Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 15 added, 0 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
Details
- Page properties
-
- Content
-
... ... @@ -30,6 +30,7 @@ 30 30 31 31 == 1.2 Features == 32 32 33 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -40,6 +40,8 @@ 40 40 * Downlink to change configure 41 41 * 8500mAh Battery for long term use 42 42 44 + 45 + 43 43 == 1.3 Specification == 44 44 45 45 ... ... @@ -77,6 +77,8 @@ 77 77 * Sleep Mode: 5uA @ 3.3v 78 78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 79 79 83 + 84 + 80 80 == 1.4 Sleep mode and working mode == 81 81 82 82 ... ... @@ -104,6 +104,8 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 112 + 113 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 513102034-2.png]]132 +[[image:image-20230610163213-1.png||height="404" width="699"]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -135,7 +135,7 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== Hole Option == 145 +== 1.9 Hole Option == 139 139 140 140 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.168 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 217 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -215,44 +215,44 @@ 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 217 217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 218 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT225 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 219 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: 228 228 229 - *0x01: EU868236 +0x01: EU868 230 230 231 - *0x02: US915238 +0x02: US915 232 232 233 - *0x03: IN865240 +0x03: IN865 234 234 235 - *0x04: AU915242 +0x04: AU915 236 236 237 - *0x05: KZ865244 +0x05: KZ865 238 238 239 - *0x06: RU864246 +0x06: RU864 240 240 241 - *0x07: AS923248 +0x07: AS923 242 242 243 - *0x08: AS923-1250 +0x08: AS923-1 244 244 245 - *0x09: AS923-2252 +0x09: AS923-2 246 246 247 - *0x0a: AS923-3254 +0x0a: AS923-3 248 248 249 - *0x0b: CN470256 +0x0b: CN470 250 250 251 - *0x0c: EU433258 +0x0c: EU433 252 252 253 - *0x0d: KR920260 +0x0d: KR920 254 254 255 - *0x0e: MA869262 +0x0e: MA869 256 256 257 257 258 258 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -276,19 +276,22 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 286 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 290 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 295 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 291 291 297 +2. All modes share the same Payload Explanation from HERE. 298 + 299 +3. By default, the device will send an uplink message every 20 minutes. 300 + 301 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -295,8 +295,8 @@ 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**299 -| **Value**|Bat|(% style="width:191px" %)(((308 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 309 +|Value|Bat|(% style="width:191px" %)((( 300 300 Temperature(DS18B20)(PC13) 301 301 )))|(% style="width:78px" %)((( 302 302 ADC(PA4) ... ... @@ -313,11 +313,12 @@ 313 313 314 314 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 315 315 326 + 316 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 317 317 318 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 319 -|(% style=" width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**320 -| **Value**|BAT|(% style="width:196px" %)(((330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 +|Value|BAT|(% style="width:196px" %)((( 321 321 Temperature(DS18B20)(PC13) 322 322 )))|(% style="width:87px" %)((( 323 323 ADC(PA4) ... ... @@ -324,27 +324,30 @@ 324 324 )))|(% style="width:189px" %)((( 325 325 Digital in(PB15) & Digital Interrupt(PA8) 326 326 )))|(% style="width:208px" %)((( 327 -Distance measure by:1) LIDAR-Lite V3HP 338 +Distance measure by: 1) LIDAR-Lite V3HP 328 328 Or 2) Ultrasonic Sensor 329 329 )))|(% style="width:117px" %)Reserved 330 330 331 331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 332 332 344 + 333 333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 334 334 335 335 [[image:image-20230512173758-5.png||height="563" width="712"]] 336 336 349 + 337 337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 338 338 339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 352 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 340 340 341 341 [[image:image-20230512173903-6.png||height="596" width="715"]] 342 342 356 + 343 343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 344 344 345 345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 346 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**347 -| **Value**|BAT|(% style="width:183px" %)(((360 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 361 +|Value|BAT|(% style="width:183px" %)((( 348 348 Temperature(DS18B20)(PC13) 349 349 )))|(% style="width:173px" %)((( 350 350 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -352,34 +352,36 @@ 352 352 ADC(PA4) 353 353 )))|(% style="width:323px" %)((( 354 354 Distance measure by:1)TF-Mini plus LiDAR 355 -Or 356 -2) TF-Luna LiDAR 369 +Or 2) TF-Luna LiDAR 357 357 )))|(% style="width:188px" %)Distance signal strength 358 358 359 359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 360 360 374 + 361 361 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 362 362 363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 364 364 365 365 [[image:image-20230512180609-7.png||height="555" width="802"]] 366 366 381 + 367 367 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 368 368 369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 384 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 370 370 371 -[[image:image-20230 513105207-4.png||height="469" width="802"]]386 +[[image:image-20230610170047-1.png||height="452" width="799"]] 372 372 373 373 374 374 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 375 375 391 + 376 376 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 377 377 378 378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 379 379 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 380 380 **Size(bytes)** 381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 40px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1382 -| **Value**|(% style="width:68px" %)(((397 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 398 +|Value|(% style="width:68px" %)((( 383 383 ADC1(PA4) 384 384 )))|(% style="width:75px" %)((( 385 385 ADC2(PA5) ... ... @@ -402,8 +402,8 @@ 402 402 This mode has total 11 bytes. As shown below: 403 403 404 404 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 405 -|(% style=" width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**406 -| **Value**|BAT|(% style="width:186px" %)(((421 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 422 +|Value|BAT|(% style="width:186px" %)((( 407 407 Temperature1(DS18B20)(PC13) 408 408 )))|(% style="width:82px" %)((( 409 409 ADC(PA4) ... ... @@ -414,24 +414,29 @@ 414 414 415 415 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 416 416 433 + 417 417 [[image:image-20230513134006-1.png||height="559" width="736"]] 418 418 419 419 420 420 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 421 421 439 + 422 422 [[image:image-20230512164658-2.png||height="532" width="729"]] 423 423 424 424 Each HX711 need to be calibrated before used. User need to do below two steps: 425 425 426 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 427 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 444 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 445 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 428 428 1. ((( 429 429 Weight has 4 bytes, the unit is g. 448 + 449 + 450 + 430 430 ))) 431 431 432 432 For example: 433 433 434 -**AT+GETSENSORVALUE =0** 455 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 435 435 436 436 Response: Weight is 401 g 437 437 ... ... @@ -441,14 +441,12 @@ 441 441 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 442 442 **Size(bytes)** 443 443 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 444 -|**Value**|BAT|(% style="width:193px" %)((( 445 -Temperature(DS18B20) 446 -(PC13) 465 +|Value|BAT|(% style="width:193px" %)((( 466 +Temperature(DS18B20)(PC13) 447 447 )))|(% style="width:85px" %)((( 448 448 ADC(PA4) 449 449 )))|(% style="width:186px" %)((( 450 -Digital in(PB15) & 451 -Digital Interrupt(PA8) 470 +Digital in(PB15) & Digital Interrupt(PA8) 452 452 )))|(% style="width:100px" %)Weight 453 453 454 454 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] ... ... @@ -456,6 +456,7 @@ 456 456 457 457 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 458 458 478 + 459 459 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 460 460 461 461 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -462,11 +462,12 @@ 462 462 463 463 [[image:image-20230512181814-9.png||height="543" width="697"]] 464 464 465 -(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 466 466 467 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %) 468 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 469 -|**Value**|BAT|(% style="width:256px" %)((( 486 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 487 + 488 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 489 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 490 +|Value|BAT|(% style="width:256px" %)((( 470 470 Temperature(DS18B20)(PC13) 471 471 )))|(% style="width:108px" %)((( 472 472 ADC(PA4) ... ... @@ -481,16 +481,16 @@ 481 481 482 482 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 483 483 484 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %) 505 + 506 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 485 485 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 486 486 **Size(bytes)** 487 487 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 488 -| **Value**|BAT|(% style="width:188px" %)(((510 +|Value|BAT|(% style="width:188px" %)((( 489 489 Temperature(DS18B20) 490 490 (PC13) 491 491 )))|(% style="width:83px" %)((( 492 -ADC 493 -(PA5) 514 +ADC(PA5) 494 494 )))|(% style="width:184px" %)((( 495 495 Digital Interrupt1(PA8) 496 496 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -497,26 +497,25 @@ 497 497 498 498 [[image:image-20230513111203-7.png||height="324" width="975"]] 499 499 521 + 500 500 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 501 501 502 -(% style="width:922px" %) 503 -|=((( 524 + 525 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 526 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 504 504 **Size(bytes)** 505 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2506 -| **Value**|BAT|(% style="width:207px" %)(((528 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 529 +|Value|BAT|(% style="width:207px" %)((( 507 507 Temperature(DS18B20) 508 508 (PC13) 509 509 )))|(% style="width:94px" %)((( 510 -ADC1 511 -(PA4) 533 +ADC1(PA4) 512 512 )))|(% style="width:198px" %)((( 513 513 Digital Interrupt(PB15) 514 514 )))|(% style="width:84px" %)((( 515 -ADC2 516 -(PA5) 537 +ADC2(PA5) 517 517 )))|(% style="width:82px" %)((( 518 -ADC3 519 -(PA8) 539 +ADC3(PA8) 520 520 ))) 521 521 522 522 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -524,50 +524,122 @@ 524 524 525 525 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 526 526 527 -(% style="width:1010px" %) 528 -|=((( 547 + 548 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 549 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 529 529 **Size(bytes)** 530 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4531 -| **Value**|BAT|(((532 -Temperature 1(DS18B20)533 -(PC13) 551 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 552 +|Value|BAT|((( 553 +Temperature 554 +(DS18B20)(PC13) 534 534 )))|((( 535 -Temperature2 (DS18B20)536 -(PB9) 556 +Temperature2 557 +(DS18B20)(PB9) 537 537 )))|((( 538 538 Digital Interrupt 539 539 (PB15) 540 540 )))|(% style="width:193px" %)((( 541 -Temperature3 (DS18B20)542 -(PB8) 562 +Temperature3 563 +(DS18B20)(PB8) 543 543 )))|(% style="width:78px" %)((( 544 -Count1 545 -(PA8) 565 +Count1(PA8) 546 546 )))|(% style="width:78px" %)((( 547 -Count2 548 -(PA4) 567 +Count2(PA4) 549 549 ))) 550 550 551 551 [[image:image-20230513111255-9.png||height="341" width="899"]] 552 552 553 -**The newly added AT command is issued correspondingly:** 572 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 554 554 555 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**574 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 556 556 557 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**576 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 558 558 559 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**578 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 560 560 561 -**AT+SETCNT=aa,bb** 562 562 581 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 582 + 563 563 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 564 564 565 565 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 566 566 567 567 588 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 568 568 590 + 591 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 592 + 593 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 594 + 595 + 596 +===== 2.3.2.10.a Uplink, PWM input capture ===== 597 + 598 + 599 +[[image:image-20230817172209-2.png||height="439" width="683"]] 600 + 601 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 602 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 603 +|Value|Bat|(% style="width:191px" %)((( 604 +Temperature(DS18B20)(PC13) 605 +)))|(% style="width:78px" %)((( 606 +ADC(PA4) 607 +)))|(% style="width:135px" %)((( 608 +PWM_Setting 609 + 610 +&Digital Interrupt(PA8) 611 +)))|(% style="width:70px" %)((( 612 +Pulse period 613 +)))|(% style="width:89px" %)((( 614 +Duration of high level 615 +))) 616 + 617 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 618 + 619 + 620 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 621 + 622 +**Frequency:** 623 + 624 +(% class="MsoNormal" %) 625 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 626 + 627 +(% class="MsoNormal" %) 628 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 629 + 630 + 631 +(% class="MsoNormal" %) 632 +**Duty cycle:** 633 + 634 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 635 + 636 +[[image:image-20230818092200-1.png||height="344" width="627"]] 637 + 638 + 639 +===== 2.3.2.10.b Downlink, PWM output ===== 640 + 641 + 642 +[[image:image-20230817173800-3.png||height="412" width="685"]] 643 + 644 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 645 + 646 + xx xx xx is the output frequency, the unit is HZ. 647 + 648 + yy is the duty cycle of the output, the unit is %. 649 + 650 + zz zz is the time delay of the output, the unit is ms. 651 + 652 + 653 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 654 + 655 +The oscilloscope displays as follows: 656 + 657 +[[image:image-20230817173858-5.png||height="694" width="921"]] 658 + 659 + 569 569 === 2.3.3 Decode payload === 570 570 662 + 571 571 While using TTN V3 network, you can add the payload format to decode the payload. 572 572 573 573 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -574,13 +574,14 @@ 574 574 575 575 The payload decoder function for TTN V3 are here: 576 576 577 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 669 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 578 578 579 579 580 580 ==== 2.3.3.1 Battery Info ==== 581 581 582 -Check the battery voltage for SN50v3. 583 583 675 +Check the battery voltage for SN50v3-LB. 676 + 584 584 Ex1: 0x0B45 = 2885mV 585 585 586 586 Ex2: 0x0B49 = 2889mV ... ... @@ -588,16 +588,18 @@ 588 588 589 589 ==== 2.3.3.2 Temperature (DS18B20) ==== 590 590 684 + 591 591 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 592 592 593 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]687 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 594 594 595 -**Connection:** 689 +(% style="color:blue" %)**Connection:** 596 596 597 597 [[image:image-20230512180718-8.png||height="538" width="647"]] 598 598 599 -**Example**: 600 600 694 +(% style="color:blue" %)**Example**: 695 + 601 601 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 602 602 603 603 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -607,6 +607,7 @@ 607 607 608 608 ==== 2.3.3.3 Digital Input ==== 609 609 705 + 610 610 The digital input for pin PB15, 611 611 612 612 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -616,28 +616,38 @@ 616 616 ((( 617 617 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 618 618 619 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 715 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 716 + 717 + 620 620 ))) 621 621 622 622 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 623 623 624 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 625 625 626 - Whenthemeasuredoutput voltage of thesensorisnot withinthe rangeof0Vand1.1V,theoutputvoltageterminal of theensor shall be divided The example in the following figure istoreduce the output voltage of the sensorby three timesIf it is necessary toreduce moretimes,calculate according to the formula in the figure and connect the corresponding resistance in series.723 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 627 627 725 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 726 + 628 628 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 629 629 630 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 631 631 730 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 632 632 732 + 733 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 734 + 735 +[[image:image-20230811113449-1.png||height="370" width="608"]] 736 + 633 633 ==== 2.3.3.5 Digital Interrupt ==== 634 634 635 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 636 636 637 - (% style="color:blue"%)**~Interruptconnection method:**740 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 638 638 742 +(% style="color:blue" %)** Interrupt connection method:** 743 + 639 639 [[image:image-20230513105351-5.png||height="147" width="485"]] 640 640 746 + 641 641 (% style="color:blue" %)**Example to use with door sensor :** 642 642 643 643 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -644,22 +644,23 @@ 644 644 645 645 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 646 646 647 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.753 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 648 648 649 -(% style="color:blue" %)**~ Below is the installation example:** 650 650 651 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:756 +(% style="color:blue" %)**Below is the installation example:** 652 652 758 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 759 + 653 653 * ((( 654 -One pin to SN50 _v3's PA8 pin761 +One pin to SN50v3-LB's PA8 pin 655 655 ))) 656 656 * ((( 657 -The other pin to SN50 _v3's VDD pin764 +The other pin to SN50v3-LB's VDD pin 658 658 ))) 659 659 660 660 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 661 661 662 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 769 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 663 663 664 664 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 665 665 ... ... @@ -671,29 +671,32 @@ 671 671 672 672 The command is: 673 673 674 -(% style="color:blue" %)**AT+INTMOD1=1 781 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 675 675 676 676 Below shows some screen captures in TTN V3: 677 677 678 678 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 679 679 680 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 681 681 788 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 789 + 682 682 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 683 683 684 684 685 685 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 686 686 795 + 687 687 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 688 688 689 689 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 690 690 691 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.800 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 692 692 802 + 693 693 Below is the connection to SHT20/ SHT31. The connection is as below: 694 694 805 +[[image:image-20230610170152-2.png||height="501" width="846"]] 695 695 696 -[[image:image-20230513103633-3.png||height="448" width="716"]] 697 697 698 698 The device will be able to get the I2C sensor data now and upload to IoT Server. 699 699 ... ... @@ -712,23 +712,26 @@ 712 712 713 713 ==== 2.3.3.7 Distance Reading ==== 714 714 715 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 716 716 826 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 717 717 828 + 718 718 ==== 2.3.3.8 Ultrasonic Sensor ==== 719 719 831 + 720 720 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 721 721 722 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.834 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 723 723 724 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 836 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 725 725 726 726 The picture below shows the connection: 727 727 728 728 [[image:image-20230512173903-6.png||height="596" width="715"]] 729 729 730 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 731 731 843 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 844 + 732 732 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 733 733 734 734 **Example:** ... ... @@ -736,16 +736,17 @@ 736 736 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 737 737 738 738 739 - 740 740 ==== 2.3.3.9 Battery Output - BAT pin ==== 741 741 742 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 743 743 855 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 744 744 857 + 745 745 ==== 2.3.3.10 +5V Output ==== 746 746 747 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 748 748 861 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 862 + 749 749 The 5V output time can be controlled by AT Command. 750 750 751 751 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -752,21 +752,45 @@ 752 752 753 753 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 754 754 755 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 869 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 756 756 757 757 758 - 759 759 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 760 760 874 + 761 761 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 762 762 763 763 [[image:image-20230512172447-4.png||height="416" width="712"]] 764 764 879 + 765 765 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 766 766 767 767 768 -==== 2.3.3.12 W orkingMOD ====883 +==== 2.3.3.12 PWM MOD ==== 769 769 885 + 886 +* ((( 887 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 888 +))) 889 +* ((( 890 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 891 +))) 892 + 893 + [[image:image-20230817183249-3.png||height="320" width="417"]] 894 + 895 +* ((( 896 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 897 +))) 898 +* ((( 899 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 900 + 901 + 902 + 903 +))) 904 + 905 +==== 2.3.3.13 Working MOD ==== 906 + 907 + 770 770 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 771 771 772 772 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -782,6 +782,7 @@ 782 782 * 6: MOD7 783 783 * 7: MOD8 784 784 * 8: MOD9 923 +* 9: MOD10 785 785 786 786 787 787 ... ... @@ -795,7 +795,6 @@ 795 795 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 796 796 797 797 798 - 799 799 == 2.5 Frequency Plans == 800 800 801 801 ... ... @@ -815,6 +815,8 @@ 815 815 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 816 816 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 817 817 956 + 957 + 818 818 == 3.2 General Commands == 819 819 820 820 ... ... @@ -831,17 +831,18 @@ 831 831 == 3.3 Commands special design for SN50v3-LB == 832 832 833 833 834 -These commands only valid for S3 1x-LB, as below:974 +These commands only valid for SN50v3-LB, as below: 835 835 836 836 837 837 === 3.3.1 Set Transmit Interval Time === 838 838 979 + 839 839 Feature: Change LoRaWAN End Node Transmit Interval. 840 840 841 841 (% style="color:blue" %)**AT Command: AT+TDC** 842 842 843 843 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 844 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 985 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 845 845 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 846 846 30000 847 847 OK ... ... @@ -865,21 +865,23 @@ 865 865 866 866 === 3.3.2 Get Device Status === 867 867 1009 + 868 868 Send a LoRaWAN downlink to ask the device to send its status. 869 869 870 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 011012 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 871 871 872 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 1014 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 873 873 874 874 875 875 === 3.3.3 Set Interrupt Mode === 876 876 1019 + 877 877 Feature, Set Interrupt mode for GPIO_EXIT. 878 878 879 879 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 880 880 881 881 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 882 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1025 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 883 883 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 884 884 0 885 885 OK ... ... @@ -894,7 +894,6 @@ 894 894 )))|(% style="width:157px" %)OK 895 895 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 896 896 Set Transmit Interval 897 - 898 898 trigger by rising edge. 899 899 )))|(% style="width:157px" %)OK 900 900 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -914,6 +914,7 @@ 914 914 915 915 === 3.3.4 Set Power Output Duration === 916 916 1059 + 917 917 Control the output duration 5V . Before each sampling, device will 918 918 919 919 ~1. first enable the power output to external sensor, ... ... @@ -925,7 +925,7 @@ 925 925 (% style="color:blue" %)**AT Command: AT+5VT** 926 926 927 927 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 928 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1071 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 929 929 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 930 930 500(default) 931 931 OK ... ... @@ -947,12 +947,13 @@ 947 947 948 948 === 3.3.5 Set Weighing parameters === 949 949 1093 + 950 950 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 951 951 952 952 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 953 953 954 954 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 955 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1099 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 956 956 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 957 957 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 958 958 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -973,6 +973,7 @@ 973 973 974 974 === 3.3.6 Set Digital pulse count value === 975 975 1120 + 976 976 Feature: Set the pulse count value. 977 977 978 978 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -980,7 +980,7 @@ 980 980 (% style="color:blue" %)**AT Command: AT+SETCNT** 981 981 982 982 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 983 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1128 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 984 984 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 985 985 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 986 986 ... ... @@ -997,12 +997,13 @@ 997 997 998 998 === 3.3.7 Set Workmode === 999 999 1145 + 1000 1000 Feature: Switch working mode. 1001 1001 1002 1002 (% style="color:blue" %)**AT Command: AT+MOD** 1003 1003 1004 1004 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1005 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1151 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1006 1006 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1007 1007 OK 1008 1008 ))) ... ... @@ -1020,6 +1020,35 @@ 1020 1020 1021 1021 1022 1022 1169 +=== 3.3.8 PWM setting === 1170 + 1171 + 1172 +Feature: Set the time acquisition unit for PWM input capture. 1173 + 1174 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1175 + 1176 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1177 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1178 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1179 +0(default) 1180 + 1181 +OK 1182 +))) 1183 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1184 +OK 1185 + 1186 +))) 1187 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1188 + 1189 +(% style="color:blue" %)**Downlink Command: 0x0C** 1190 + 1191 +Format: Command Code (0x0C) followed by 1 bytes. 1192 + 1193 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1194 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1195 + 1196 + 1197 + 1023 1023 = 4. Battery & Power Consumption = 1024 1024 1025 1025 ... ... @@ -1032,27 +1032,47 @@ 1032 1032 1033 1033 1034 1034 (% class="wikigeneratedid" %) 1035 -User can change firmware SN50v3-LB to: 1210 +**User can change firmware SN50v3-LB to:** 1036 1036 1037 1037 * Change Frequency band/ region. 1038 1038 * Update with new features. 1039 1039 * Fix bugs. 1040 1040 1041 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1216 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]** 1042 1042 1218 +**Methods to Update Firmware:** 1043 1043 1044 -Methods to Update Firmware: 1220 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1221 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1045 1045 1046 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1047 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1048 1048 1224 + 1049 1049 = 6. FAQ = 1050 1050 1051 1051 == 6.1 Where can i find source code of SN50v3-LB? == 1052 1052 1229 + 1053 1053 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1054 1054 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1055 1055 1233 + 1234 + 1235 +== 6.2 How to generate PWM Output in SN50v3-LB? == 1236 + 1237 + 1238 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1239 + 1240 + 1241 +== 6.3 How to put several sensors to a SN50v3-LB? == 1242 + 1243 + 1244 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1245 + 1246 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1247 + 1248 +[[image:image-20230810121434-1.png||height="242" width="656"]] 1249 + 1250 + 1056 1056 = 7. Order Info = 1057 1057 1058 1058 ... ... @@ -1076,8 +1076,11 @@ 1076 1076 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1077 1077 * (% style="color:red" %)**NH**(%%): No Hole 1078 1078 1274 + 1275 + 1079 1079 = 8. Packing Info = 1080 1080 1278 + 1081 1081 (% style="color:#037691" %)**Package Includes**: 1082 1082 1083 1083 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1089,6 +1089,8 @@ 1089 1089 * Package Size / pcs : cm 1090 1090 * Weight / pcs : g 1091 1091 1290 + 1291 + 1092 1092 = 9. Support = 1093 1093 1094 1094
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content