="color:blue" %)**Example to use with door sensor :**
613 +**Example to use with door sensor :**
636 636  
637 637  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
638 638  
639 639  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
640 640  
641 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
619 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
642 642  
643 -(% style="color:blue" %)**~ Below is the installation example:**
621 +**~ Below is the installation example:**
644 644  
645 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
623 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
646 646  
647 647  * (((
648 -One pin to SN50_v3's PA8 pin
626 +One pin to LSN50's PB14 pin
649 649  )))
650 650  * (((
651 -The other pin to SN50_v3's VDD pin
629 +The other pin to LSN50's VCC pin
652 652  )))
653 653  
654 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
632 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
655 655  
656 656  Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
657 657  
658 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
636 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
659 659  
660 660  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
661 661  
... ... @@ -665,7 +665,7 @@
665 665  
666 666  The command is:
667 667  
668 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
646 +**AT+INTMOD=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
669 669  
670 670  Below shows some screen captures in TTN V3:
671 671  
... ... @@ -675,20 +675,25 @@
675 675  
676 676  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
677 677  
656 +**Notice for hardware version LSN50 v1 < v1.3** (produced before 2018-Nov).
678 678  
679 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
658 +In this hardware version, there is no R14 resistance solder. When use the latest firmware, it should set AT+INTMOD=0 to close the interrupt. If user need to use Interrupt in this hardware version, user need to solder R14 with 10M resistor and C1 (0.1uF) on board.
680 680  
681 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
660 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379563303-771.png?rev=1.1||alt="1656379563303-771.png"]]
682 682  
683 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
684 684  
685 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
663 +==== 2.3.3.6 I2C Interface (SHT20) ====
686 686  
687 -Below is the connection to SHT20/ SHT31. The connection is as below:
665 +The PB6(SDA) and PB7(SCK) are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
688 688  
667 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. This is supported in the stock firmware since v1.5 with **AT+MOD=1 (default value).**
689 689  
690 -[[image:image-20230513103633-3.png||height="448" width="716"]]
669 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in LSN50 will be a good reference.
691 691  
671 +Below is the connection to SHT20/ SHT31. The connection is as below:
672 +
673 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
674 +
692 692  The device will be able to get the I2C sensor data now and upload to IoT Server.
693 693  
694 694  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -711,17 +711,15 @@
711 711  
712 712  ==== 2.3.3.8 Ultrasonic Sensor ====
713 713  
714 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
697 +The LSN50 v1.5 firmware supports ultrasonic sensor (with AT+MOD=2) such as SEN0208 from DF-Robot. This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
715 715  
716 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
699 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
717 717  
718 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
719 -
720 720  The picture below shows the connection:
721 721  
722 -[[image:image-20230512173903-6.png||height="596" width="715"]]
703 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656380061365-178.png?rev=1.1||alt="1656380061365-178.png"]]
723 723  
724 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
705 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
725 725  
726 726  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
727 727  
... ... @@ -729,8 +729,20 @@
729 729  
730 730  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
731 731  
713 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
732 732  
715 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
733 733  
717 +You can see the serial output in ULT mode as below:
718 +
719 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
720 +
721 +**In TTN V3 server:**
722 +
723 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
724 +
725 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
726 +
734 734  ==== 2.3.3.9  Battery Output - BAT pin ====
735 735  
736 736  The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
... ... @@ -742,7 +742,7 @@
742 742  
743 743  The 5V output time can be controlled by AT Command.
744 744  
745 -(% style="color:blue" %)**AT+5VT=1000**
738 +**AT+5VT=1000**
746 746  
747 747  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
748 748  
... ... @@ -754,9 +754,9 @@
754 754  
755 755  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
756 756  
757 -[[image:image-20230512172447-4.png||height="416" width="712"]]
750 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-11.jpeg?rev=1.1||alt="image-20220628110012-11.jpeg"]]
758 758  
759 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
752 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
760 760  
761 761  
762 762  ==== 2.3.3.12  Working MOD ====
... ... @@ -773,12 +773,7 @@
773 773  * 3: MOD4
774 774  * 4: MOD5
775 775  * 5: MOD6
776 -* 6: MOD7
777 -* 7: MOD8
778 -* 8: MOD9
779 779  
780 -
781 -
782 782  == 2.4 Payload Decoder file ==
783 783  
784 784  
... ... @@ -786,7 +786,7 @@
786 786  
787 787  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
788 788  
789 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
777 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
790 790  
791 791  
792 792  
... ... @@ -830,6 +830,7 @@
830 830  
831 831  === 3.3.1 Set Transmit Interval Time ===
832 832  
821 +
833 833  Feature: Change LoRaWAN End Node Transmit Interval.
834 834  
835 835  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -855,11 +855,9 @@
855 855  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
856 856  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
857 857  
858 -
859 -
860 860  === 3.3.2 Get Device Status ===
861 861  
862 -Send a LoRaWAN downlink to ask the device to send its status.
849 +Send a LoRaWAN downlink to ask device send Alarm settings.
863 863  
864 864  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
865 865  
... ... @@ -866,20 +866,21 @@
866 866  Sensor will upload Device Status via FPORT=5. See payload section for detail.
867 867  
868 868  
869 -=== 3.3.3 Set Interrupt Mode ===
856 +=== 3.3.7 Set Interrupt Mode ===
870 870  
858 +
871 871  Feature, Set Interrupt mode for GPIO_EXIT.
872 872  
873 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
861 +(% style="color:blue" %)**AT Command: AT+INTMOD**
874 874  
875 875  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
876 876  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
877 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
865 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
878 878  0
879 879  OK
880 880  the mode is 0 =Disable Interrupt
881 881  )))
882 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
870 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
883 883  Set Transmit Interval
884 884  0. (Disable Interrupt),
885 885  ~1. (Trigger by rising and falling edge)
... ... @@ -886,13 +886,7 @@
886 886  2. (Trigger by falling edge)
887 887  3. (Trigger by rising edge)
888 888  )))|(% style="width:157px" %)OK
889 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
890 -Set Transmit Interval
891 891  
892 -trigger by rising edge.
893 -)))|(% style="width:157px" %)OK
894 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
895 -
896 896  (% style="color:blue" %)**Downlink Command: 0x06**
897 897  
898 898  Format: Command Code (0x06) followed by 3 bytes.
... ... @@ -899,121 +899,9 @@
899 899  
900 900  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
901 901  
902 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
903 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
904 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
905 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
884 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
885 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
906 906  
907 -
908 -
909 -=== 3.3.4 Set Power Output Duration ===
910 -
911 -Control the output duration 5V . Before each sampling, device will
912 -
913 -~1. first enable the power output to external sensor,
914 -
915 -2. keep it on as per duration, read sensor value and construct uplink payload
916 -
917 -3. final, close the power output.
918 -
919 -(% style="color:blue" %)**AT Command: AT+5VT**
920 -
921 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
922 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
923 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
924 -500(default)
925 -OK
926 -)))
927 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
928 -Close after a delay of 1000 milliseconds.
929 -)))|(% style="width:157px" %)OK
930 -
931 -(% style="color:blue" %)**Downlink Command: 0x07**
932 -
933 -Format: Command Code (0x07) followed by 2 bytes.
934 -
935 -The first and second bytes are the time to turn on.
936 -
937 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
938 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
939 -
940 -
941 -
942 -=== 3.3.5 Set Weighing parameters ===
943 -
944 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
945 -
946 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
947 -
948 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
949 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
950 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
951 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
952 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
953 -
954 -(% style="color:blue" %)**Downlink Command: 0x08**
955 -
956 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
957 -
958 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
959 -
960 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
961 -
962 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
963 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
964 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
965 -
966 -
967 -
968 -=== 3.3.6 Set Digital pulse count value ===
969 -
970 -Feature: Set the pulse count value.
971 -
972 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
973 -
974 -(% style="color:blue" %)**AT Command: AT+SETCNT**
975 -
976 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
977 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
978 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
979 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
980 -
981 -(% style="color:blue" %)**Downlink Command: 0x09**
982 -
983 -Format: Command Code (0x09) followed by 5 bytes.
984 -
985 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
986 -
987 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
988 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
989 -
990 -
991 -
992 -=== 3.3.7 Set Workmode ===
993 -
994 -Feature: Switch working mode.
995 -
996 -(% style="color:blue" %)**AT Command: AT+MOD**
997 -
998 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
999 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1000 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1001 -OK
1002 -)))
1003 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1004 -OK
1005 -Attention:Take effect after ATZ
1006 -)))
1007 -
1008 -(% style="color:blue" %)**Downlink Command: 0x0A**
1009 -
1010 -Format: Command Code (0x0A) followed by 1 bytes.
1011 -
1012 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1013 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1014 -
1015 -
1016 -
1017 1017  = 4. Battery & Power Consumption =
1018 1018  
1019 1019  
... ... @@ -1047,6 +1047,8 @@
1047 1047  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1048 1048  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1049 1049  
920 +
921 +
1050 1050  = 7. Order Info =
1051 1051  
1052 1052  
... ... @@ -1087,5 +1087,4 @@
1087 1087  
1088 1088  
1089 1089  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1090 -
1091 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
962 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0