Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -30,6 +30,7 @@ 30 30 31 31 == 1.2 Features == 32 32 33 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -40,6 +40,7 @@ 40 40 * Downlink to change configure 41 41 * 8500mAh Battery for long term use 42 42 44 + 43 43 == 1.3 Specification == 44 44 45 45 ... ... @@ -77,6 +77,7 @@ 77 77 * Sleep Mode: 5uA @ 3.3v 78 78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 79 79 82 + 80 80 == 1.4 Sleep mode and working mode == 81 81 82 82 ... ... @@ -104,6 +104,7 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 110 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 513102034-2.png]]129 +[[image:image-20230610162852-1.png||height="466" width="802"]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -135,7 +135,7 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== Hole Option == 142 +== 1.9 Hole Option == 139 139 140 140 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.165 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 214 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -215,12 +215,12 @@ 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 217 217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 218 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT222 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 219 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 ... ... @@ -276,19 +276,22 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 283 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 287 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 292 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 291 291 294 +2. All modes share the same Payload Explanation from HERE. 295 + 296 +3. By default, the device will send an uplink message every 20 minutes. 297 + 298 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -295,8 +295,8 @@ 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**299 -| **Value**|Bat|(% style="width:191px" %)(((305 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 306 +|Value|Bat|(% style="width:191px" %)((( 300 300 Temperature(DS18B20)(PC13) 301 301 )))|(% style="width:78px" %)((( 302 302 ADC(PA4) ... ... @@ -313,11 +313,12 @@ 313 313 314 314 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 315 315 323 + 316 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 317 317 318 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 319 -|(% style=" width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**320 -| **Value**|BAT|(% style="width:196px" %)(((327 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 328 +|Value|BAT|(% style="width:196px" %)((( 321 321 Temperature(DS18B20)(PC13) 322 322 )))|(% style="width:87px" %)((( 323 323 ADC(PA4) ... ... @@ -325,26 +325,30 @@ 325 325 Digital in(PB15) & Digital Interrupt(PA8) 326 326 )))|(% style="width:208px" %)((( 327 327 Distance measure by:1) LIDAR-Lite V3HP 328 -Or 2) Ultrasonic Sensor 336 +Or 337 +2) Ultrasonic Sensor 329 329 )))|(% style="width:117px" %)Reserved 330 330 331 331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 332 332 342 + 333 333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 334 334 335 335 [[image:image-20230512173758-5.png||height="563" width="712"]] 336 336 347 + 337 337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 338 338 339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 350 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 340 340 341 341 [[image:image-20230512173903-6.png||height="596" width="715"]] 342 342 354 + 343 343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 344 344 345 345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 346 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**347 -| **Value**|BAT|(% style="width:183px" %)(((358 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 359 +|Value|BAT|(% style="width:183px" %)((( 348 348 Temperature(DS18B20)(PC13) 349 349 )))|(% style="width:173px" %)((( 350 350 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -358,15 +358,17 @@ 358 358 359 359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 360 360 373 + 361 361 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 362 362 363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 376 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 364 364 365 365 [[image:image-20230512180609-7.png||height="555" width="802"]] 366 366 380 + 367 367 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 368 368 369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 383 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 370 370 371 371 [[image:image-20230513105207-4.png||height="469" width="802"]] 372 372 ... ... @@ -373,13 +373,14 @@ 373 373 374 374 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 375 375 390 + 376 376 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 377 377 378 378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 379 379 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 380 380 **Size(bytes)** 381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 40px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1382 -| **Value**|(% style="width:68px" %)(((396 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 397 +|Value|(% style="width:68px" %)((( 383 383 ADC1(PA4) 384 384 )))|(% style="width:75px" %)((( 385 385 ADC2(PA5) ... ... @@ -402,8 +402,8 @@ 402 402 This mode has total 11 bytes. As shown below: 403 403 404 404 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 405 -|(% style=" width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**406 -| **Value**|BAT|(% style="width:186px" %)(((420 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 421 +|Value|BAT|(% style="width:186px" %)((( 407 407 Temperature1(DS18B20)(PC13) 408 408 )))|(% style="width:82px" %)((( 409 409 ADC(PA4) ... ... @@ -414,24 +414,29 @@ 414 414 415 415 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 416 416 432 + 417 417 [[image:image-20230513134006-1.png||height="559" width="736"]] 418 418 419 419 420 420 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 421 421 438 + 422 422 [[image:image-20230512164658-2.png||height="532" width="729"]] 423 423 424 424 Each HX711 need to be calibrated before used. User need to do below two steps: 425 425 426 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 427 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 443 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 444 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 428 428 1. ((( 429 429 Weight has 4 bytes, the unit is g. 447 + 448 + 449 + 430 430 ))) 431 431 432 432 For example: 433 433 434 -**AT+GETSENSORVALUE =0** 454 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 435 435 436 436 Response: Weight is 401 g 437 437 ... ... @@ -441,21 +441,21 @@ 441 441 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 442 442 **Size(bytes)** 443 443 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 444 -|**Value**|BAT|(% style="width:193px" %)((( 445 -Temperature(DS18B20) 446 -(PC13) 464 +|Value|BAT|(% style="width:193px" %)((( 465 +Temperature(DS18B20)(PC13) 447 447 )))|(% style="width:85px" %)((( 448 448 ADC(PA4) 449 449 )))|(% style="width:186px" %)((( 450 -Digital in(PB15) & 451 -Digital Interrupt(PA8) 469 +Digital in(PB15) & Digital Interrupt(PA8) 452 452 )))|(% style="width:100px" %)Weight 453 453 454 454 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 455 455 456 456 475 + 457 457 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 458 458 478 + 459 459 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 460 460 461 461 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -462,11 +462,12 @@ 462 462 463 463 [[image:image-20230512181814-9.png||height="543" width="697"]] 464 464 465 -(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 466 466 486 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 487 + 467 467 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 468 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**469 -| **Value**|BAT|(% style="width:256px" %)(((489 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 490 +|Value|BAT|(% style="width:256px" %)((( 470 470 Temperature(DS18B20)(PC13) 471 471 )))|(% style="width:108px" %)((( 472 472 ADC(PA4) ... ... @@ -481,11 +481,12 @@ 481 481 482 482 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 483 483 505 + 484 484 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 485 485 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 486 486 **Size(bytes)** 487 487 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 488 -| **Value**|BAT|(% style="width:188px" %)(((510 +|Value|BAT|(% style="width:188px" %)((( 489 489 Temperature(DS18B20) 490 490 (PC13) 491 491 )))|(% style="width:83px" %)((( ... ... @@ -496,13 +496,15 @@ 496 496 497 497 [[image:image-20230513111203-7.png||height="324" width="975"]] 498 498 521 + 499 499 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 500 500 524 + 501 501 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 502 502 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 503 503 **Size(bytes)** 504 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 1 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2505 -| **Value**|BAT|(% style="width:207px" %)(((528 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 529 +|Value|BAT|(% style="width:207px" %)((( 506 506 Temperature(DS18B20) 507 507 (PC13) 508 508 )))|(% style="width:94px" %)((( ... ... @@ -520,50 +520,50 @@ 520 520 521 521 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 522 522 547 + 523 523 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 524 524 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 525 525 **Size(bytes)** 526 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4527 -| **Value**|BAT|(((528 -Temperature 1(DS18B20)529 -(PC13) 551 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 552 +|Value|BAT|((( 553 +Temperature 554 +(DS18B20)(PC13) 530 530 )))|((( 531 -Temperature2 (DS18B20)532 -(PB9) 556 +Temperature2 557 +(DS18B20)(PB9) 533 533 )))|((( 534 534 Digital Interrupt 535 535 (PB15) 536 536 )))|(% style="width:193px" %)((( 537 -Temperature3 (DS18B20)538 -(PB8) 562 +Temperature3 563 +(DS18B20)(PB8) 539 539 )))|(% style="width:78px" %)((( 540 -Count1 541 -(PA8) 565 +Count1(PA8) 542 542 )))|(% style="width:78px" %)((( 543 -Count2 544 -(PA4) 567 +Count2(PA4) 545 545 ))) 546 546 547 547 [[image:image-20230513111255-9.png||height="341" width="899"]] 548 548 549 -**The newly added AT command is issued correspondingly:** 572 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 550 550 551 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**574 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 552 552 553 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**576 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 554 554 555 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**578 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 556 556 557 -**AT+SETCNT=aa,bb** 558 558 581 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 582 + 559 559 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 560 560 561 561 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 562 562 563 563 564 - 565 565 === 2.3.3 Decode payload === 566 566 590 + 567 567 While using TTN V3 network, you can add the payload format to decode the payload. 568 568 569 569 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -570,13 +570,14 @@ 570 570 571 571 The payload decoder function for TTN V3 are here: 572 572 573 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 597 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 574 574 575 575 576 576 ==== 2.3.3.1 Battery Info ==== 577 577 578 -Check the battery voltage for SN50v3. 579 579 603 +Check the battery voltage for SN50v3-LB. 604 + 580 580 Ex1: 0x0B45 = 2885mV 581 581 582 582 Ex2: 0x0B49 = 2889mV ... ... @@ -584,16 +584,18 @@ 584 584 585 585 ==== 2.3.3.2 Temperature (DS18B20) ==== 586 586 612 + 587 587 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 588 588 589 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]615 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 590 590 591 -**Connection:** 617 +(% style="color:blue" %)**Connection:** 592 592 593 593 [[image:image-20230512180718-8.png||height="538" width="647"]] 594 594 595 -**Example**: 596 596 622 +(% style="color:blue" %)**Example**: 623 + 597 597 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 598 598 599 599 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -603,6 +603,7 @@ 603 603 604 604 ==== 2.3.3.3 Digital Input ==== 605 605 633 + 606 606 The digital input for pin PB15, 607 607 608 608 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -612,11 +612,14 @@ 612 612 ((( 613 613 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 614 614 615 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 643 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 644 + 645 + 616 616 ))) 617 617 618 618 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 619 619 650 + 620 620 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 621 621 622 622 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -623,17 +623,20 @@ 623 623 624 624 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 625 625 626 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 627 627 658 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 628 628 660 + 629 629 ==== 2.3.3.5 Digital Interrupt ==== 630 630 631 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 632 632 633 - (% style="color:blue"%)**~Interruptconnection method:**664 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 634 634 666 +(% style="color:blue" %)** Interrupt connection method:** 667 + 635 635 [[image:image-20230513105351-5.png||height="147" width="485"]] 636 636 670 + 637 637 (% style="color:blue" %)**Example to use with door sensor :** 638 638 639 639 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -640,22 +640,23 @@ 640 640 641 641 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 642 642 643 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.677 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 644 644 645 -(% style="color:blue" %)**~ Below is the installation example:** 646 646 647 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:680 +(% style="color:blue" %)**Below is the installation example:** 648 648 682 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 683 + 649 649 * ((( 650 -One pin to SN50 _v3's PA8 pin685 +One pin to SN50v3-LB's PA8 pin 651 651 ))) 652 652 * ((( 653 -The other pin to SN50 _v3's VDD pin688 +The other pin to SN50v3-LB's VDD pin 654 654 ))) 655 655 656 656 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 657 657 658 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 693 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 659 659 660 660 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 661 661 ... ... @@ -667,30 +667,33 @@ 667 667 668 668 The command is: 669 669 670 -(% style="color:blue" %)**AT+INTMOD1=1 705 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 671 671 672 672 Below shows some screen captures in TTN V3: 673 673 674 674 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 675 675 676 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 677 677 712 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 713 + 678 678 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 679 679 680 680 681 681 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 682 682 719 + 683 683 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 684 684 685 685 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 686 686 687 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.724 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 688 688 726 + 689 689 Below is the connection to SHT20/ SHT31. The connection is as below: 690 690 691 - 692 692 [[image:image-20230513103633-3.png||height="448" width="716"]] 693 693 731 + 694 694 The device will be able to get the I2C sensor data now and upload to IoT Server. 695 695 696 696 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -708,23 +708,26 @@ 708 708 709 709 ==== 2.3.3.7 Distance Reading ==== 710 710 711 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 712 712 750 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 713 713 752 + 714 714 ==== 2.3.3.8 Ultrasonic Sensor ==== 715 715 755 + 716 716 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 717 717 718 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.758 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 719 719 720 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 760 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 721 721 722 722 The picture below shows the connection: 723 723 724 724 [[image:image-20230512173903-6.png||height="596" width="715"]] 725 725 726 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 727 727 767 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 768 + 728 728 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 729 729 730 730 **Example:** ... ... @@ -732,16 +732,17 @@ 732 732 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 733 733 734 734 735 - 736 736 ==== 2.3.3.9 Battery Output - BAT pin ==== 737 737 738 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 739 739 779 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 740 740 781 + 741 741 ==== 2.3.3.10 +5V Output ==== 742 742 743 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 744 744 785 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 786 + 745 745 The 5V output time can be controlled by AT Command. 746 746 747 747 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -748,21 +748,23 @@ 748 748 749 749 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 750 750 751 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 793 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 752 752 753 753 754 - 755 755 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 756 756 798 + 757 757 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 758 758 759 759 [[image:image-20230512172447-4.png||height="416" width="712"]] 760 760 803 + 761 761 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 762 762 763 763 764 764 ==== 2.3.3.12 Working MOD ==== 765 765 809 + 766 766 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 767 767 768 768 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -780,7 +780,6 @@ 780 780 * 8: MOD9 781 781 782 782 783 - 784 784 == 2.4 Payload Decoder file == 785 785 786 786 ... ... @@ -791,7 +791,6 @@ 791 791 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 792 792 793 793 794 - 795 795 == 2.5 Frequency Plans == 796 796 797 797 ... ... @@ -811,6 +811,7 @@ 811 811 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 812 812 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 813 813 856 + 814 814 == 3.2 General Commands == 815 815 816 816 ... ... @@ -827,11 +827,12 @@ 827 827 == 3.3 Commands special design for SN50v3-LB == 828 828 829 829 830 -These commands only valid for S3 1x-LB, as below:873 +These commands only valid for SN50v3-LB, as below: 831 831 832 832 833 833 === 3.3.1 Set Transmit Interval Time === 834 834 878 + 835 835 Feature: Change LoRaWAN End Node Transmit Interval. 836 836 837 837 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -858,24 +858,25 @@ 858 858 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 859 859 860 860 861 - 862 862 === 3.3.2 Get Device Status === 863 863 907 + 864 864 Send a LoRaWAN downlink to ask the device to send its status. 865 865 866 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01910 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 867 867 868 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 912 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 869 869 870 870 871 871 === 3.3.3 Set Interrupt Mode === 872 872 917 + 873 873 Feature, Set Interrupt mode for GPIO_EXIT. 874 874 875 875 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 876 876 877 877 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 878 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**923 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 879 879 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 880 880 0 881 881 OK ... ... @@ -890,7 +890,6 @@ 890 890 )))|(% style="width:157px" %)OK 891 891 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 892 892 Set Transmit Interval 893 - 894 894 trigger by rising edge. 895 895 )))|(% style="width:157px" %)OK 896 896 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -907,9 +907,9 @@ 907 907 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 908 908 909 909 910 - 911 911 === 3.3.4 Set Power Output Duration === 912 912 956 + 913 913 Control the output duration 5V . Before each sampling, device will 914 914 915 915 ~1. first enable the power output to external sensor, ... ... @@ -921,7 +921,7 @@ 921 921 (% style="color:blue" %)**AT Command: AT+5VT** 922 922 923 923 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 924 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**968 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 925 925 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 926 926 500(default) 927 927 OK ... ... @@ -940,15 +940,15 @@ 940 940 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 941 941 942 942 943 - 944 944 === 3.3.5 Set Weighing parameters === 945 945 989 + 946 946 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 947 947 948 948 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 949 949 950 950 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 951 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**995 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 952 952 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 953 953 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 954 954 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -966,9 +966,9 @@ 966 966 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 967 967 968 968 969 - 970 970 === 3.3.6 Set Digital pulse count value === 971 971 1015 + 972 972 Feature: Set the pulse count value. 973 973 974 974 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -976,7 +976,7 @@ 976 976 (% style="color:blue" %)**AT Command: AT+SETCNT** 977 977 978 978 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 979 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1023 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 980 980 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 981 981 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 982 982 ... ... @@ -990,15 +990,15 @@ 990 990 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 991 991 992 992 993 - 994 994 === 3.3.7 Set Workmode === 995 995 1039 + 996 996 Feature: Switch working mode. 997 997 998 998 (% style="color:blue" %)**AT Command: AT+MOD** 999 999 1000 1000 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1001 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1045 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1002 1002 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1003 1003 OK 1004 1004 ))) ... ... @@ -1015,7 +1015,6 @@ 1015 1015 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1016 1016 1017 1017 1018 - 1019 1019 = 4. Battery & Power Consumption = 1020 1020 1021 1021 ... ... @@ -1028,27 +1028,29 @@ 1028 1028 1029 1029 1030 1030 (% class="wikigeneratedid" %) 1031 -User can change firmware SN50v3-LB to: 1074 +**User can change firmware SN50v3-LB to:** 1032 1032 1033 1033 * Change Frequency band/ region. 1034 1034 * Update with new features. 1035 1035 * Fix bugs. 1036 1036 1037 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1080 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1038 1038 1082 +**Methods to Update Firmware:** 1039 1039 1040 -Methods to Update Firmware: 1041 - 1042 1042 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1043 1043 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1044 1044 1087 + 1045 1045 = 6. FAQ = 1046 1046 1047 1047 == 6.1 Where can i find source code of SN50v3-LB? == 1048 1048 1092 + 1049 1049 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1050 1050 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1051 1051 1096 + 1052 1052 = 7. Order Info = 1053 1053 1054 1054 ... ... @@ -1072,8 +1072,10 @@ 1072 1072 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1073 1073 * (% style="color:red" %)**NH**(%%): No Hole 1074 1074 1120 + 1075 1075 = 8. Packing Info = 1076 1076 1123 + 1077 1077 (% style="color:#037691" %)**Package Includes**: 1078 1078 1079 1079 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1085,6 +1085,7 @@ 1085 1085 * Package Size / pcs : cm 1086 1086 * Weight / pcs : g 1087 1087 1135 + 1088 1088 = 9. Support = 1089 1089 1090 1090
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content