Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -30,6 +30,7 @@ 30 30 31 31 == 1.2 Features == 32 32 33 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.154 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.162 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 211 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -220,7 +220,7 @@ 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 224 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 ... ... @@ -276,19 +276,22 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 291 291 291 +2. All modes share the same Payload Explanation from HERE. 292 + 293 +3. By default, the device will send an uplink message every 20 minutes. 294 + 295 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -295,7 +295,7 @@ 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**302 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 299 299 |**Value**|Bat|(% style="width:191px" %)((( 300 300 Temperature(DS18B20)(PC13) 301 301 )))|(% style="width:78px" %)((( ... ... @@ -311,12 +311,14 @@ 311 311 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 312 312 313 313 318 + 314 314 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 315 315 321 + 316 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 317 317 318 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 319 -|(% style=" width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**325 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 320 320 |**Value**|BAT|(% style="width:196px" %)((( 321 321 Temperature(DS18B20)(PC13) 322 322 )))|(% style="width:87px" %)((( ... ... @@ -325,25 +325,29 @@ 325 325 Digital in(PB15) & Digital Interrupt(PA8) 326 326 )))|(% style="width:208px" %)((( 327 327 Distance measure by:1) LIDAR-Lite V3HP 328 -Or 2) Ultrasonic Sensor 334 +Or 335 +2) Ultrasonic Sensor 329 329 )))|(% style="width:117px" %)Reserved 330 330 331 331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 332 332 340 + 333 333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 334 334 335 335 [[image:image-20230512173758-5.png||height="563" width="712"]] 336 336 345 + 337 337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 338 338 339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 348 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 340 340 341 341 [[image:image-20230512173903-6.png||height="596" width="715"]] 342 342 352 + 343 343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 344 344 345 345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 346 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**356 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 347 347 |**Value**|BAT|(% style="width:183px" %)((( 348 348 Temperature(DS18B20)(PC13) 349 349 )))|(% style="width:173px" %)((( ... ... @@ -358,15 +358,17 @@ 358 358 359 359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 360 360 371 + 361 361 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 362 362 363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 374 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 364 364 365 365 [[image:image-20230512180609-7.png||height="555" width="802"]] 366 366 378 + 367 367 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 368 368 369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 370 370 371 371 [[image:image-20230513105207-4.png||height="469" width="802"]] 372 372 ... ... @@ -373,12 +373,13 @@ 373 373 374 374 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 375 375 388 + 376 376 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 377 377 378 378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 379 379 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 380 380 **Size(bytes)** 381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 40px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1394 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 382 382 |**Value**|(% style="width:68px" %)((( 383 383 ADC1(PA4) 384 384 )))|(% style="width:75px" %)((( ... ... @@ -402,7 +402,7 @@ 402 402 This mode has total 11 bytes. As shown below: 403 403 404 404 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 405 -|(% style=" width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**418 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 406 406 |**Value**|BAT|(% style="width:186px" %)((( 407 407 Temperature1(DS18B20)(PC13) 408 408 )))|(% style="width:82px" %)((( ... ... @@ -417,21 +417,26 @@ 417 417 [[image:image-20230513134006-1.png||height="559" width="736"]] 418 418 419 419 433 + 420 420 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 421 421 436 + 422 422 [[image:image-20230512164658-2.png||height="532" width="729"]] 423 423 424 424 Each HX711 need to be calibrated before used. User need to do below two steps: 425 425 426 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 427 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 441 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 442 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 428 428 1. ((( 429 429 Weight has 4 bytes, the unit is g. 445 + 446 + 447 + 430 430 ))) 431 431 432 432 For example: 433 433 434 -**AT+GETSENSORVALUE =0** 452 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 435 435 436 436 Response: Weight is 401 g 437 437 ... ... @@ -442,20 +442,20 @@ 442 442 **Size(bytes)** 443 443 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 444 444 |**Value**|BAT|(% style="width:193px" %)((( 445 -Temperature(DS18B20) 446 -(PC13) 463 +Temperature(DS18B20)(PC13) 447 447 )))|(% style="width:85px" %)((( 448 448 ADC(PA4) 449 449 )))|(% style="width:186px" %)((( 450 -Digital in(PB15) & 451 -Digital Interrupt(PA8) 467 +Digital in(PB15) & Digital Interrupt(PA8) 452 452 )))|(% style="width:100px" %)Weight 453 453 454 454 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 455 455 456 456 473 + 457 457 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 458 458 476 + 459 459 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 460 460 461 461 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -462,10 +462,11 @@ 462 462 463 463 [[image:image-20230512181814-9.png||height="543" width="697"]] 464 464 465 -(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 466 466 467 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %) 468 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 484 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 485 + 486 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 469 469 |**Value**|BAT|(% style="width:256px" %)((( 470 470 Temperature(DS18B20)(PC13) 471 471 )))|(% style="width:108px" %)((( ... ... @@ -479,9 +479,11 @@ 479 479 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 480 480 481 481 501 + 482 482 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 483 483 484 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %) 504 + 505 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 485 485 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 486 486 **Size(bytes)** 487 487 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 ... ... @@ -496,26 +496,25 @@ 496 496 497 497 [[image:image-20230513111203-7.png||height="324" width="975"]] 498 498 520 + 499 499 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 500 500 501 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %) 523 + 524 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 502 502 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 503 503 **Size(bytes)** 504 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)2527 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 505 505 |**Value**|BAT|(% style="width:207px" %)((( 506 506 Temperature(DS18B20) 507 507 (PC13) 508 508 )))|(% style="width:94px" %)((( 509 -ADC1 510 -(PA4) 532 +ADC1(PA4) 511 511 )))|(% style="width:198px" %)((( 512 512 Digital Interrupt(PB15) 513 513 )))|(% style="width:84px" %)((( 514 -ADC2 515 -(PA5) 536 +ADC2(PA5) 516 516 )))|(% style="width:82px" %)((( 517 -ADC3 518 -(PA8) 538 +ADC3(PA8) 519 519 ))) 520 520 521 521 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -523,50 +523,50 @@ 523 523 524 524 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 525 525 526 -(% style="width:1010px" %) 527 -|=((( 546 + 547 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 548 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 528 528 **Size(bytes)** 529 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4550 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 530 530 |**Value**|BAT|((( 531 -Temperature 1(DS18B20)532 -(PC13) 552 +Temperature 553 +(DS18B20)(PC13) 533 533 )))|((( 534 -Temperature2 (DS18B20)535 -(PB9) 555 +Temperature2 556 +(DS18B20)(PB9) 536 536 )))|((( 537 537 Digital Interrupt 538 538 (PB15) 539 539 )))|(% style="width:193px" %)((( 540 -Temperature3 (DS18B20)541 -(PB8) 561 +Temperature3 562 +(DS18B20)(PB8) 542 542 )))|(% style="width:78px" %)((( 543 -Count1 544 -(PA8) 564 +Count1(PA8) 545 545 )))|(% style="width:78px" %)((( 546 -Count2 547 -(PA4) 566 +Count2(PA4) 548 548 ))) 549 549 550 550 [[image:image-20230513111255-9.png||height="341" width="899"]] 551 551 552 -**The newly added AT command is issued correspondingly:** 571 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 553 553 554 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**573 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 555 555 556 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**575 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 557 557 558 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**577 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 559 559 560 -**AT+SETCNT=aa,bb** 561 561 580 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 581 + 562 562 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 563 563 564 564 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 565 565 566 566 567 - 568 568 === 2.3.3 Decode payload === 569 569 589 + 570 570 While using TTN V3 network, you can add the payload format to decode the payload. 571 571 572 572 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -573,13 +573,14 @@ 573 573 574 574 The payload decoder function for TTN V3 are here: 575 575 576 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 596 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 577 577 578 578 579 579 ==== 2.3.3.1 Battery Info ==== 580 580 581 -Check the battery voltage for SN50v3. 582 582 602 +Check the battery voltage for SN50v3-LB. 603 + 583 583 Ex1: 0x0B45 = 2885mV 584 584 585 585 Ex2: 0x0B49 = 2889mV ... ... @@ -587,16 +587,18 @@ 587 587 588 588 ==== 2.3.3.2 Temperature (DS18B20) ==== 589 589 611 + 590 590 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 591 591 592 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]614 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 593 593 594 -**Connection:** 616 +(% style="color:blue" %)**Connection:** 595 595 596 596 [[image:image-20230512180718-8.png||height="538" width="647"]] 597 597 598 -**Example**: 599 599 621 +(% style="color:blue" %)**Example**: 622 + 600 600 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 601 601 602 602 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -606,6 +606,7 @@ 606 606 607 607 ==== 2.3.3.3 Digital Input ==== 608 608 632 + 609 609 The digital input for pin PB15, 610 610 611 611 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -615,11 +615,14 @@ 615 615 ((( 616 616 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 617 617 618 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 642 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 643 + 644 + 619 619 ))) 620 620 621 621 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 622 622 649 + 623 623 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 624 624 625 625 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -626,17 +626,20 @@ 626 626 627 627 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 628 628 629 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 630 630 657 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 631 631 659 + 632 632 ==== 2.3.3.5 Digital Interrupt ==== 633 633 634 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 635 635 636 - (% style="color:blue"%)**~Interruptconnection method:**663 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 637 637 665 +(% style="color:blue" %)** Interrupt connection method:** 666 + 638 638 [[image:image-20230513105351-5.png||height="147" width="485"]] 639 639 669 + 640 640 (% style="color:blue" %)**Example to use with door sensor :** 641 641 642 642 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -643,22 +643,23 @@ 643 643 644 644 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 645 645 646 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.676 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 647 647 648 -(% style="color:blue" %)**~ Below is the installation example:** 649 649 650 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:679 +(% style="color:blue" %)**Below is the installation example:** 651 651 681 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 682 + 652 652 * ((( 653 -One pin to SN50 _v3's PA8 pin684 +One pin to SN50v3-LB's PA8 pin 654 654 ))) 655 655 * ((( 656 -The other pin to SN50 _v3's VDD pin687 +The other pin to SN50v3-LB's VDD pin 657 657 ))) 658 658 659 659 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 660 660 661 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 692 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 662 662 663 663 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 664 664 ... ... @@ -670,12 +670,13 @@ 670 670 671 671 The command is: 672 672 673 -(% style="color:blue" %)**AT+INTMOD1=1 704 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 674 674 675 675 Below shows some screen captures in TTN V3: 676 676 677 677 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 678 678 710 + 679 679 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 680 680 681 681 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; ... ... @@ -683,15 +683,16 @@ 683 683 684 684 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 685 685 718 + 686 686 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 687 687 688 688 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 689 689 690 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.723 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 691 691 725 + 692 692 Below is the connection to SHT20/ SHT31. The connection is as below: 693 693 694 - 695 695 [[image:image-20230513103633-3.png||height="448" width="716"]] 696 696 697 697 The device will be able to get the I2C sensor data now and upload to IoT Server. ... ... @@ -711,23 +711,26 @@ 711 711 712 712 ==== 2.3.3.7 Distance Reading ==== 713 713 714 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 715 715 748 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 716 716 750 + 717 717 ==== 2.3.3.8 Ultrasonic Sensor ==== 718 718 753 + 719 719 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 720 720 721 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.756 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 722 722 723 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 758 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 724 724 725 725 The picture below shows the connection: 726 726 727 727 [[image:image-20230512173903-6.png||height="596" width="715"]] 728 728 729 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 730 730 765 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 766 + 731 731 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 732 732 733 733 **Example:** ... ... @@ -735,16 +735,17 @@ 735 735 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 736 736 737 737 738 - 739 739 ==== 2.3.3.9 Battery Output - BAT pin ==== 740 740 776 + 741 741 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 742 742 743 743 744 744 ==== 2.3.3.10 +5V Output ==== 745 745 746 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 747 747 783 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 784 + 748 748 The 5V output time can be controlled by AT Command. 749 749 750 750 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -754,18 +754,20 @@ 754 754 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 755 755 756 756 757 - 758 758 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 759 759 796 + 760 760 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 761 761 762 762 [[image:image-20230512172447-4.png||height="416" width="712"]] 763 763 801 + 764 764 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 765 765 766 766 767 767 ==== 2.3.3.12 Working MOD ==== 768 768 807 + 769 769 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 770 770 771 771 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -782,8 +782,6 @@ 782 782 * 7: MOD8 783 783 * 8: MOD9 784 784 785 - 786 - 787 787 == 2.4 Payload Decoder file == 788 788 789 789 ... ... @@ -794,7 +794,6 @@ 794 794 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 795 795 796 796 797 - 798 798 == 2.5 Frequency Plans == 799 799 800 800 ... ... @@ -830,11 +830,12 @@ 830 830 == 3.3 Commands special design for SN50v3-LB == 831 831 832 832 833 -These commands only valid for S3 1x-LB, as below:869 +These commands only valid for SN50v3-LB, as below: 834 834 835 835 836 836 === 3.3.1 Set Transmit Interval Time === 837 837 874 + 838 838 Feature: Change LoRaWAN End Node Transmit Interval. 839 839 840 840 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -860,10 +860,9 @@ 860 860 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 861 861 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 862 862 863 - 864 - 865 865 === 3.3.2 Get Device Status === 866 866 902 + 867 867 Send a LoRaWAN downlink to ask the device to send its status. 868 868 869 869 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 ... ... @@ -873,6 +873,7 @@ 873 873 874 874 === 3.3.3 Set Interrupt Mode === 875 875 912 + 876 876 Feature, Set Interrupt mode for GPIO_EXIT. 877 877 878 878 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -893,7 +893,6 @@ 893 893 )))|(% style="width:157px" %)OK 894 894 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 895 895 Set Transmit Interval 896 - 897 897 trigger by rising edge. 898 898 )))|(% style="width:157px" %)OK 899 899 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -909,10 +909,9 @@ 909 909 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 910 910 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 911 911 912 - 913 - 914 914 === 3.3.4 Set Power Output Duration === 915 915 950 + 916 916 Control the output duration 5V . Before each sampling, device will 917 917 918 918 ~1. first enable the power output to external sensor, ... ... @@ -942,10 +942,9 @@ 942 942 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 943 943 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 944 944 945 - 946 - 947 947 === 3.3.5 Set Weighing parameters === 948 948 982 + 949 949 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 950 950 951 951 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -968,10 +968,9 @@ 968 968 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 969 969 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 970 970 971 - 972 - 973 973 === 3.3.6 Set Digital pulse count value === 974 974 1007 + 975 975 Feature: Set the pulse count value. 976 976 977 977 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -992,10 +992,9 @@ 992 992 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 993 993 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 994 994 995 - 996 - 997 997 === 3.3.7 Set Workmode === 998 998 1030 + 999 999 Feature: Switch working mode. 1000 1000 1001 1001 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1017,8 +1017,6 @@ 1017 1017 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1018 1018 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1019 1019 1020 - 1021 - 1022 1022 = 4. Battery & Power Consumption = 1023 1023 1024 1024 ... ... @@ -1049,6 +1049,7 @@ 1049 1049 1050 1050 == 6.1 Where can i find source code of SN50v3-LB? == 1051 1051 1082 + 1052 1052 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1053 1053 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1054 1054 ... ... @@ -1077,6 +1077,7 @@ 1077 1077 1078 1078 = 8. Packing Info = 1079 1079 1111 + 1080 1080 (% style="color:#037691" %)**Package Includes**: 1081 1081 1082 1082 * SN50v3-LB LoRaWAN Generic Node