<
From version < 43.39 >
edited by Xiaoling
on 2023/05/16 14:54
To version < 44.4 >
edited by Xiaoling
on 2023/05/18 09:18
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -30,6 +30,7 @@
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 +
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -40,6 +40,8 @@
40 40  * Downlink to change configure
41 41  * 8500mAh Battery for long term use
42 42  
44 +
45 +
43 43  == 1.3 Specification ==
44 44  
45 45  
... ... @@ -77,6 +77,8 @@
77 77  * Sleep Mode: 5uA @ 3.3v
78 78  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
83 +
84 +
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 82  
... ... @@ -104,6 +104,8 @@
104 104  )))
105 105  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 106  
112 +
113 +
107 107  == 1.6 BLE connection ==
108 108  
109 109  
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
168 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
217 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -220,7 +220,7 @@
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
... ... @@ -276,19 +276,22 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
286 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
290 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
295 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
291 291  
297 +2. All modes share the same Payload Explanation from HERE.
298 +
299 +3. By default, the device will send an uplink message every 20 minutes.
300 +
301 +
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 294  
... ... @@ -295,7 +295,7 @@
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 297  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
308 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
299 299  |**Value**|Bat|(% style="width:191px" %)(((
300 300  Temperature(DS18B20)(PC13)
301 301  )))|(% style="width:78px" %)(((
... ... @@ -313,10 +313,11 @@
313 313  
314 314  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315 315  
326 +
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 318  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
320 320  |**Value**|BAT|(% style="width:196px" %)(((
321 321  Temperature(DS18B20)(PC13)
322 322  )))|(% style="width:87px" %)(((
... ... @@ -325,25 +325,29 @@
325 325  Digital in(PB15) & Digital Interrupt(PA8)
326 326  )))|(% style="width:208px" %)(((
327 327  Distance measure by:1) LIDAR-Lite V3HP
328 -Or 2) Ultrasonic Sensor
339 +Or
340 +2) Ultrasonic Sensor
329 329  )))|(% style="width:117px" %)Reserved
330 330  
331 331  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 332  
345 +
333 333  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
334 334  
335 335  [[image:image-20230512173758-5.png||height="563" width="712"]]
336 336  
350 +
337 337  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
338 338  
339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
353 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
340 340  
341 341  [[image:image-20230512173903-6.png||height="596" width="715"]]
342 342  
357 +
343 343  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 344  
345 345  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
361 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
347 347  |**Value**|BAT|(% style="width:183px" %)(((
348 348  Temperature(DS18B20)(PC13)
349 349  )))|(% style="width:173px" %)(((
... ... @@ -358,15 +358,17 @@
358 358  
359 359  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
360 360  
376 +
361 361  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
362 362  
363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
379 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
364 364  
365 365  [[image:image-20230512180609-7.png||height="555" width="802"]]
366 366  
383 +
367 367  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
368 368  
369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
386 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
370 370  
371 371  [[image:image-20230513105207-4.png||height="469" width="802"]]
372 372  
... ... @@ -373,12 +373,13 @@
373 373  
374 374  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
375 375  
393 +
376 376  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377 377  
378 378  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
379 379  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
380 380  **Size(bytes)**
381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
399 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 382  |**Value**|(% style="width:68px" %)(((
383 383  ADC1(PA4)
384 384  )))|(% style="width:75px" %)(((
... ... @@ -402,7 +402,7 @@
402 402  This mode has total 11 bytes. As shown below:
403 403  
404 404  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
405 -|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
423 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
406 406  |**Value**|BAT|(% style="width:186px" %)(((
407 407  Temperature1(DS18B20)(PC13)
408 408  )))|(% style="width:82px" %)(((
... ... @@ -414,24 +414,29 @@
414 414  
415 415  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
416 416  
435 +
417 417  [[image:image-20230513134006-1.png||height="559" width="736"]]
418 418  
419 419  
420 420  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
421 421  
441 +
422 422  [[image:image-20230512164658-2.png||height="532" width="729"]]
423 423  
424 424  Each HX711 need to be calibrated before used. User need to do below two steps:
425 425  
426 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
446 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
447 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
428 428  1. (((
429 429  Weight has 4 bytes, the unit is g.
450 +
451 +
452 +
430 430  )))
431 431  
432 432  For example:
433 433  
434 -**AT+GETSENSORVALUE =0**
457 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
435 435  
436 436  Response:  Weight is 401 g
437 437  
... ... @@ -442,20 +442,20 @@
442 442  **Size(bytes)**
443 443  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
444 444  |**Value**|BAT|(% style="width:193px" %)(((
445 -Temperature(DS18B20)
446 -(PC13)
468 +Temperature(DS18B20)(PC13)
447 447  )))|(% style="width:85px" %)(((
448 448  ADC(PA4)
449 449  )))|(% style="width:186px" %)(((
450 -Digital in(PB15) &
451 -Digital Interrupt(PA8)
472 +Digital in(PB15) & Digital Interrupt(PA8)
452 452  )))|(% style="width:100px" %)Weight
453 453  
454 454  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
455 455  
456 456  
478 +
457 457  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
458 458  
481 +
459 459  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
460 460  
461 461  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -462,10 +462,11 @@
462 462  
463 463  [[image:image-20230512181814-9.png||height="543" width="697"]]
464 464  
465 -(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
466 466  
489 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
490 +
467 467  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
468 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
492 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 469  |**Value**|BAT|(% style="width:256px" %)(((
470 470  Temperature(DS18B20)(PC13)
471 471  )))|(% style="width:108px" %)(((
... ... @@ -481,6 +481,7 @@
481 481  
482 482  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
483 483  
508 +
484 484  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
485 485  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
486 486  **Size(bytes)**
... ... @@ -496,12 +496,14 @@
496 496  
497 497  [[image:image-20230513111203-7.png||height="324" width="975"]]
498 498  
524 +
499 499  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
500 500  
527 +
501 501  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
502 502  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
503 503  **Size(bytes)**
504 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
531 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
505 505  |**Value**|BAT|(% style="width:207px" %)(((
506 506  Temperature(DS18B20)
507 507  (PC13)
... ... @@ -520,22 +520,23 @@
520 520  
521 521  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
522 522  
550 +
523 523  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
524 524  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
525 525  **Size(bytes)**
526 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
554 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
527 527  |**Value**|BAT|(((
528 -Temperature1(DS18B20)
529 -(PC13)
556 +Temperature
557 +(DS18B20)(PC13)
530 530  )))|(((
531 -Temperature2(DS18B20)
532 -(PB9)
559 +Temperature2
560 +(DS18B20)(PB9)
533 533  )))|(((
534 534  Digital Interrupt
535 535  (PB15)
536 536  )))|(% style="width:193px" %)(((
537 -Temperature3(DS18B20)
538 -(PB8)
565 +Temperature3
566 +(DS18B20)(PB8)
539 539  )))|(% style="width:78px" %)(((
540 540  Count1(PA8)
541 541  )))|(% style="width:78px" %)(((
... ... @@ -544,24 +544,25 @@
544 544  
545 545  [[image:image-20230513111255-9.png||height="341" width="899"]]
546 546  
547 -**The newly added AT command is issued correspondingly:**
575 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
548 548  
549 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
577 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
550 550  
551 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
579 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
552 552  
553 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
581 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
554 554  
555 -**AT+SETCNT=aa,bb** 
556 556  
584 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
585 +
557 557  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
558 558  
559 559  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
560 560  
561 561  
562 -
563 563  === 2.3.3  ​Decode payload ===
564 564  
593 +
565 565  While using TTN V3 network, you can add the payload format to decode the payload.
566 566  
567 567  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -568,13 +568,14 @@
568 568  
569 569  The payload decoder function for TTN V3 are here:
570 570  
571 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
600 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
572 572  
573 573  
574 574  ==== 2.3.3.1 Battery Info ====
575 575  
576 -Check the battery voltage for SN50v3.
577 577  
606 +Check the battery voltage for SN50v3-LB.
607 +
578 578  Ex1: 0x0B45 = 2885mV
579 579  
580 580  Ex2: 0x0B49 = 2889mV
... ... @@ -582,16 +582,18 @@
582 582  
583 583  ==== 2.3.3.2  Temperature (DS18B20) ====
584 584  
615 +
585 585  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
586 586  
587 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
618 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
588 588  
589 -**Connection:**
620 +(% style="color:blue" %)**Connection:**
590 590  
591 591  [[image:image-20230512180718-8.png||height="538" width="647"]]
592 592  
593 -**Example**:
594 594  
625 +(% style="color:blue" %)**Example**:
626 +
595 595  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
596 596  
597 597  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -601,6 +601,7 @@
601 601  
602 602  ==== 2.3.3.3 Digital Input ====
603 603  
636 +
604 604  The digital input for pin PB15,
605 605  
606 606  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -610,11 +610,14 @@
610 610  (((
611 611  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
612 612  
613 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
646 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
647 +
648 +
614 614  )))
615 615  
616 616  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
617 617  
653 +
618 618  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
619 619  
620 620  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -621,17 +621,20 @@
621 621  
622 622  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
623 623  
624 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
625 625  
661 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
626 626  
663 +
627 627  ==== 2.3.3.5 Digital Interrupt ====
628 628  
629 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
630 630  
631 -(% style="color:blue" %)**~ Interrupt connection method:**
667 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
632 632  
669 +(% style="color:blue" %)** Interrupt connection method:**
670 +
633 633  [[image:image-20230513105351-5.png||height="147" width="485"]]
634 634  
673 +
635 635  (% style="color:blue" %)**Example to use with door sensor :**
636 636  
637 637  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -638,22 +638,23 @@
638 638  
639 639  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
640 640  
641 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
680 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
642 642  
643 -(% style="color:blue" %)**~ Below is the installation example:**
644 644  
645 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
683 +(% style="color:blue" %)**Below is the installation example:**
646 646  
685 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
686 +
647 647  * (((
648 -One pin to SN50_v3's PA8 pin
688 +One pin to SN50v3-LB's PA8 pin
649 649  )))
650 650  * (((
651 -The other pin to SN50_v3's VDD pin
691 +The other pin to SN50v3-LB's VDD pin
652 652  )))
653 653  
654 654  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
655 655  
656 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
696 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
657 657  
658 658  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
659 659  
... ... @@ -665,30 +665,33 @@
665 665  
666 666  The command is:
667 667  
668 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
708 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
669 669  
670 670  Below shows some screen captures in TTN V3:
671 671  
672 672  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
673 673  
674 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
675 675  
715 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
716 +
676 676  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
677 677  
678 678  
679 679  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
680 680  
722 +
681 681  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
682 682  
683 683  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
684 684  
685 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
727 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
686 686  
729 +
687 687  Below is the connection to SHT20/ SHT31. The connection is as below:
688 688  
689 -
690 690  [[image:image-20230513103633-3.png||height="448" width="716"]]
691 691  
734 +
692 692  The device will be able to get the I2C sensor data now and upload to IoT Server.
693 693  
694 694  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -706,23 +706,26 @@
706 706  
707 707  ==== 2.3.3.7  ​Distance Reading ====
708 708  
709 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
710 710  
753 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
711 711  
755 +
712 712  ==== 2.3.3.8 Ultrasonic Sensor ====
713 713  
758 +
714 714  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
715 715  
716 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
761 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
717 717  
718 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
763 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
719 719  
720 720  The picture below shows the connection:
721 721  
722 722  [[image:image-20230512173903-6.png||height="596" width="715"]]
723 723  
724 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
725 725  
770 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
771 +
726 726  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
727 727  
728 728  **Example:**
... ... @@ -730,16 +730,17 @@
730 730  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
731 731  
732 732  
733 -
734 734  ==== 2.3.3.9  Battery Output - BAT pin ====
735 735  
736 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
737 737  
782 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
738 738  
784 +
739 739  ==== 2.3.3.10  +5V Output ====
740 740  
741 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
742 742  
788 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
789 +
743 743  The 5V output time can be controlled by AT Command.
744 744  
745 745  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -746,21 +746,23 @@
746 746  
747 747  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
748 748  
749 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
796 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
750 750  
751 751  
752 -
753 753  ==== 2.3.3.11  BH1750 Illumination Sensor ====
754 754  
801 +
755 755  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
756 756  
757 757  [[image:image-20230512172447-4.png||height="416" width="712"]]
758 758  
806 +
759 759  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
760 760  
761 761  
762 762  ==== 2.3.3.12  Working MOD ====
763 763  
812 +
764 764  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
765 765  
766 766  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -789,7 +789,6 @@
789 789  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
790 790  
791 791  
792 -
793 793  == 2.5 Frequency Plans ==
794 794  
795 795  
... ... @@ -809,6 +809,8 @@
809 809  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
810 810  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
811 811  
860 +
861 +
812 812  == 3.2 General Commands ==
813 813  
814 814  
... ... @@ -825,11 +825,12 @@
825 825  == 3.3 Commands special design for SN50v3-LB ==
826 826  
827 827  
828 -These commands only valid for S31x-LB, as below:
878 +These commands only valid for SN50v3-LB, as below:
829 829  
830 830  
831 831  === 3.3.1 Set Transmit Interval Time ===
832 832  
883 +
833 833  Feature: Change LoRaWAN End Node Transmit Interval.
834 834  
835 835  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -859,15 +859,17 @@
859 859  
860 860  === 3.3.2 Get Device Status ===
861 861  
913 +
862 862  Send a LoRaWAN downlink to ask the device to send its status.
863 863  
864 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
916 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
865 865  
866 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
918 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
867 867  
868 868  
869 869  === 3.3.3 Set Interrupt Mode ===
870 870  
923 +
871 871  Feature, Set Interrupt mode for GPIO_EXIT.
872 872  
873 873  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
... ... @@ -888,7 +888,6 @@
888 888  )))|(% style="width:157px" %)OK
889 889  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
890 890  Set Transmit Interval
891 -
892 892  trigger by rising edge.
893 893  )))|(% style="width:157px" %)OK
894 894  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -908,6 +908,7 @@
908 908  
909 909  === 3.3.4 Set Power Output Duration ===
910 910  
963 +
911 911  Control the output duration 5V . Before each sampling, device will
912 912  
913 913  ~1. first enable the power output to external sensor,
... ... @@ -941,6 +941,7 @@
941 941  
942 942  === 3.3.5 Set Weighing parameters ===
943 943  
997 +
944 944  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
945 945  
946 946  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
... ... @@ -967,6 +967,7 @@
967 967  
968 968  === 3.3.6 Set Digital pulse count value ===
969 969  
1024 +
970 970  Feature: Set the pulse count value.
971 971  
972 972  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -991,6 +991,7 @@
991 991  
992 992  === 3.3.7 Set Workmode ===
993 993  
1049 +
994 994  Feature: Switch working mode.
995 995  
996 996  (% style="color:blue" %)**AT Command: AT+MOD**
... ... @@ -1026,27 +1026,31 @@
1026 1026  
1027 1027  
1028 1028  (% class="wikigeneratedid" %)
1029 -User can change firmware SN50v3-LB to:
1085 +**User can change firmware SN50v3-LB to:**
1030 1030  
1031 1031  * Change Frequency band/ region.
1032 1032  * Update with new features.
1033 1033  * Fix bugs.
1034 1034  
1035 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1091 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1036 1036  
1093 +**Methods to Update Firmware:**
1037 1037  
1038 -Methods to Update Firmware:
1039 -
1040 1040  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1041 1041  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1042 1042  
1098 +
1099 +
1043 1043  = 6. FAQ =
1044 1044  
1045 1045  == 6.1 Where can i find source code of SN50v3-LB? ==
1046 1046  
1104 +
1047 1047  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1048 1048  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1049 1049  
1108 +
1109 +
1050 1050  = 7. Order Info =
1051 1051  
1052 1052  
... ... @@ -1070,8 +1070,11 @@
1070 1070  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1071 1071  * (% style="color:red" %)**NH**(%%): No Hole
1072 1072  
1133 +
1134 +
1073 1073  = 8. ​Packing Info =
1074 1074  
1137 +
1075 1075  (% style="color:#037691" %)**Package Includes**:
1076 1076  
1077 1077  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1083,6 +1083,8 @@
1083 1083  * Package Size / pcs : cm
1084 1084  * Weight / pcs : g
1085 1085  
1149 +
1150 +
1086 1086  = 9. Support =
1087 1087  
1088 1088  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0