<
From version < 43.35 >
edited by Xiaoling
on 2023/05/16 14:49
To version < 44.2 >
edited by Xiaoling
on 2023/05/18 08:57
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -30,6 +30,7 @@
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 +
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -276,19 +276,22 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
291 291  
291 +2. All modes share the same Payload Explanation from HERE.
292 +
293 +3. By default, the device will send an uplink message every 20 minutes.
294 +
295 +
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 294  
... ... @@ -295,7 +295,7 @@
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 297  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
302 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
299 299  |**Value**|Bat|(% style="width:191px" %)(((
300 300  Temperature(DS18B20)(PC13)
301 301  )))|(% style="width:78px" %)(((
... ... @@ -311,12 +311,14 @@
311 311  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
312 312  
313 313  
318 +
314 314  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315 315  
321 +
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 318  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
325 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
320 320  |**Value**|BAT|(% style="width:196px" %)(((
321 321  Temperature(DS18B20)(PC13)
322 322  )))|(% style="width:87px" %)(((
... ... @@ -325,25 +325,29 @@
325 325  Digital in(PB15) & Digital Interrupt(PA8)
326 326  )))|(% style="width:208px" %)(((
327 327  Distance measure by:1) LIDAR-Lite V3HP
328 -Or 2) Ultrasonic Sensor
334 +Or
335 +2) Ultrasonic Sensor
329 329  )))|(% style="width:117px" %)Reserved
330 330  
331 331  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 332  
340 +
333 333  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
334 334  
335 335  [[image:image-20230512173758-5.png||height="563" width="712"]]
336 336  
345 +
337 337  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
338 338  
339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
348 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
340 340  
341 341  [[image:image-20230512173903-6.png||height="596" width="715"]]
342 342  
352 +
343 343  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 344  
345 345  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
356 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
347 347  |**Value**|BAT|(% style="width:183px" %)(((
348 348  Temperature(DS18B20)(PC13)
349 349  )))|(% style="width:173px" %)(((
... ... @@ -358,15 +358,17 @@
358 358  
359 359  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
360 360  
371 +
361 361  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
362 362  
363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
374 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
364 364  
365 365  [[image:image-20230512180609-7.png||height="555" width="802"]]
366 366  
378 +
367 367  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
368 368  
369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
370 370  
371 371  [[image:image-20230513105207-4.png||height="469" width="802"]]
372 372  
... ... @@ -373,12 +373,13 @@
373 373  
374 374  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
375 375  
388 +
376 376  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377 377  
378 378  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
379 379  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
380 380  **Size(bytes)**
381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
394 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 382  |**Value**|(% style="width:68px" %)(((
383 383  ADC1(PA4)
384 384  )))|(% style="width:75px" %)(((
... ... @@ -402,7 +402,7 @@
402 402  This mode has total 11 bytes. As shown below:
403 403  
404 404  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
405 -|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
418 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
406 406  |**Value**|BAT|(% style="width:186px" %)(((
407 407  Temperature1(DS18B20)(PC13)
408 408  )))|(% style="width:82px" %)(((
... ... @@ -417,21 +417,26 @@
417 417  [[image:image-20230513134006-1.png||height="559" width="736"]]
418 418  
419 419  
433 +
420 420  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
421 421  
436 +
422 422  [[image:image-20230512164658-2.png||height="532" width="729"]]
423 423  
424 424  Each HX711 need to be calibrated before used. User need to do below two steps:
425 425  
426 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
441 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
428 428  1. (((
429 429  Weight has 4 bytes, the unit is g.
445 +
446 +
447 +
430 430  )))
431 431  
432 432  For example:
433 433  
434 -**AT+GETSENSORVALUE =0**
452 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
435 435  
436 436  Response:  Weight is 401 g
437 437  
... ... @@ -442,20 +442,20 @@
442 442  **Size(bytes)**
443 443  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
444 444  |**Value**|BAT|(% style="width:193px" %)(((
445 -Temperature(DS18B20)
446 -(PC13)
463 +Temperature(DS18B20)(PC13)
447 447  )))|(% style="width:85px" %)(((
448 448  ADC(PA4)
449 449  )))|(% style="width:186px" %)(((
450 -Digital in(PB15) &
451 -Digital Interrupt(PA8)
467 +Digital in(PB15) & Digital Interrupt(PA8)
452 452  )))|(% style="width:100px" %)Weight
453 453  
454 454  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
455 455  
456 456  
473 +
457 457  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
458 458  
476 +
459 459  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
460 460  
461 461  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -462,10 +462,11 @@
462 462  
463 463  [[image:image-20230512181814-9.png||height="543" width="697"]]
464 464  
465 -(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
466 466  
467 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %)
468 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
484 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
485 +
486 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 469  |**Value**|BAT|(% style="width:256px" %)(((
470 470  Temperature(DS18B20)(PC13)
471 471  )))|(% style="width:108px" %)(((
... ... @@ -479,9 +479,11 @@
479 479  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
480 480  
481 481  
501 +
482 482  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
483 483  
484 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %)
504 +
505 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
485 485  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
486 486  **Size(bytes)**
487 487  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
... ... @@ -496,26 +496,25 @@
496 496  
497 497  [[image:image-20230513111203-7.png||height="324" width="975"]]
498 498  
520 +
499 499  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
500 500  
501 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %)
523 +
524 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
502 502  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
503 503  **Size(bytes)**
504 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)2
527 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
505 505  |**Value**|BAT|(% style="width:207px" %)(((
506 506  Temperature(DS18B20)
507 507  (PC13)
508 508  )))|(% style="width:94px" %)(((
509 -ADC1
510 -(PA4)
532 +ADC1(PA4)
511 511  )))|(% style="width:198px" %)(((
512 512  Digital Interrupt(PB15)
513 513  )))|(% style="width:84px" %)(((
514 -ADC2
515 -(PA5)
536 +ADC2(PA5)
516 516  )))|(% style="width:82px" %)(((
517 -ADC3
518 -(PA8)
538 +ADC3(PA8)
519 519  )))
520 520  
521 521  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -523,50 +523,50 @@
523 523  
524 524  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
525 525  
526 -(% style="width:1010px" %)
527 -|=(((
546 +
547 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
548 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
528 528  **Size(bytes)**
529 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
550 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
530 530  |**Value**|BAT|(((
531 -Temperature1(DS18B20)
532 -(PC13)
552 +Temperature
553 +(DS18B20)(PC13)
533 533  )))|(((
534 -Temperature2(DS18B20)
535 -(PB9)
555 +Temperature2
556 +(DS18B20)(PB9)
536 536  )))|(((
537 537  Digital Interrupt
538 538  (PB15)
539 539  )))|(% style="width:193px" %)(((
540 -Temperature3(DS18B20)
541 -(PB8)
561 +Temperature3
562 +(DS18B20)(PB8)
542 542  )))|(% style="width:78px" %)(((
543 -Count1
544 -(PA8)
564 +Count1(PA8)
545 545  )))|(% style="width:78px" %)(((
546 -Count2
547 -(PA4)
566 +Count2(PA4)
548 548  )))
549 549  
550 550  [[image:image-20230513111255-9.png||height="341" width="899"]]
551 551  
552 -**The newly added AT command is issued correspondingly:**
571 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
553 553  
554 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
573 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
555 555  
556 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
575 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
557 557  
558 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
577 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
559 559  
560 -**AT+SETCNT=aa,bb** 
561 561  
580 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
581 +
562 562  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
563 563  
564 564  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
565 565  
566 566  
567 -
568 568  === 2.3.3  ​Decode payload ===
569 569  
589 +
570 570  While using TTN V3 network, you can add the payload format to decode the payload.
571 571  
572 572  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -573,13 +573,14 @@
573 573  
574 574  The payload decoder function for TTN V3 are here:
575 575  
576 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
596 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
577 577  
578 578  
579 579  ==== 2.3.3.1 Battery Info ====
580 580  
581 -Check the battery voltage for SN50v3.
582 582  
602 +Check the battery voltage for SN50v3-LB.
603 +
583 583  Ex1: 0x0B45 = 2885mV
584 584  
585 585  Ex2: 0x0B49 = 2889mV
... ... @@ -587,16 +587,18 @@
587 587  
588 588  ==== 2.3.3.2  Temperature (DS18B20) ====
589 589  
611 +
590 590  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
591 591  
592 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
614 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
593 593  
594 -**Connection:**
616 +(% style="color:blue" %)**Connection:**
595 595  
596 596  [[image:image-20230512180718-8.png||height="538" width="647"]]
597 597  
598 -**Example**:
599 599  
621 +(% style="color:blue" %)**Example**:
622 +
600 600  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
601 601  
602 602  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -606,6 +606,7 @@
606 606  
607 607  ==== 2.3.3.3 Digital Input ====
608 608  
632 +
609 609  The digital input for pin PB15,
610 610  
611 611  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -615,11 +615,14 @@
615 615  (((
616 616  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
617 617  
618 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
642 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
643 +
644 +
619 619  )))
620 620  
621 621  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
622 622  
649 +
623 623  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
624 624  
625 625  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -626,17 +626,20 @@
626 626  
627 627  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
628 628  
629 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
630 630  
657 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
631 631  
659 +
632 632  ==== 2.3.3.5 Digital Interrupt ====
633 633  
634 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
635 635  
636 -(% style="color:blue" %)**~ Interrupt connection method:**
663 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
637 637  
665 +(% style="color:blue" %)** Interrupt connection method:**
666 +
638 638  [[image:image-20230513105351-5.png||height="147" width="485"]]
639 639  
669 +
640 640  (% style="color:blue" %)**Example to use with door sensor :**
641 641  
642 642  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -643,22 +643,23 @@
643 643  
644 644  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
645 645  
646 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
676 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
647 647  
648 -(% style="color:blue" %)**~ Below is the installation example:**
649 649  
650 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
679 +(% style="color:blue" %)**Below is the installation example:**
651 651  
681 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
682 +
652 652  * (((
653 -One pin to SN50_v3's PA8 pin
684 +One pin to SN50v3-LB's PA8 pin
654 654  )))
655 655  * (((
656 -The other pin to SN50_v3's VDD pin
687 +The other pin to SN50v3-LB's VDD pin
657 657  )))
658 658  
659 659  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
660 660  
661 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
692 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
662 662  
663 663  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
664 664  
... ... @@ -670,12 +670,13 @@
670 670  
671 671  The command is:
672 672  
673 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
704 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
674 674  
675 675  Below shows some screen captures in TTN V3:
676 676  
677 677  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
678 678  
710 +
679 679  In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
680 680  
681 681  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
... ... @@ -683,15 +683,16 @@
683 683  
684 684  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
685 685  
718 +
686 686  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
687 687  
688 688  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
689 689  
690 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
723 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
691 691  
725 +
692 692  Below is the connection to SHT20/ SHT31. The connection is as below:
693 693  
694 -
695 695  [[image:image-20230513103633-3.png||height="448" width="716"]]
696 696  
697 697  The device will be able to get the I2C sensor data now and upload to IoT Server.
... ... @@ -711,23 +711,26 @@
711 711  
712 712  ==== 2.3.3.7  ​Distance Reading ====
713 713  
714 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
715 715  
748 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
716 716  
750 +
717 717  ==== 2.3.3.8 Ultrasonic Sensor ====
718 718  
753 +
719 719  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
720 720  
721 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
756 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
722 722  
723 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
758 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
724 724  
725 725  The picture below shows the connection:
726 726  
727 727  [[image:image-20230512173903-6.png||height="596" width="715"]]
728 728  
729 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
730 730  
765 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
766 +
731 731  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
732 732  
733 733  **Example:**
... ... @@ -735,16 +735,17 @@
735 735  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
736 736  
737 737  
738 -
739 739  ==== 2.3.3.9  Battery Output - BAT pin ====
740 740  
776 +
741 741  The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
742 742  
743 743  
744 744  ==== 2.3.3.10  +5V Output ====
745 745  
746 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
747 747  
783 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
784 +
748 748  The 5V output time can be controlled by AT Command.
749 749  
750 750  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -754,18 +754,20 @@
754 754  By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
755 755  
756 756  
757 -
758 758  ==== 2.3.3.11  BH1750 Illumination Sensor ====
759 759  
796 +
760 760  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
761 761  
762 762  [[image:image-20230512172447-4.png||height="416" width="712"]]
763 763  
801 +
764 764  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
765 765  
766 766  
767 767  ==== 2.3.3.12  Working MOD ====
768 768  
807 +
769 769  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
770 770  
771 771  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -782,8 +782,6 @@
782 782  * 7: MOD8
783 783  * 8: MOD9
784 784  
785 -
786 -
787 787  == 2.4 Payload Decoder file ==
788 788  
789 789  
... ... @@ -794,7 +794,6 @@
794 794  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
795 795  
796 796  
797 -
798 798  == 2.5 Frequency Plans ==
799 799  
800 800  
... ... @@ -830,11 +830,12 @@
830 830  == 3.3 Commands special design for SN50v3-LB ==
831 831  
832 832  
833 -These commands only valid for S31x-LB, as below:
869 +These commands only valid for SN50v3-LB, as below:
834 834  
835 835  
836 836  === 3.3.1 Set Transmit Interval Time ===
837 837  
874 +
838 838  Feature: Change LoRaWAN End Node Transmit Interval.
839 839  
840 840  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -860,10 +860,9 @@
860 860  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
861 861  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
862 862  
863 -
864 -
865 865  === 3.3.2 Get Device Status ===
866 866  
902 +
867 867  Send a LoRaWAN downlink to ask the device to send its status.
868 868  
869 869  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
... ... @@ -873,6 +873,7 @@
873 873  
874 874  === 3.3.3 Set Interrupt Mode ===
875 875  
912 +
876 876  Feature, Set Interrupt mode for GPIO_EXIT.
877 877  
878 878  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
... ... @@ -893,7 +893,6 @@
893 893  )))|(% style="width:157px" %)OK
894 894  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
895 895  Set Transmit Interval
896 -
897 897  trigger by rising edge.
898 898  )))|(% style="width:157px" %)OK
899 899  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -909,10 +909,9 @@
909 909  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
910 910  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
911 911  
912 -
913 -
914 914  === 3.3.4 Set Power Output Duration ===
915 915  
950 +
916 916  Control the output duration 5V . Before each sampling, device will
917 917  
918 918  ~1. first enable the power output to external sensor,
... ... @@ -942,10 +942,9 @@
942 942  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
943 943  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
944 944  
945 -
946 -
947 947  === 3.3.5 Set Weighing parameters ===
948 948  
982 +
949 949  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
950 950  
951 951  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
... ... @@ -968,10 +968,9 @@
968 968  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
969 969  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
970 970  
971 -
972 -
973 973  === 3.3.6 Set Digital pulse count value ===
974 974  
1007 +
975 975  Feature: Set the pulse count value.
976 976  
977 977  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -992,10 +992,9 @@
992 992  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
993 993  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
994 994  
995 -
996 -
997 997  === 3.3.7 Set Workmode ===
998 998  
1030 +
999 999  Feature: Switch working mode.
1000 1000  
1001 1001  (% style="color:blue" %)**AT Command: AT+MOD**
... ... @@ -1017,8 +1017,6 @@
1017 1017  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1018 1018  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1019 1019  
1020 -
1021 -
1022 1022  = 4. Battery & Power Consumption =
1023 1023  
1024 1024  
... ... @@ -1049,6 +1049,7 @@
1049 1049  
1050 1050  == 6.1 Where can i find source code of SN50v3-LB? ==
1051 1051  
1082 +
1052 1052  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1053 1053  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1054 1054  
... ... @@ -1077,6 +1077,7 @@
1077 1077  
1078 1078  = 8. ​Packing Info =
1079 1079  
1111 +
1080 1080  (% style="color:#037691" %)**Package Includes**:
1081 1081  
1082 1082  * SN50v3-LB LoRaWAN Generic Node
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0