<
From version < 43.32 >
edited by Xiaoling
on 2023/05/16 14:42
To version < 45.5 >
edited by Xiaoling
on 2023/05/27 11:59
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -30,6 +30,7 @@
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 +
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -40,6 +40,8 @@
40 40  * Downlink to change configure
41 41  * 8500mAh Battery for long term use
42 42  
44 +
45 +
43 43  == 1.3 Specification ==
44 44  
45 45  
... ... @@ -77,6 +77,8 @@
77 77  * Sleep Mode: 5uA @ 3.3v
78 78  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
83 +
84 +
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 82  
... ... @@ -104,6 +104,8 @@
104 104  )))
105 105  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 106  
112 +
113 +
107 107  == 1.6 BLE connection ==
108 108  
109 109  
... ... @@ -135,7 +135,7 @@
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
137 137  
138 -== Hole Option ==
145 +== 1.9 Hole Option ==
139 139  
140 140  
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
168 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
217 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,12 +215,12 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
225 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
... ... @@ -276,19 +276,22 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
286 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
290 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
295 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
291 291  
297 +2. All modes share the same Payload Explanation from HERE.
298 +
299 +3. By default, the device will send an uplink message every 20 minutes.
300 +
301 +
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 294  
... ... @@ -295,8 +295,8 @@
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 297  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
308 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
309 +|Value|Bat|(% style="width:191px" %)(((
300 300  Temperature(DS18B20)(PC13)
301 301  )))|(% style="width:78px" %)(((
302 302  ADC(PA4)
... ... @@ -313,11 +313,12 @@
313 313  
314 314  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315 315  
326 +
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 318  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 -|**Value**|BAT|(% style="width:196px" %)(((
330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 +|Value|BAT|(% style="width:196px" %)(((
321 321  Temperature(DS18B20)(PC13)
322 322  )))|(% style="width:87px" %)(((
323 323  ADC(PA4)
... ... @@ -325,26 +325,30 @@
325 325  Digital in(PB15) & Digital Interrupt(PA8)
326 326  )))|(% style="width:208px" %)(((
327 327  Distance measure by:1) LIDAR-Lite V3HP
328 -Or 2) Ultrasonic Sensor
339 +Or
340 +2) Ultrasonic Sensor
329 329  )))|(% style="width:117px" %)Reserved
330 330  
331 331  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 332  
345 +
333 333  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
334 334  
335 335  [[image:image-20230512173758-5.png||height="563" width="712"]]
336 336  
350 +
337 337  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
338 338  
339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
353 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
340 340  
341 341  [[image:image-20230512173903-6.png||height="596" width="715"]]
342 342  
357 +
343 343  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 344  
345 345  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
347 -|**Value**|BAT|(% style="width:183px" %)(((
361 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
362 +|Value|BAT|(% style="width:183px" %)(((
348 348  Temperature(DS18B20)(PC13)
349 349  )))|(% style="width:173px" %)(((
350 350  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -358,15 +358,17 @@
358 358  
359 359  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
360 360  
376 +
361 361  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
362 362  
363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
379 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
364 364  
365 365  [[image:image-20230512180609-7.png||height="555" width="802"]]
366 366  
383 +
367 367  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
368 368  
369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
386 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
370 370  
371 371  [[image:image-20230513105207-4.png||height="469" width="802"]]
372 372  
... ... @@ -373,13 +373,14 @@
373 373  
374 374  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
375 375  
393 +
376 376  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377 377  
378 378  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
379 379  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
380 380  **Size(bytes)**
381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 -|**Value**|(% style="width:68px" %)(((
399 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
400 +|Value|(% style="width:68px" %)(((
383 383  ADC1(PA4)
384 384  )))|(% style="width:75px" %)(((
385 385  ADC2(PA5)
... ... @@ -402,8 +402,8 @@
402 402  This mode has total 11 bytes. As shown below:
403 403  
404 404  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
405 -|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
406 -|**Value**|BAT|(% style="width:186px" %)(((
423 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
424 +|Value|BAT|(% style="width:186px" %)(((
407 407  Temperature1(DS18B20)(PC13)
408 408  )))|(% style="width:82px" %)(((
409 409  ADC(PA4)
... ... @@ -414,24 +414,29 @@
414 414  
415 415  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
416 416  
435 +
417 417  [[image:image-20230513134006-1.png||height="559" width="736"]]
418 418  
419 419  
420 420  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
421 421  
441 +
422 422  [[image:image-20230512164658-2.png||height="532" width="729"]]
423 423  
424 424  Each HX711 need to be calibrated before used. User need to do below two steps:
425 425  
426 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
446 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
447 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
428 428  1. (((
429 429  Weight has 4 bytes, the unit is g.
450 +
451 +
452 +
430 430  )))
431 431  
432 432  For example:
433 433  
434 -**AT+GETSENSORVALUE =0**
457 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
435 435  
436 436  Response:  Weight is 401 g
437 437  
... ... @@ -441,21 +441,21 @@
441 441  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
442 442  **Size(bytes)**
443 443  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
444 -|**Value**|BAT|(% style="width:193px" %)(((
445 -Temperature(DS18B20)
446 -(PC13)
467 +|Value|BAT|(% style="width:193px" %)(((
468 +Temperature(DS18B20)(PC13)
447 447  )))|(% style="width:85px" %)(((
448 448  ADC(PA4)
449 449  )))|(% style="width:186px" %)(((
450 -Digital in(PB15) &
451 -Digital Interrupt(PA8)
472 +Digital in(PB15) & Digital Interrupt(PA8)
452 452  )))|(% style="width:100px" %)Weight
453 453  
454 454  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
455 455  
456 456  
478 +
457 457  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
458 458  
481 +
459 459  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
460 460  
461 461  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -462,11 +462,12 @@
462 462  
463 463  [[image:image-20230512181814-9.png||height="543" width="697"]]
464 464  
465 -(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
466 466  
467 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %)
468 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 -|**Value**|BAT|(% style="width:256px" %)(((
489 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
490 +
491 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
492 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
493 +|Value|BAT|(% style="width:256px" %)(((
470 470  Temperature(DS18B20)(PC13)
471 471  )))|(% style="width:108px" %)(((
472 472  ADC(PA4)
... ... @@ -481,16 +481,16 @@
481 481  
482 482  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
483 483  
484 -(% style="width:1108px" %)
485 -|=(((
508 +
509 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
510 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
486 486  **Size(bytes)**
487 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
488 -|**Value**|BAT|(% style="width:188px" %)(((
512 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
513 +|Value|BAT|(% style="width:188px" %)(((
489 489  Temperature(DS18B20)
490 490  (PC13)
491 491  )))|(% style="width:83px" %)(((
492 -ADC
493 -(PA5)
517 +ADC(PA5)
494 494  )))|(% style="width:184px" %)(((
495 495  Digital Interrupt1(PA8)
496 496  )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
... ... @@ -497,26 +497,25 @@
497 497  
498 498  [[image:image-20230513111203-7.png||height="324" width="975"]]
499 499  
524 +
500 500  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
501 501  
502 -(% style="width:922px" %)
503 -|=(((
527 +
528 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
529 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
504 504  **Size(bytes)**
505 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
506 -|**Value**|BAT|(% style="width:207px" %)(((
531 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
532 +|Value|BAT|(% style="width:207px" %)(((
507 507  Temperature(DS18B20)
508 508  (PC13)
509 509  )))|(% style="width:94px" %)(((
510 -ADC1
511 -(PA4)
536 +ADC1(PA4)
512 512  )))|(% style="width:198px" %)(((
513 513  Digital Interrupt(PB15)
514 514  )))|(% style="width:84px" %)(((
515 -ADC2
516 -(PA5)
540 +ADC2(PA5)
517 517  )))|(% style="width:82px" %)(((
518 -ADC3
519 -(PA8)
542 +ADC3(PA8)
520 520  )))
521 521  
522 522  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -524,50 +524,50 @@
524 524  
525 525  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
526 526  
527 -(% style="width:1010px" %)
528 -|=(((
550 +
551 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
552 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
529 529  **Size(bytes)**
530 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
531 -|**Value**|BAT|(((
532 -Temperature1(DS18B20)
533 -(PC13)
554 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
555 +|Value|BAT|(((
556 +Temperature
557 +(DS18B20)(PC13)
534 534  )))|(((
535 -Temperature2(DS18B20)
536 -(PB9)
559 +Temperature2
560 +(DS18B20)(PB9)
537 537  )))|(((
538 538  Digital Interrupt
539 539  (PB15)
540 540  )))|(% style="width:193px" %)(((
541 -Temperature3(DS18B20)
542 -(PB8)
565 +Temperature3
566 +(DS18B20)(PB8)
543 543  )))|(% style="width:78px" %)(((
544 -Count1
545 -(PA8)
568 +Count1(PA8)
546 546  )))|(% style="width:78px" %)(((
547 -Count2
548 -(PA4)
570 +Count2(PA4)
549 549  )))
550 550  
551 551  [[image:image-20230513111255-9.png||height="341" width="899"]]
552 552  
553 -**The newly added AT command is issued correspondingly:**
575 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
554 554  
555 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
577 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
556 556  
557 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
579 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
558 558  
559 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
581 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
560 560  
561 -**AT+SETCNT=aa,bb** 
562 562  
584 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
585 +
563 563  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
564 564  
565 565  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
566 566  
567 567  
568 -
569 569  === 2.3.3  ​Decode payload ===
570 570  
593 +
571 571  While using TTN V3 network, you can add the payload format to decode the payload.
572 572  
573 573  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -574,13 +574,14 @@
574 574  
575 575  The payload decoder function for TTN V3 are here:
576 576  
577 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
600 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
578 578  
579 579  
580 580  ==== 2.3.3.1 Battery Info ====
581 581  
582 -Check the battery voltage for SN50v3.
583 583  
606 +Check the battery voltage for SN50v3-LB.
607 +
584 584  Ex1: 0x0B45 = 2885mV
585 585  
586 586  Ex2: 0x0B49 = 2889mV
... ... @@ -588,16 +588,18 @@
588 588  
589 589  ==== 2.3.3.2  Temperature (DS18B20) ====
590 590  
615 +
591 591  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
592 592  
593 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
618 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
594 594  
595 -**Connection:**
620 +(% style="color:blue" %)**Connection:**
596 596  
597 597  [[image:image-20230512180718-8.png||height="538" width="647"]]
598 598  
599 -**Example**:
600 600  
625 +(% style="color:blue" %)**Example**:
626 +
601 601  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
602 602  
603 603  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -607,6 +607,7 @@
607 607  
608 608  ==== 2.3.3.3 Digital Input ====
609 609  
636 +
610 610  The digital input for pin PB15,
611 611  
612 612  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -616,11 +616,14 @@
616 616  (((
617 617  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
618 618  
619 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
646 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
647 +
648 +
620 620  )))
621 621  
622 622  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
623 623  
653 +
624 624  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
625 625  
626 626  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -627,17 +627,20 @@
627 627  
628 628  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
629 629  
630 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
631 631  
661 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
632 632  
663 +
633 633  ==== 2.3.3.5 Digital Interrupt ====
634 634  
635 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
636 636  
637 -(% style="color:blue" %)**~ Interrupt connection method:**
667 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
638 638  
669 +(% style="color:blue" %)** Interrupt connection method:**
670 +
639 639  [[image:image-20230513105351-5.png||height="147" width="485"]]
640 640  
673 +
641 641  (% style="color:blue" %)**Example to use with door sensor :**
642 642  
643 643  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -644,22 +644,23 @@
644 644  
645 645  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
646 646  
647 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
680 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
648 648  
649 -(% style="color:blue" %)**~ Below is the installation example:**
650 650  
651 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
683 +(% style="color:blue" %)**Below is the installation example:**
652 652  
685 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
686 +
653 653  * (((
654 -One pin to SN50_v3's PA8 pin
688 +One pin to SN50v3-LB's PA8 pin
655 655  )))
656 656  * (((
657 -The other pin to SN50_v3's VDD pin
691 +The other pin to SN50v3-LB's VDD pin
658 658  )))
659 659  
660 660  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
661 661  
662 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
696 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
663 663  
664 664  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
665 665  
... ... @@ -671,30 +671,33 @@
671 671  
672 672  The command is:
673 673  
674 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
708 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
675 675  
676 676  Below shows some screen captures in TTN V3:
677 677  
678 678  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
679 679  
680 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
681 681  
715 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
716 +
682 682  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
683 683  
684 684  
685 685  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
686 686  
722 +
687 687  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
688 688  
689 689  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
690 690  
691 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
727 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
692 692  
729 +
693 693  Below is the connection to SHT20/ SHT31. The connection is as below:
694 694  
695 -
696 696  [[image:image-20230513103633-3.png||height="448" width="716"]]
697 697  
734 +
698 698  The device will be able to get the I2C sensor data now and upload to IoT Server.
699 699  
700 700  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -712,23 +712,26 @@
712 712  
713 713  ==== 2.3.3.7  ​Distance Reading ====
714 714  
715 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
716 716  
753 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
717 717  
755 +
718 718  ==== 2.3.3.8 Ultrasonic Sensor ====
719 719  
758 +
720 720  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
721 721  
722 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
761 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
723 723  
724 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
763 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
725 725  
726 726  The picture below shows the connection:
727 727  
728 728  [[image:image-20230512173903-6.png||height="596" width="715"]]
729 729  
730 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
731 731  
770 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
771 +
732 732  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
733 733  
734 734  **Example:**
... ... @@ -736,16 +736,17 @@
736 736  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
737 737  
738 738  
739 -
740 740  ==== 2.3.3.9  Battery Output - BAT pin ====
741 741  
742 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
743 743  
782 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
744 744  
784 +
745 745  ==== 2.3.3.10  +5V Output ====
746 746  
747 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
748 748  
788 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
789 +
749 749  The 5V output time can be controlled by AT Command.
750 750  
751 751  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -752,21 +752,23 @@
752 752  
753 753  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
754 754  
755 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
796 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
756 756  
757 757  
758 -
759 759  ==== 2.3.3.11  BH1750 Illumination Sensor ====
760 760  
801 +
761 761  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
762 762  
763 763  [[image:image-20230512172447-4.png||height="416" width="712"]]
764 764  
806 +
765 765  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
766 766  
767 767  
768 768  ==== 2.3.3.12  Working MOD ====
769 769  
812 +
770 770  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
771 771  
772 772  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -795,7 +795,6 @@
795 795  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
796 796  
797 797  
798 -
799 799  == 2.5 Frequency Plans ==
800 800  
801 801  
... ... @@ -815,6 +815,8 @@
815 815  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
816 816  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
817 817  
860 +
861 +
818 818  == 3.2 General Commands ==
819 819  
820 820  
... ... @@ -831,11 +831,12 @@
831 831  == 3.3 Commands special design for SN50v3-LB ==
832 832  
833 833  
834 -These commands only valid for S31x-LB, as below:
878 +These commands only valid for SN50v3-LB, as below:
835 835  
836 836  
837 837  === 3.3.1 Set Transmit Interval Time ===
838 838  
883 +
839 839  Feature: Change LoRaWAN End Node Transmit Interval.
840 840  
841 841  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -865,21 +865,23 @@
865 865  
866 866  === 3.3.2 Get Device Status ===
867 867  
913 +
868 868  Send a LoRaWAN downlink to ask the device to send its status.
869 869  
870 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
916 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
871 871  
872 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
918 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
873 873  
874 874  
875 875  === 3.3.3 Set Interrupt Mode ===
876 876  
923 +
877 877  Feature, Set Interrupt mode for GPIO_EXIT.
878 878  
879 879  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
880 880  
881 881  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
882 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
929 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
883 883  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
884 884  0
885 885  OK
... ... @@ -894,7 +894,6 @@
894 894  )))|(% style="width:157px" %)OK
895 895  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
896 896  Set Transmit Interval
897 -
898 898  trigger by rising edge.
899 899  )))|(% style="width:157px" %)OK
900 900  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -914,6 +914,7 @@
914 914  
915 915  === 3.3.4 Set Power Output Duration ===
916 916  
963 +
917 917  Control the output duration 5V . Before each sampling, device will
918 918  
919 919  ~1. first enable the power output to external sensor,
... ... @@ -925,7 +925,7 @@
925 925  (% style="color:blue" %)**AT Command: AT+5VT**
926 926  
927 927  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
928 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
975 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
929 929  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
930 930  500(default)
931 931  OK
... ... @@ -947,12 +947,13 @@
947 947  
948 948  === 3.3.5 Set Weighing parameters ===
949 949  
997 +
950 950  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
951 951  
952 952  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
953 953  
954 954  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
955 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1003 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
956 956  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
957 957  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
958 958  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -973,6 +973,7 @@
973 973  
974 974  === 3.3.6 Set Digital pulse count value ===
975 975  
1024 +
976 976  Feature: Set the pulse count value.
977 977  
978 978  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -980,7 +980,7 @@
980 980  (% style="color:blue" %)**AT Command: AT+SETCNT**
981 981  
982 982  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
983 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1032 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
984 984  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
985 985  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
986 986  
... ... @@ -997,12 +997,13 @@
997 997  
998 998  === 3.3.7 Set Workmode ===
999 999  
1049 +
1000 1000  Feature: Switch working mode.
1001 1001  
1002 1002  (% style="color:blue" %)**AT Command: AT+MOD**
1003 1003  
1004 1004  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1005 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1055 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1006 1006  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1007 1007  OK
1008 1008  )))
... ... @@ -1032,27 +1032,31 @@
1032 1032  
1033 1033  
1034 1034  (% class="wikigeneratedid" %)
1035 -User can change firmware SN50v3-LB to:
1085 +**User can change firmware SN50v3-LB to:**
1036 1036  
1037 1037  * Change Frequency band/ region.
1038 1038  * Update with new features.
1039 1039  * Fix bugs.
1040 1040  
1041 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1091 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1042 1042  
1093 +**Methods to Update Firmware:**
1043 1043  
1044 -Methods to Update Firmware:
1045 -
1046 1046  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1047 1047  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1048 1048  
1098 +
1099 +
1049 1049  = 6. FAQ =
1050 1050  
1051 1051  == 6.1 Where can i find source code of SN50v3-LB? ==
1052 1052  
1104 +
1053 1053  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1054 1054  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1055 1055  
1108 +
1109 +
1056 1056  = 7. Order Info =
1057 1057  
1058 1058  
... ... @@ -1076,8 +1076,11 @@
1076 1076  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1077 1077  * (% style="color:red" %)**NH**(%%): No Hole
1078 1078  
1133 +
1134 +
1079 1079  = 8. ​Packing Info =
1080 1080  
1137 +
1081 1081  (% style="color:#037691" %)**Package Includes**:
1082 1082  
1083 1083  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1089,6 +1089,8 @@
1089 1089  * Package Size / pcs : cm
1090 1090  * Weight / pcs : g
1091 1091  
1149 +
1150 +
1092 1092  = 9. Support =
1093 1093  
1094 1094  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0