<
From version < 43.30 >
edited by Xiaoling
on 2023/05/16 14:37
To version < 62.1 >
edited by Saxer Lin
on 2023/08/17 17:37
>
Change comment: Uploaded new attachment "image-20230817173800-3.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -30,6 +30,7 @@
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 +
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -40,6 +40,8 @@
40 40  * Downlink to change configure
41 41  * 8500mAh Battery for long term use
42 42  
44 +
45 +
43 43  == 1.3 Specification ==
44 44  
45 45  
... ... @@ -77,6 +77,8 @@
77 77  * Sleep Mode: 5uA @ 3.3v
78 78  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
83 +
84 +
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 82  
... ... @@ -104,6 +104,8 @@
104 104  )))
105 105  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 106  
112 +
113 +
107 107  == 1.6 BLE connection ==
108 108  
109 109  
... ... @@ -122,7 +122,7 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230513102034-2.png]]
132 +[[image:image-20230610163213-1.png||height="404" width="699"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -135,7 +135,7 @@
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
137 137  
138 -== Hole Option ==
145 +== 1.9 Hole Option ==
139 139  
140 140  
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
168 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
217 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,44 +215,44 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
225 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -*0x01: EU868
236 +0x01: EU868
230 230  
231 -*0x02: US915
238 +0x02: US915
232 232  
233 -*0x03: IN865
240 +0x03: IN865
234 234  
235 -*0x04: AU915
242 +0x04: AU915
236 236  
237 -*0x05: KZ865
244 +0x05: KZ865
238 238  
239 -*0x06: RU864
246 +0x06: RU864
240 240  
241 -*0x07: AS923
248 +0x07: AS923
242 242  
243 -*0x08: AS923-1
250 +0x08: AS923-1
244 244  
245 -*0x09: AS923-2
252 +0x09: AS923-2
246 246  
247 -*0x0a: AS923-3
254 +0x0a: AS923-3
248 248  
249 -*0x0b: CN470
256 +0x0b: CN470
250 250  
251 -*0x0c: EU433
258 +0x0c: EU433
252 252  
253 -*0x0d: KR920
260 +0x0d: KR920
254 254  
255 -*0x0e: MA869
262 +0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -276,19 +276,22 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
286 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
290 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
295 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
291 291  
297 +2. All modes share the same Payload Explanation from HERE.
298 +
299 +3. By default, the device will send an uplink message every 20 minutes.
300 +
301 +
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 294  
... ... @@ -295,8 +295,8 @@
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 297  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
308 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
309 +|Value|Bat|(% style="width:191px" %)(((
300 300  Temperature(DS18B20)(PC13)
301 301  )))|(% style="width:78px" %)(((
302 302  ADC(PA4)
... ... @@ -313,11 +313,12 @@
313 313  
314 314  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315 315  
326 +
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 318  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 -|**Value**|BAT|(% style="width:196px" %)(((
330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 +|Value|BAT|(% style="width:196px" %)(((
321 321  Temperature(DS18B20)(PC13)
322 322  )))|(% style="width:87px" %)(((
323 323  ADC(PA4)
... ... @@ -324,27 +324,30 @@
324 324  )))|(% style="width:189px" %)(((
325 325  Digital in(PB15) & Digital Interrupt(PA8)
326 326  )))|(% style="width:208px" %)(((
327 -Distance measure by:1) LIDAR-Lite V3HP
338 +Distance measure by: 1) LIDAR-Lite V3HP
328 328  Or 2) Ultrasonic Sensor
329 329  )))|(% style="width:117px" %)Reserved
330 330  
331 331  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 332  
344 +
333 333  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
334 334  
335 335  [[image:image-20230512173758-5.png||height="563" width="712"]]
336 336  
349 +
337 337  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
338 338  
339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
352 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
340 340  
341 341  [[image:image-20230512173903-6.png||height="596" width="715"]]
342 342  
356 +
343 343  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 344  
345 345  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
347 -|**Value**|BAT|(% style="width:183px" %)(((
360 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
361 +|Value|BAT|(% style="width:183px" %)(((
348 348  Temperature(DS18B20)(PC13)
349 349  )))|(% style="width:173px" %)(((
350 350  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -352,34 +352,36 @@
352 352  ADC(PA4)
353 353  )))|(% style="width:323px" %)(((
354 354  Distance measure by:1)TF-Mini plus LiDAR
355 -Or 
356 -2) TF-Luna LiDAR
369 +Or 2) TF-Luna LiDAR
357 357  )))|(% style="width:188px" %)Distance signal  strength
358 358  
359 359  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
360 360  
374 +
361 361  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
362 362  
363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
364 364  
365 365  [[image:image-20230512180609-7.png||height="555" width="802"]]
366 366  
381 +
367 367  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
368 368  
369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
384 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
370 370  
371 -[[image:image-20230513105207-4.png||height="469" width="802"]]
386 +[[image:image-20230610170047-1.png||height="452" width="799"]]
372 372  
373 373  
374 374  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
375 375  
391 +
376 376  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377 377  
378 378  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
379 379  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
380 380  **Size(bytes)**
381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 -|**Value**|(% style="width:68px" %)(((
397 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
398 +|Value|(% style="width:68px" %)(((
383 383  ADC1(PA4)
384 384  )))|(% style="width:75px" %)(((
385 385  ADC2(PA5)
... ... @@ -402,8 +402,8 @@
402 402  This mode has total 11 bytes. As shown below:
403 403  
404 404  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
405 -|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
406 -|**Value**|BAT|(% style="width:186px" %)(((
421 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
422 +|Value|BAT|(% style="width:186px" %)(((
407 407  Temperature1(DS18B20)(PC13)
408 408  )))|(% style="width:82px" %)(((
409 409  ADC(PA4)
... ... @@ -414,24 +414,29 @@
414 414  
415 415  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
416 416  
433 +
417 417  [[image:image-20230513134006-1.png||height="559" width="736"]]
418 418  
419 419  
420 420  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
421 421  
439 +
422 422  [[image:image-20230512164658-2.png||height="532" width="729"]]
423 423  
424 424  Each HX711 need to be calibrated before used. User need to do below two steps:
425 425  
426 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
444 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
445 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
428 428  1. (((
429 429  Weight has 4 bytes, the unit is g.
448 +
449 +
450 +
430 430  )))
431 431  
432 432  For example:
433 433  
434 -**AT+GETSENSORVALUE =0**
455 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
435 435  
436 436  Response:  Weight is 401 g
437 437  
... ... @@ -441,15 +441,12 @@
441 441  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
442 442  **Size(bytes)**
443 443  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
444 -|**Value**|BAT|(% style="width:193px" %)(((
445 -Temperature(DS18B20)
446 -(PC13)
465 +|Value|BAT|(% style="width:193px" %)(((
466 +Temperature(DS18B20)(PC13)
447 447  )))|(% style="width:85px" %)(((
448 -ADC
449 -(PA4)
468 +ADC(PA4)
450 450  )))|(% style="width:186px" %)(((
451 -Digital in(PB15) &
452 -Digital Interrupt(PA8)
470 +Digital in(PB15) & Digital Interrupt(PA8)
453 453  )))|(% style="width:100px" %)Weight
454 454  
455 455  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -457,6 +457,7 @@
457 457  
458 458  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
459 459  
478 +
460 460  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
461 461  
462 462  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -463,23 +463,19 @@
463 463  
464 464  [[image:image-20230512181814-9.png||height="543" width="697"]]
465 465  
466 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
467 467  
468 -(% style="width:961px" %)
469 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
470 -|**Value**|BAT|(% style="width:256px" %)(((
471 -Temperature(DS18B20)
486 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
472 472  
473 -(PC13)
488 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
489 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
490 +|Value|BAT|(% style="width:256px" %)(((
491 +Temperature(DS18B20)(PC13)
474 474  )))|(% style="width:108px" %)(((
475 -ADC
476 -(PA4)
493 +ADC(PA4)
477 477  )))|(% style="width:126px" %)(((
478 -Digital in
479 -(PB15)
495 +Digital in(PB15)
480 480  )))|(% style="width:145px" %)(((
481 -Count
482 -(PA8)
497 +Count(PA8)
483 483  )))
484 484  
485 485  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -487,16 +487,16 @@
487 487  
488 488  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
489 489  
490 -(% style="width:1108px" %)
491 -|=(((
505 +
506 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
507 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
492 492  **Size(bytes)**
493 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
494 -|**Value**|BAT|(% style="width:188px" %)(((
509 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
510 +|Value|BAT|(% style="width:188px" %)(((
495 495  Temperature(DS18B20)
496 496  (PC13)
497 497  )))|(% style="width:83px" %)(((
498 -ADC
499 -(PA5)
514 +ADC(PA5)
500 500  )))|(% style="width:184px" %)(((
501 501  Digital Interrupt1(PA8)
502 502  )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
... ... @@ -503,26 +503,25 @@
503 503  
504 504  [[image:image-20230513111203-7.png||height="324" width="975"]]
505 505  
521 +
506 506  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
507 507  
508 -(% style="width:922px" %)
509 -|=(((
524 +
525 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
526 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
510 510  **Size(bytes)**
511 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
512 -|**Value**|BAT|(% style="width:207px" %)(((
528 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 +|Value|BAT|(% style="width:207px" %)(((
513 513  Temperature(DS18B20)
514 514  (PC13)
515 515  )))|(% style="width:94px" %)(((
516 -ADC1
517 -(PA4)
533 +ADC1(PA4)
518 518  )))|(% style="width:198px" %)(((
519 519  Digital Interrupt(PB15)
520 520  )))|(% style="width:84px" %)(((
521 -ADC2
522 -(PA5)
537 +ADC2(PA5)
523 523  )))|(% style="width:82px" %)(((
524 -ADC3
525 -(PA8)
539 +ADC3(PA8)
526 526  )))
527 527  
528 528  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -530,50 +530,50 @@
530 530  
531 531  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
532 532  
533 -(% style="width:1010px" %)
534 -|=(((
547 +
548 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
549 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
535 535  **Size(bytes)**
536 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
537 -|**Value**|BAT|(((
538 -Temperature1(DS18B20)
539 -(PC13)
551 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 +|Value|BAT|(((
553 +Temperature
554 +(DS18B20)(PC13)
540 540  )))|(((
541 -Temperature2(DS18B20)
542 -(PB9)
556 +Temperature2
557 +(DS18B20)(PB9)
543 543  )))|(((
544 544  Digital Interrupt
545 545  (PB15)
546 546  )))|(% style="width:193px" %)(((
547 -Temperature3(DS18B20)
548 -(PB8)
562 +Temperature3
563 +(DS18B20)(PB8)
549 549  )))|(% style="width:78px" %)(((
550 -Count1
551 -(PA8)
565 +Count1(PA8)
552 552  )))|(% style="width:78px" %)(((
553 -Count2
554 -(PA4)
567 +Count2(PA4)
555 555  )))
556 556  
557 557  [[image:image-20230513111255-9.png||height="341" width="899"]]
558 558  
559 -**The newly added AT command is issued correspondingly:**
572 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
560 560  
561 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
574 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
562 562  
563 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
576 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
564 564  
565 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
578 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
566 566  
567 -**AT+SETCNT=aa,bb** 
568 568  
581 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
582 +
569 569  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
570 570  
571 571  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
572 572  
573 573  
574 -
575 575  === 2.3.3  ​Decode payload ===
576 576  
590 +
577 577  While using TTN V3 network, you can add the payload format to decode the payload.
578 578  
579 579  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -580,13 +580,14 @@
580 580  
581 581  The payload decoder function for TTN V3 are here:
582 582  
583 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
597 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
584 584  
585 585  
586 586  ==== 2.3.3.1 Battery Info ====
587 587  
588 -Check the battery voltage for SN50v3.
589 589  
603 +Check the battery voltage for SN50v3-LB.
604 +
590 590  Ex1: 0x0B45 = 2885mV
591 591  
592 592  Ex2: 0x0B49 = 2889mV
... ... @@ -594,16 +594,18 @@
594 594  
595 595  ==== 2.3.3.2  Temperature (DS18B20) ====
596 596  
612 +
597 597  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
598 598  
599 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
615 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
600 600  
601 -**Connection:**
617 +(% style="color:blue" %)**Connection:**
602 602  
603 603  [[image:image-20230512180718-8.png||height="538" width="647"]]
604 604  
605 -**Example**:
606 606  
622 +(% style="color:blue" %)**Example**:
623 +
607 607  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
608 608  
609 609  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -613,6 +613,7 @@
613 613  
614 614  ==== 2.3.3.3 Digital Input ====
615 615  
633 +
616 616  The digital input for pin PB15,
617 617  
618 618  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -622,28 +622,38 @@
622 622  (((
623 623  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
624 624  
625 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
643 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
644 +
645 +
626 626  )))
627 627  
628 628  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
629 629  
630 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
631 631  
632 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
651 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
633 633  
653 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
654 +
634 634  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
635 635  
636 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
637 637  
658 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
638 638  
660 +
661 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
662 +
663 +[[image:image-20230811113449-1.png||height="370" width="608"]]
664 +
639 639  ==== 2.3.3.5 Digital Interrupt ====
640 640  
641 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
642 642  
643 -(% style="color:blue" %)**~ Interrupt connection method:**
668 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
644 644  
670 +(% style="color:blue" %)** Interrupt connection method:**
671 +
645 645  [[image:image-20230513105351-5.png||height="147" width="485"]]
646 646  
674 +
647 647  (% style="color:blue" %)**Example to use with door sensor :**
648 648  
649 649  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -650,22 +650,23 @@
650 650  
651 651  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
652 652  
653 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
681 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
654 654  
655 -(% style="color:blue" %)**~ Below is the installation example:**
656 656  
657 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
684 +(% style="color:blue" %)**Below is the installation example:**
658 658  
686 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
687 +
659 659  * (((
660 -One pin to SN50_v3's PA8 pin
689 +One pin to SN50v3-LB's PA8 pin
661 661  )))
662 662  * (((
663 -The other pin to SN50_v3's VDD pin
692 +The other pin to SN50v3-LB's VDD pin
664 664  )))
665 665  
666 666  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
667 667  
668 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
697 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
669 669  
670 670  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
671 671  
... ... @@ -677,29 +677,32 @@
677 677  
678 678  The command is:
679 679  
680 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
709 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
681 681  
682 682  Below shows some screen captures in TTN V3:
683 683  
684 684  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
685 685  
686 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
687 687  
716 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
717 +
688 688  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
689 689  
690 690  
691 691  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
692 692  
723 +
693 693  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
694 694  
695 695  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
696 696  
697 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
728 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
698 698  
730 +
699 699  Below is the connection to SHT20/ SHT31. The connection is as below:
700 700  
733 +[[image:image-20230610170152-2.png||height="501" width="846"]]
701 701  
702 -[[image:image-20230513103633-3.png||height="448" width="716"]]
703 703  
704 704  The device will be able to get the I2C sensor data now and upload to IoT Server.
705 705  
... ... @@ -718,23 +718,26 @@
718 718  
719 719  ==== 2.3.3.7  ​Distance Reading ====
720 720  
721 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
722 722  
754 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
723 723  
756 +
724 724  ==== 2.3.3.8 Ultrasonic Sensor ====
725 725  
759 +
726 726  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
727 727  
728 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
762 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
729 729  
730 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
764 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
731 731  
732 732  The picture below shows the connection:
733 733  
734 734  [[image:image-20230512173903-6.png||height="596" width="715"]]
735 735  
736 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
737 737  
771 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
772 +
738 738  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
739 739  
740 740  **Example:**
... ... @@ -742,16 +742,17 @@
742 742  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
743 743  
744 744  
745 -
746 746  ==== 2.3.3.9  Battery Output - BAT pin ====
747 747  
748 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
749 749  
783 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
750 750  
785 +
751 751  ==== 2.3.3.10  +5V Output ====
752 752  
753 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
754 754  
789 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
790 +
755 755  The 5V output time can be controlled by AT Command.
756 756  
757 757  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -758,21 +758,23 @@
758 758  
759 759  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
760 760  
761 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
797 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
762 762  
763 763  
764 -
765 765  ==== 2.3.3.11  BH1750 Illumination Sensor ====
766 766  
802 +
767 767  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
768 768  
769 769  [[image:image-20230512172447-4.png||height="416" width="712"]]
770 770  
807 +
771 771  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
772 772  
773 773  
774 774  ==== 2.3.3.12  Working MOD ====
775 775  
813 +
776 776  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
777 777  
778 778  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -801,7 +801,6 @@
801 801  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
802 802  
803 803  
804 -
805 805  == 2.5 Frequency Plans ==
806 806  
807 807  
... ... @@ -821,6 +821,8 @@
821 821  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
822 822  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
823 823  
861 +
862 +
824 824  == 3.2 General Commands ==
825 825  
826 826  
... ... @@ -837,17 +837,18 @@
837 837  == 3.3 Commands special design for SN50v3-LB ==
838 838  
839 839  
840 -These commands only valid for S31x-LB, as below:
879 +These commands only valid for SN50v3-LB, as below:
841 841  
842 842  
843 843  === 3.3.1 Set Transmit Interval Time ===
844 844  
884 +
845 845  Feature: Change LoRaWAN End Node Transmit Interval.
846 846  
847 847  (% style="color:blue" %)**AT Command: AT+TDC**
848 848  
849 849  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
850 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
890 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
851 851  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
852 852  30000
853 853  OK
... ... @@ -871,21 +871,23 @@
871 871  
872 872  === 3.3.2 Get Device Status ===
873 873  
914 +
874 874  Send a LoRaWAN downlink to ask the device to send its status.
875 875  
876 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
917 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
877 877  
878 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
919 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
879 879  
880 880  
881 881  === 3.3.3 Set Interrupt Mode ===
882 882  
924 +
883 883  Feature, Set Interrupt mode for GPIO_EXIT.
884 884  
885 885  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
886 886  
887 887  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
888 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
930 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
889 889  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
890 890  0
891 891  OK
... ... @@ -900,7 +900,6 @@
900 900  )))|(% style="width:157px" %)OK
901 901  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
902 902  Set Transmit Interval
903 -
904 904  trigger by rising edge.
905 905  )))|(% style="width:157px" %)OK
906 906  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -920,6 +920,7 @@
920 920  
921 921  === 3.3.4 Set Power Output Duration ===
922 922  
964 +
923 923  Control the output duration 5V . Before each sampling, device will
924 924  
925 925  ~1. first enable the power output to external sensor,
... ... @@ -931,7 +931,7 @@
931 931  (% style="color:blue" %)**AT Command: AT+5VT**
932 932  
933 933  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
934 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
976 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
935 935  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
936 936  500(default)
937 937  OK
... ... @@ -953,12 +953,13 @@
953 953  
954 954  === 3.3.5 Set Weighing parameters ===
955 955  
998 +
956 956  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
957 957  
958 958  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
959 959  
960 960  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
961 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1004 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
962 962  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
963 963  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
964 964  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -979,6 +979,7 @@
979 979  
980 980  === 3.3.6 Set Digital pulse count value ===
981 981  
1025 +
982 982  Feature: Set the pulse count value.
983 983  
984 984  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -986,7 +986,7 @@
986 986  (% style="color:blue" %)**AT Command: AT+SETCNT**
987 987  
988 988  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
989 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1033 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
990 990  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
991 991  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
992 992  
... ... @@ -1003,12 +1003,13 @@
1003 1003  
1004 1004  === 3.3.7 Set Workmode ===
1005 1005  
1050 +
1006 1006  Feature: Switch working mode.
1007 1007  
1008 1008  (% style="color:blue" %)**AT Command: AT+MOD**
1009 1009  
1010 1010  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1011 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1056 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1012 1012  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1013 1013  OK
1014 1014  )))
... ... @@ -1038,27 +1038,47 @@
1038 1038  
1039 1039  
1040 1040  (% class="wikigeneratedid" %)
1041 -User can change firmware SN50v3-LB to:
1086 +**User can change firmware SN50v3-LB to:**
1042 1042  
1043 1043  * Change Frequency band/ region.
1044 1044  * Update with new features.
1045 1045  * Fix bugs.
1046 1046  
1047 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1092 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1048 1048  
1094 +**Methods to Update Firmware:**
1049 1049  
1050 -Methods to Update Firmware:
1096 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1097 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1051 1051  
1052 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1053 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1054 1054  
1100 +
1055 1055  = 6. FAQ =
1056 1056  
1057 1057  == 6.1 Where can i find source code of SN50v3-LB? ==
1058 1058  
1105 +
1059 1059  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1060 1060  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1061 1061  
1109 +
1110 +
1111 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1112 +
1113 +
1114 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1115 +
1116 +
1117 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1118 +
1119 +
1120 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1121 +
1122 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1123 +
1124 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1125 +
1126 +
1062 1062  = 7. Order Info =
1063 1063  
1064 1064  
... ... @@ -1082,8 +1082,11 @@
1082 1082  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1083 1083  * (% style="color:red" %)**NH**(%%): No Hole
1084 1084  
1150 +
1151 +
1085 1085  = 8. ​Packing Info =
1086 1086  
1154 +
1087 1087  (% style="color:#037691" %)**Package Includes**:
1088 1088  
1089 1089  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1095,6 +1095,8 @@
1095 1095  * Package Size / pcs : cm
1096 1096  * Weight / pcs : g
1097 1097  
1166 +
1167 +
1098 1098  = 9. Support =
1099 1099  
1100 1100  
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0