Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -30,6 +30,7 @@ 30 30 31 31 == 1.2 Features == 32 32 33 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -40,6 +40,7 @@ 40 40 * Downlink to change configure 41 41 * 8500mAh Battery for long term use 42 42 44 + 43 43 == 1.3 Specification == 44 44 45 45 ... ... @@ -77,6 +77,7 @@ 77 77 * Sleep Mode: 5uA @ 3.3v 78 78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 79 79 82 + 80 80 == 1.4 Sleep mode and working mode == 81 81 82 82 ... ... @@ -104,6 +104,7 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 110 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -135,7 +135,7 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== Hole Option == 142 +== 1.9 Hole Option == 139 139 140 140 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.165 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 214 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -220,7 +220,7 @@ 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 ... ... @@ -276,47 +276,39 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 283 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 287 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 292 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 291 291 294 +2. All modes share the same Payload Explanation from HERE. 295 + 296 +3. By default, the device will send an uplink message every 20 minutes. 297 + 298 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 301 + 294 294 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 295 295 296 -(% style="width: 1110px" %)297 -|**Size(bytes)**|**2**|(% style="width:1 91px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**304 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 305 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 298 298 |**Value**|Bat|(% style="width:191px" %)((( 299 -Temperature(DS18B20) 300 - 301 -(PC13) 307 +Temperature(DS18B20)(PC13) 302 302 )))|(% style="width:78px" %)((( 303 -ADC 304 - 305 -(PA4) 309 +ADC(PA4) 306 306 )))|(% style="width:216px" %)((( 307 -Digital in(PB15) & 308 - 309 -Digital Interrupt(PA8) 310 - 311 - 311 +Digital in(PB15)&Digital Interrupt(PA8) 312 312 )))|(% style="width:308px" %)((( 313 -Temperature 314 - 315 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 313 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 316 316 )))|(% style="width:154px" %)((( 317 -Humidity 318 - 319 -(SHT20 or SHT31) 315 +Humidity(SHT20 or SHT31) 320 320 ))) 321 321 322 322 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] ... ... @@ -324,25 +324,19 @@ 324 324 325 325 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 326 326 323 + 327 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 328 328 329 -(% style="width: 1011px" %)330 -|**Size(bytes)**|**2**|(% style="width:1 96px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**326 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 327 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 331 |**Value**|BAT|(% style="width:196px" %)((( 332 -Temperature(DS18B20) 333 - 334 -(PC13) 329 +Temperature(DS18B20)(PC13) 335 335 )))|(% style="width:87px" %)((( 336 -ADC 337 - 338 -(PA4) 331 +ADC(PA4) 339 339 )))|(% style="width:189px" %)((( 340 -Digital in(PB15) & 341 - 342 -Digital Interrupt(PA8) 333 +Digital in(PB15) & Digital Interrupt(PA8) 343 343 )))|(% style="width:208px" %)((( 344 -Distance measure by: 345 -1) LIDAR-Lite V3HP 335 +Distance measure by:1) LIDAR-Lite V3HP 346 346 Or 347 347 2) Ultrasonic Sensor 348 348 )))|(% style="width:117px" %)Reserved ... ... @@ -349,32 +349,29 @@ 349 349 350 350 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 351 351 352 -**Connection of LIDAR-Lite V3HP:** 353 353 343 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 344 + 354 354 [[image:image-20230512173758-5.png||height="563" width="712"]] 355 355 356 -**Connection to Ultrasonic Sensor:** 357 357 358 - NeedtomoveR1 and R2 resistorstogetlow power,otherwise there willbe240uA standby current.348 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 359 359 350 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 351 + 360 360 [[image:image-20230512173903-6.png||height="596" width="715"]] 361 361 354 + 362 362 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 363 363 364 -(% style="width: 1113px" %)365 -|**Size(bytes)**|**2**|(% style="width:1 83px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**357 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 358 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 366 366 |**Value**|BAT|(% style="width:183px" %)((( 367 -Temperature(DS18B20) 368 - 369 -(PC13) 360 +Temperature(DS18B20)(PC13) 370 370 )))|(% style="width:173px" %)((( 371 -Digital in(PB15) & 372 - 373 -Digital Interrupt(PA8) 362 +Digital in(PB15) & Digital Interrupt(PA8) 374 374 )))|(% style="width:84px" %)((( 375 -ADC 376 - 377 -(PA4) 364 +ADC(PA4) 378 378 )))|(% style="width:323px" %)((( 379 379 Distance measure by:1)TF-Mini plus LiDAR 380 380 Or ... ... @@ -383,15 +383,17 @@ 383 383 384 384 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 385 385 373 + 386 386 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 387 387 388 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 376 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 389 389 390 390 [[image:image-20230512180609-7.png||height="555" width="802"]] 391 391 380 + 392 392 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 393 393 394 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 383 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 395 395 396 396 [[image:image-20230513105207-4.png||height="469" width="802"]] 397 397 ... ... @@ -398,34 +398,25 @@ 398 398 399 399 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 400 400 390 + 401 401 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 402 402 403 -(% style="width: 1031px" %)404 -|=((( 393 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 394 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 405 405 **Size(bytes)** 406 -)))|=(% style="width: 68px;" %)**2**|=(% style="width:75px;" %)**2**|=**2**|=**1**|=(% style="width:304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width:53px;" %)1396 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 407 407 |**Value**|(% style="width:68px" %)((( 408 -ADC1 409 - 410 -(PA4) 398 +ADC1(PA4) 411 411 )))|(% style="width:75px" %)((( 412 -ADC2 413 - 414 -(PA5) 400 +ADC2(PA5) 415 415 )))|((( 416 -ADC3 417 - 418 -(PA8) 402 +ADC3(PA8) 419 419 )))|((( 420 420 Digital Interrupt(PB15) 421 421 )))|(% style="width:304px" %)((( 422 -Temperature 423 - 424 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 406 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 425 425 )))|(% style="width:163px" %)((( 426 -Humidity 427 - 428 -(SHT20 or SHT31) 408 +Humidity(SHT20 or SHT31) 429 429 )))|(% style="width:53px" %)Bat 430 430 431 431 [[image:image-20230513110214-6.png]] ... ... @@ -436,73 +436,66 @@ 436 436 437 437 This mode has total 11 bytes. As shown below: 438 438 439 -(% style="width: 1017px" %)440 -|**Size(bytes)**|**2**|(% style="width:1 86px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**419 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 420 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 441 441 |**Value**|BAT|(% style="width:186px" %)((( 442 -Temperature1(DS18B20) 443 -(PC13) 422 +Temperature1(DS18B20)(PC13) 444 444 )))|(% style="width:82px" %)((( 445 -ADC 446 - 447 -(PA4) 424 +ADC(PA4) 448 448 )))|(% style="width:210px" %)((( 449 -Digital in(PB15) & 450 - 451 -Digital Interrupt(PA8) 426 +Digital in(PB15) & Digital Interrupt(PA8) 452 452 )))|(% style="width:191px" %)Temperature2(DS18B20) 453 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 454 -(PB8) 428 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 455 455 456 456 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 457 457 432 + 458 458 [[image:image-20230513134006-1.png||height="559" width="736"]] 459 459 460 460 461 461 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 462 462 438 + 463 463 [[image:image-20230512164658-2.png||height="532" width="729"]] 464 464 465 465 Each HX711 need to be calibrated before used. User need to do below two steps: 466 466 467 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 468 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 443 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 444 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 469 469 1. ((( 470 470 Weight has 4 bytes, the unit is g. 447 + 448 + 449 + 471 471 ))) 472 472 473 473 For example: 474 474 475 -**AT+GETSENSORVALUE =0** 454 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 476 476 477 477 Response: Weight is 401 g 478 478 479 479 Check the response of this command and adjust the value to match the real value for thing. 480 480 481 -(% style="width: 767px" %)482 -|=((( 460 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 461 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 483 483 **Size(bytes)** 484 -)))|=**2**|=(% style="width: 1 93px;" %)**2**|=(% style="width:85px;" %)**2**|=(% style="width:186px;" %)**1**|=(% style="width:100px;" %)**4**463 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 485 485 |**Value**|BAT|(% style="width:193px" %)((( 486 -Temperature(DS18B20) 487 - 488 -(PC13) 489 - 490 - 465 +Temperature(DS18B20)(PC13) 491 491 )))|(% style="width:85px" %)((( 492 -ADC 493 - 494 -(PA4) 467 +ADC(PA4) 495 495 )))|(% style="width:186px" %)((( 496 -Digital in(PB15) & 497 - 498 -Digital Interrupt(PA8) 469 +Digital in(PB15) & Digital Interrupt(PA8) 499 499 )))|(% style="width:100px" %)Weight 500 500 501 501 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 502 502 503 503 475 + 504 504 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 505 505 478 + 506 506 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 507 507 508 508 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -509,26 +509,19 @@ 509 509 510 510 [[image:image-20230512181814-9.png||height="543" width="697"]] 511 511 512 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 513 513 514 -(% style="width:961px" %) 515 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 516 -|**Value**|BAT|(% style="width:256px" %)((( 517 -Temperature(DS18B20) 486 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 518 518 519 -(PC13) 488 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 489 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 490 +|**Value**|BAT|(% style="width:256px" %)((( 491 +Temperature(DS18B20)(PC13) 520 520 )))|(% style="width:108px" %)((( 521 -ADC 522 - 523 -(PA4) 493 +ADC(PA4) 524 524 )))|(% style="width:126px" %)((( 525 -Digital in 526 - 527 -(PB15) 495 +Digital in(PB15) 528 528 )))|(% style="width:145px" %)((( 529 -Count 530 - 531 -(PA8) 497 +Count(PA8) 532 532 ))) 533 533 534 534 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] ... ... @@ -536,18 +536,16 @@ 536 536 537 537 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 538 538 539 -(% style="width:1108px" %) 540 -|=((( 505 + 506 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 507 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 541 541 **Size(bytes)** 542 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width:83px;" %)**2**|=(% style="width:184px;" %)**1**|=(% style="width:186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width:100px;" %)2509 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 543 543 |**Value**|BAT|(% style="width:188px" %)((( 544 544 Temperature(DS18B20) 545 - 546 546 (PC13) 547 547 )))|(% style="width:83px" %)((( 548 -ADC 549 - 550 -(PA5) 514 +ADC(PA5) 551 551 )))|(% style="width:184px" %)((( 552 552 Digital Interrupt1(PA8) 553 553 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -554,30 +554,25 @@ 554 554 555 555 [[image:image-20230513111203-7.png||height="324" width="975"]] 556 556 521 + 557 557 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 558 558 559 -(% style="width:922px" %) 560 -|=((( 524 + 525 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 526 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 561 561 **Size(bytes)** 562 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2528 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 563 563 |**Value**|BAT|(% style="width:207px" %)((( 564 564 Temperature(DS18B20) 565 - 566 566 (PC13) 567 567 )))|(% style="width:94px" %)((( 568 -ADC1 569 - 570 -(PA4) 533 +ADC1(PA4) 571 571 )))|(% style="width:198px" %)((( 572 572 Digital Interrupt(PB15) 573 573 )))|(% style="width:84px" %)((( 574 -ADC2 575 - 576 -(PA5) 537 +ADC2(PA5) 577 577 )))|(% style="width:82px" %)((( 578 -ADC3 579 - 580 -(PA8) 539 +ADC3(PA8) 581 581 ))) 582 582 583 583 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -585,56 +585,50 @@ 585 585 586 586 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 587 587 588 -(% style="width:1010px" %) 589 -|=((( 547 + 548 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 549 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 590 590 **Size(bytes)** 591 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4551 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 592 592 |**Value**|BAT|((( 593 -Temperature1(DS18B20) 594 - 595 -(PC13) 553 +Temperature 554 +(DS18B20)(PC13) 596 596 )))|((( 597 -Temperature2(DS18B20) 598 - 599 -(PB9) 556 +Temperature2 557 +(DS18B20)(PB9) 600 600 )))|((( 601 601 Digital Interrupt 602 - 603 603 (PB15) 604 604 )))|(% style="width:193px" %)((( 605 -Temperature3(DS18B20) 606 - 607 -(PB8) 562 +Temperature3 563 +(DS18B20)(PB8) 608 608 )))|(% style="width:78px" %)((( 609 -Count1 610 - 611 -(PA8) 565 +Count1(PA8) 612 612 )))|(% style="width:78px" %)((( 613 -Count2 614 - 615 -(PA4) 567 +Count2(PA4) 616 616 ))) 617 617 618 618 [[image:image-20230513111255-9.png||height="341" width="899"]] 619 619 620 -**The newly added AT command is issued correspondingly:** 572 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 621 621 622 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**574 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 623 623 624 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**576 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 625 625 626 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**578 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 627 627 628 -**AT+SETCNT=aa,bb** 629 629 581 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 582 + 630 630 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 631 631 632 632 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 633 633 634 634 635 - 636 636 === 2.3.3 Decode payload === 637 637 590 + 638 638 While using TTN V3 network, you can add the payload format to decode the payload. 639 639 640 640 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -641,13 +641,14 @@ 641 641 642 642 The payload decoder function for TTN V3 are here: 643 643 644 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 597 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 645 645 646 646 647 647 ==== 2.3.3.1 Battery Info ==== 648 648 649 -Check the battery voltage for SN50v3. 650 650 603 +Check the battery voltage for SN50v3-LB. 604 + 651 651 Ex1: 0x0B45 = 2885mV 652 652 653 653 Ex2: 0x0B49 = 2889mV ... ... @@ -655,16 +655,18 @@ 655 655 656 656 ==== 2.3.3.2 Temperature (DS18B20) ==== 657 657 612 + 658 658 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 659 659 660 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]615 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 661 661 662 -**Connection:** 617 +(% style="color:blue" %)**Connection:** 663 663 664 664 [[image:image-20230512180718-8.png||height="538" width="647"]] 665 665 666 -**Example**: 667 667 622 +(% style="color:blue" %)**Example**: 623 + 668 668 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 669 669 670 670 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -674,6 +674,7 @@ 674 674 675 675 ==== 2.3.3.3 Digital Input ==== 676 676 633 + 677 677 The digital input for pin PB15, 678 678 679 679 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -683,7 +683,7 @@ 683 683 ((( 684 684 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 685 685 686 -**Note: **The maximum voltage input supports 3.6V.643 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 687 687 688 688 689 689 ))) ... ... @@ -690,6 +690,7 @@ 690 690 691 691 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 692 692 650 + 693 693 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 694 694 695 695 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -696,39 +696,43 @@ 696 696 697 697 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 698 698 699 -**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 700 700 658 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 701 701 660 + 702 702 ==== 2.3.3.5 Digital Interrupt ==== 703 703 704 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 705 705 706 - **~Interruptconnection method:**664 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 707 707 666 +(% style="color:blue" %)** Interrupt connection method:** 667 + 708 708 [[image:image-20230513105351-5.png||height="147" width="485"]] 709 709 710 -**Example to use with door sensor :** 711 711 671 +(% style="color:blue" %)**Example to use with door sensor :** 672 + 712 712 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 713 713 714 714 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 715 715 716 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.677 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 717 717 718 -**~ Below is the installation example:** 719 719 720 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:680 +(% style="color:blue" %)**Below is the installation example:** 721 721 682 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 683 + 722 722 * ((( 723 -One pin to SN50 _v3's PA8 pin685 +One pin to SN50v3-LB's PA8 pin 724 724 ))) 725 725 * ((( 726 -The other pin to SN50 _v3's VDD pin688 +The other pin to SN50v3-LB's VDD pin 727 727 ))) 728 728 729 729 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 730 730 731 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 693 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 732 732 733 733 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 734 734 ... ... @@ -740,30 +740,33 @@ 740 740 741 741 The command is: 742 742 743 -**AT+INTMOD1=1 705 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 744 744 745 745 Below shows some screen captures in TTN V3: 746 746 747 747 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 748 748 749 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 750 750 712 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 713 + 751 751 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 752 752 753 753 754 754 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 755 755 719 + 756 756 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 757 757 758 758 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 759 759 760 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.724 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 761 761 726 + 762 762 Below is the connection to SHT20/ SHT31. The connection is as below: 763 763 764 - 765 765 [[image:image-20230513103633-3.png||height="448" width="716"]] 766 766 731 + 767 767 The device will be able to get the I2C sensor data now and upload to IoT Server. 768 768 769 769 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -781,23 +781,26 @@ 781 781 782 782 ==== 2.3.3.7 Distance Reading ==== 783 783 784 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 785 785 750 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 786 786 752 + 787 787 ==== 2.3.3.8 Ultrasonic Sensor ==== 788 788 755 + 789 789 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 790 790 791 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.758 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 792 792 793 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 760 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 794 794 795 795 The picture below shows the connection: 796 796 797 797 [[image:image-20230512173903-6.png||height="596" width="715"]] 798 798 799 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 800 800 767 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 768 + 801 801 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 802 802 803 803 **Example:** ... ... @@ -805,37 +805,40 @@ 805 805 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 806 806 807 807 808 - 809 809 ==== 2.3.3.9 Battery Output - BAT pin ==== 810 810 811 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 812 812 779 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 813 813 781 + 814 814 ==== 2.3.3.10 +5V Output ==== 815 815 816 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 817 817 785 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 786 + 818 818 The 5V output time can be controlled by AT Command. 819 819 820 -**AT+5VT=1000** 789 +(% style="color:blue" %)**AT+5VT=1000** 821 821 822 822 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 823 823 824 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 793 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 825 825 826 826 827 - 828 828 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 829 829 798 + 830 830 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 831 831 832 832 [[image:image-20230512172447-4.png||height="416" width="712"]] 833 833 803 + 834 834 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 835 835 836 836 837 837 ==== 2.3.3.12 Working MOD ==== 838 838 809 + 839 839 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 840 840 841 841 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -852,7 +852,6 @@ 852 852 * 7: MOD8 853 853 * 8: MOD9 854 854 855 -== == 856 856 857 857 == 2.4 Payload Decoder file == 858 858 ... ... @@ -864,7 +864,6 @@ 864 864 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 865 865 866 866 867 - 868 868 == 2.5 Frequency Plans == 869 869 870 870 ... ... @@ -884,6 +884,7 @@ 884 884 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 885 885 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 886 886 856 + 887 887 == 3.2 General Commands == 888 888 889 889 ... ... @@ -900,11 +900,12 @@ 900 900 == 3.3 Commands special design for SN50v3-LB == 901 901 902 902 903 -These commands only valid for S3 1x-LB, as below:873 +These commands only valid for SN50v3-LB, as below: 904 904 905 905 906 906 === 3.3.1 Set Transmit Interval Time === 907 907 878 + 908 908 Feature: Change LoRaWAN End Node Transmit Interval. 909 909 910 910 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -930,19 +930,20 @@ 930 930 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 931 931 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 932 932 933 -=== === 934 934 935 935 === 3.3.2 Get Device Status === 936 936 907 + 937 937 Send a LoRaWAN downlink to ask the device to send its status. 938 938 939 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01910 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 940 940 941 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 912 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 942 942 943 943 944 944 === 3.3.3 Set Interrupt Mode === 945 945 917 + 946 946 Feature, Set Interrupt mode for GPIO_EXIT. 947 947 948 948 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -963,7 +963,6 @@ 963 963 )))|(% style="width:157px" %)OK 964 964 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 965 965 Set Transmit Interval 966 - 967 967 trigger by rising edge. 968 968 )))|(% style="width:157px" %)OK 969 969 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -979,10 +979,10 @@ 979 979 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 980 980 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 981 981 982 -=== === 983 983 984 984 === 3.3.4 Set Power Output Duration === 985 985 956 + 986 986 Control the output duration 5V . Before each sampling, device will 987 987 988 988 ~1. first enable the power output to external sensor, ... ... @@ -997,7 +997,6 @@ 997 997 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 998 998 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 999 999 500(default) 1000 - 1001 1001 OK 1002 1002 ))) 1003 1003 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( ... ... @@ -1013,10 +1013,10 @@ 1013 1013 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1014 1014 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1015 1015 1016 -=== === 1017 1017 1018 1018 === 3.3.5 Set Weighing parameters === 1019 1019 989 + 1020 1020 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1021 1021 1022 1022 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -1039,10 +1039,10 @@ 1039 1039 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1040 1040 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1041 1041 1042 -=== === 1043 1043 1044 1044 === 3.3.6 Set Digital pulse count value === 1045 1045 1015 + 1046 1046 Feature: Set the pulse count value. 1047 1047 1048 1048 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1063,10 +1063,10 @@ 1063 1063 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1064 1064 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1065 1065 1066 -=== === 1067 1067 1068 1068 === 3.3.7 Set Workmode === 1069 1069 1039 + 1070 1070 Feature: Switch working mode. 1071 1071 1072 1072 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1078,7 +1078,6 @@ 1078 1078 ))) 1079 1079 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1080 1080 OK 1081 - 1082 1082 Attention:Take effect after ATZ 1083 1083 ))) 1084 1084 ... ... @@ -1089,7 +1089,6 @@ 1089 1089 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1090 1090 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1091 1091 1092 -= = 1093 1093 1094 1094 = 4. Battery & Power Consumption = 1095 1095 ... ... @@ -1103,27 +1103,29 @@ 1103 1103 1104 1104 1105 1105 (% class="wikigeneratedid" %) 1106 -User can change firmware SN50v3-LB to: 1074 +**User can change firmware SN50v3-LB to:** 1107 1107 1108 1108 * Change Frequency band/ region. 1109 1109 * Update with new features. 1110 1110 * Fix bugs. 1111 1111 1112 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1080 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1113 1113 1082 +**Methods to Update Firmware:** 1114 1114 1115 -Methods to Update Firmware: 1116 - 1117 1117 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1118 1118 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1119 1119 1087 + 1120 1120 = 6. FAQ = 1121 1121 1122 1122 == 6.1 Where can i find source code of SN50v3-LB? == 1123 1123 1092 + 1124 1124 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1125 1125 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1126 1126 1096 + 1127 1127 = 7. Order Info = 1128 1128 1129 1129 ... ... @@ -1147,8 +1147,10 @@ 1147 1147 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1148 1148 * (% style="color:red" %)**NH**(%%): No Hole 1149 1149 1120 + 1150 1150 = 8. Packing Info = 1151 1151 1123 + 1152 1152 (% style="color:#037691" %)**Package Includes**: 1153 1153 1154 1154 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1160,8 +1160,10 @@ 1160 1160 * Package Size / pcs : cm 1161 1161 * Weight / pcs : g 1162 1162 1135 + 1163 1163 = 9. Support = 1164 1164 1165 1165 1166 1166 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1140 + 1167 1167 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]