Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -30,6 +30,7 @@ 30 30 31 31 == 1.2 Features == 32 32 33 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -40,8 +40,10 @@ 40 40 * Downlink to change configure 41 41 * 8500mAh Battery for long term use 42 42 44 + 43 43 == 1.3 Specification == 44 44 47 + 45 45 (% style="color:#037691" %)**Common DC Characteristics:** 46 46 47 47 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -76,8 +76,10 @@ 76 76 * Sleep Mode: 5uA @ 3.3v 77 77 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 78 78 82 + 79 79 == 1.4 Sleep mode and working mode == 80 80 85 + 81 81 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 82 82 83 83 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -102,6 +102,7 @@ 102 102 ))) 103 103 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 104 104 110 + 105 105 == 1.6 BLE connection == 106 106 107 107 ... ... @@ -133,8 +133,9 @@ 133 133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 134 134 135 135 136 -== Hole Option == 142 +== 1.9 Hole Option == 137 137 144 + 138 138 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 139 139 140 140 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -147,7 +147,7 @@ 147 147 == 2.1 How it works == 148 148 149 149 150 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 151 151 152 152 153 153 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -155,7 +155,7 @@ 155 155 156 156 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 157 157 158 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.165 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 159 159 160 160 161 161 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -204,7 +204,7 @@ 204 204 === 2.3.1 Device Status, FPORT~=5 === 205 205 206 206 207 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 214 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 208 208 209 209 The Payload format is as below. 210 210 ... ... @@ -217,7 +217,7 @@ 217 217 Example parse in TTNv3 218 218 219 219 220 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 221 221 222 222 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 223 223 ... ... @@ -273,47 +273,39 @@ 273 273 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 274 274 275 275 276 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 283 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 277 277 278 278 For example: 279 279 280 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 287 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 281 281 282 282 283 283 (% style="color:red" %) **Important Notice:** 284 284 285 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 286 -1. All modes share the same Payload Explanation from HERE. 287 -1. By default, the device will send an uplink message every 20 minutes. 292 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 288 288 294 +2. All modes share the same Payload Explanation from HERE. 295 + 296 +3. By default, the device will send an uplink message every 20 minutes. 297 + 298 + 289 289 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 290 290 301 + 291 291 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 292 292 293 -(% style="width: 1110px" %)294 -|**Size(bytes)**|**2**|(% style="width:1 91px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**304 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 305 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 295 295 |**Value**|Bat|(% style="width:191px" %)((( 296 -Temperature(DS18B20) 297 - 298 -(PC13) 307 +Temperature(DS18B20)(PC13) 299 299 )))|(% style="width:78px" %)((( 300 -ADC 301 - 302 -(PA4) 309 +ADC(PA4) 303 303 )))|(% style="width:216px" %)((( 304 -Digital in(PB15) & 305 - 306 -Digital Interrupt(PA8) 307 - 308 - 311 +Digital in(PB15)&Digital Interrupt(PA8) 309 309 )))|(% style="width:308px" %)((( 310 -Temperature 311 - 312 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 313 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 313 313 )))|(% style="width:154px" %)((( 314 -Humidity 315 - 316 -(SHT20 or SHT31) 315 +Humidity(SHT20 or SHT31) 317 317 ))) 318 318 319 319 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] ... ... @@ -321,25 +321,19 @@ 321 321 322 322 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 323 323 323 + 324 324 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 325 325 326 -(% style="width: 1011px" %)327 -|**Size(bytes)**|**2**|(% style="width:1 96px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**326 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 327 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 328 328 |**Value**|BAT|(% style="width:196px" %)((( 329 -Temperature(DS18B20) 330 - 331 -(PC13) 329 +Temperature(DS18B20)(PC13) 332 332 )))|(% style="width:87px" %)((( 333 -ADC 334 - 335 -(PA4) 331 +ADC(PA4) 336 336 )))|(% style="width:189px" %)((( 337 -Digital in(PB15) & 338 - 339 -Digital Interrupt(PA8) 333 +Digital in(PB15) & Digital Interrupt(PA8) 340 340 )))|(% style="width:208px" %)((( 341 -Distance measure by: 342 -1) LIDAR-Lite V3HP 335 +Distance measure by:1) LIDAR-Lite V3HP 343 343 Or 344 344 2) Ultrasonic Sensor 345 345 )))|(% style="width:117px" %)Reserved ... ... @@ -346,32 +346,29 @@ 346 346 347 347 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 348 348 349 -**Connection of LIDAR-Lite V3HP:** 350 350 343 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 344 + 351 351 [[image:image-20230512173758-5.png||height="563" width="712"]] 352 352 353 -**Connection to Ultrasonic Sensor:** 354 354 355 - NeedtomoveR1 and R2 resistorstogetlow power,otherwise there willbe240uA standby current.348 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 356 356 350 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 351 + 357 357 [[image:image-20230512173903-6.png||height="596" width="715"]] 358 358 354 + 359 359 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 360 360 361 -(% style="width: 1113px" %)362 -|**Size(bytes)**|**2**|(% style="width:1 83px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**357 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 358 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 363 363 |**Value**|BAT|(% style="width:183px" %)((( 364 -Temperature(DS18B20) 365 - 366 -(PC13) 360 +Temperature(DS18B20)(PC13) 367 367 )))|(% style="width:173px" %)((( 368 -Digital in(PB15) & 369 - 370 -Digital Interrupt(PA8) 362 +Digital in(PB15) & Digital Interrupt(PA8) 371 371 )))|(% style="width:84px" %)((( 372 -ADC 373 - 374 -(PA4) 364 +ADC(PA4) 375 375 )))|(% style="width:323px" %)((( 376 376 Distance measure by:1)TF-Mini plus LiDAR 377 377 Or ... ... @@ -380,15 +380,17 @@ 380 380 381 381 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 382 382 373 + 383 383 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 384 384 385 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 376 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 386 386 387 387 [[image:image-20230512180609-7.png||height="555" width="802"]] 388 388 380 + 389 389 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 390 390 391 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 383 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 392 392 393 393 [[image:image-20230513105207-4.png||height="469" width="802"]] 394 394 ... ... @@ -395,34 +395,25 @@ 395 395 396 396 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 397 397 390 + 398 398 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 399 399 400 -(% style="width: 1031px" %)401 -|=((( 393 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 394 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 402 402 **Size(bytes)** 403 -)))|=(% style="width: 68px;" %)**2**|=(% style="width:75px;" %)**2**|=**2**|=**1**|=(% style="width:304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width:53px;" %)1396 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 404 404 |**Value**|(% style="width:68px" %)((( 405 -ADC1 406 - 407 -(PA4) 398 +ADC1(PA4) 408 408 )))|(% style="width:75px" %)((( 409 -ADC2 410 - 411 -(PA5) 400 +ADC2(PA5) 412 412 )))|((( 413 -ADC3 414 - 415 -(PA8) 402 +ADC3(PA8) 416 416 )))|((( 417 417 Digital Interrupt(PB15) 418 418 )))|(% style="width:304px" %)((( 419 -Temperature 420 - 421 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 406 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 422 422 )))|(% style="width:163px" %)((( 423 -Humidity 424 - 425 -(SHT20 or SHT31) 408 +Humidity(SHT20 or SHT31) 426 426 )))|(% style="width:53px" %)Bat 427 427 428 428 [[image:image-20230513110214-6.png]] ... ... @@ -433,73 +433,66 @@ 433 433 434 434 This mode has total 11 bytes. As shown below: 435 435 436 -(% style="width: 1017px" %)437 -|**Size(bytes)**|**2**|(% style="width:1 86px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**419 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 420 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 438 438 |**Value**|BAT|(% style="width:186px" %)((( 439 -Temperature1(DS18B20) 440 -(PC13) 422 +Temperature1(DS18B20)(PC13) 441 441 )))|(% style="width:82px" %)((( 442 -ADC 443 - 444 -(PA4) 424 +ADC(PA4) 445 445 )))|(% style="width:210px" %)((( 446 -Digital in(PB15) & 447 - 448 -Digital Interrupt(PA8) 426 +Digital in(PB15) & Digital Interrupt(PA8) 449 449 )))|(% style="width:191px" %)Temperature2(DS18B20) 450 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 451 -(PB8) 428 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 452 452 453 453 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 454 454 432 + 455 455 [[image:image-20230513134006-1.png||height="559" width="736"]] 456 456 457 457 458 458 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 459 459 438 + 460 460 [[image:image-20230512164658-2.png||height="532" width="729"]] 461 461 462 462 Each HX711 need to be calibrated before used. User need to do below two steps: 463 463 464 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 465 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 443 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 444 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 466 466 1. ((( 467 467 Weight has 4 bytes, the unit is g. 447 + 448 + 449 + 468 468 ))) 469 469 470 470 For example: 471 471 472 -**AT+GETSENSORVALUE =0** 454 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 473 473 474 474 Response: Weight is 401 g 475 475 476 476 Check the response of this command and adjust the value to match the real value for thing. 477 477 478 -(% style="width: 767px" %)479 -|=((( 460 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 461 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 480 480 **Size(bytes)** 481 -)))|=**2**|=(% style="width: 1 93px;" %)**2**|=(% style="width:85px;" %)**2**|=(% style="width:186px;" %)**1**|=(% style="width:100px;" %)**4**463 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 482 482 |**Value**|BAT|(% style="width:193px" %)((( 483 -Temperature(DS18B20) 484 - 485 -(PC13) 486 - 487 - 465 +Temperature(DS18B20)(PC13) 488 488 )))|(% style="width:85px" %)((( 489 -ADC 490 - 491 -(PA4) 467 +ADC(PA4) 492 492 )))|(% style="width:186px" %)((( 493 -Digital in(PB15) & 494 - 495 -Digital Interrupt(PA8) 469 +Digital in(PB15) & Digital Interrupt(PA8) 496 496 )))|(% style="width:100px" %)Weight 497 497 498 498 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 499 499 500 500 475 + 501 501 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 502 502 478 + 503 503 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 504 504 505 505 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -506,26 +506,19 @@ 506 506 507 507 [[image:image-20230512181814-9.png||height="543" width="697"]] 508 508 509 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 510 510 511 -(% style="width:961px" %) 512 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 513 -|**Value**|BAT|(% style="width:256px" %)((( 514 -Temperature(DS18B20) 486 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 515 515 516 -(PC13) 488 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 489 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 490 +|**Value**|BAT|(% style="width:256px" %)((( 491 +Temperature(DS18B20)(PC13) 517 517 )))|(% style="width:108px" %)((( 518 -ADC 519 - 520 -(PA4) 493 +ADC(PA4) 521 521 )))|(% style="width:126px" %)((( 522 -Digital in 523 - 524 -(PB15) 495 +Digital in(PB15) 525 525 )))|(% style="width:145px" %)((( 526 -Count 527 - 528 -(PA8) 497 +Count(PA8) 529 529 ))) 530 530 531 531 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] ... ... @@ -533,18 +533,16 @@ 533 533 534 534 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 535 535 536 -(% style="width:1108px" %) 537 -|=((( 505 + 506 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 507 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 538 538 **Size(bytes)** 539 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width:83px;" %)**2**|=(% style="width:184px;" %)**1**|=(% style="width:186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width:100px;" %)2509 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 540 540 |**Value**|BAT|(% style="width:188px" %)((( 541 541 Temperature(DS18B20) 542 - 543 543 (PC13) 544 544 )))|(% style="width:83px" %)((( 545 -ADC 546 - 547 -(PA5) 514 +ADC(PA5) 548 548 )))|(% style="width:184px" %)((( 549 549 Digital Interrupt1(PA8) 550 550 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -551,30 +551,25 @@ 551 551 552 552 [[image:image-20230513111203-7.png||height="324" width="975"]] 553 553 521 + 554 554 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 555 555 556 -(% style="width:922px" %) 557 -|=((( 524 + 525 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 526 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 558 558 **Size(bytes)** 559 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2528 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 560 560 |**Value**|BAT|(% style="width:207px" %)((( 561 561 Temperature(DS18B20) 562 - 563 563 (PC13) 564 564 )))|(% style="width:94px" %)((( 565 -ADC1 566 - 567 -(PA4) 533 +ADC1(PA4) 568 568 )))|(% style="width:198px" %)((( 569 569 Digital Interrupt(PB15) 570 570 )))|(% style="width:84px" %)((( 571 -ADC2 572 - 573 -(PA5) 537 +ADC2(PA5) 574 574 )))|(% style="width:82px" %)((( 575 -ADC3 576 - 577 -(PA8) 539 +ADC3(PA8) 578 578 ))) 579 579 580 580 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -582,56 +582,50 @@ 582 582 583 583 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 584 584 585 -(% style="width:1010px" %) 586 -|=((( 547 + 548 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 549 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 587 587 **Size(bytes)** 588 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4551 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 589 589 |**Value**|BAT|((( 590 -Temperature1(DS18B20) 591 - 592 -(PC13) 553 +Temperature 554 +(DS18B20)(PC13) 593 593 )))|((( 594 -Temperature2(DS18B20) 595 - 596 -(PB9) 556 +Temperature2 557 +(DS18B20)(PB9) 597 597 )))|((( 598 598 Digital Interrupt 599 - 600 600 (PB15) 601 601 )))|(% style="width:193px" %)((( 602 -Temperature3(DS18B20) 603 - 604 -(PB8) 562 +Temperature3 563 +(DS18B20)(PB8) 605 605 )))|(% style="width:78px" %)((( 606 -Count1 607 - 608 -(PA8) 565 +Count1(PA8) 609 609 )))|(% style="width:78px" %)((( 610 -Count2 611 - 612 -(PA4) 567 +Count2(PA4) 613 613 ))) 614 614 615 615 [[image:image-20230513111255-9.png||height="341" width="899"]] 616 616 617 -**The newly added AT command is issued correspondingly:** 572 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 618 618 619 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**574 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 620 620 621 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**576 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 622 622 623 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**578 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 624 624 625 -**AT+SETCNT=aa,bb** 626 626 581 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 582 + 627 627 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 628 628 629 629 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 630 630 631 631 632 - 633 633 === 2.3.3 Decode payload === 634 634 590 + 635 635 While using TTN V3 network, you can add the payload format to decode the payload. 636 636 637 637 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -638,13 +638,14 @@ 638 638 639 639 The payload decoder function for TTN V3 are here: 640 640 641 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 597 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 642 642 643 643 644 644 ==== 2.3.3.1 Battery Info ==== 645 645 646 -Check the battery voltage for SN50v3. 647 647 603 +Check the battery voltage for SN50v3-LB. 604 + 648 648 Ex1: 0x0B45 = 2885mV 649 649 650 650 Ex2: 0x0B49 = 2889mV ... ... @@ -652,16 +652,18 @@ 652 652 653 653 ==== 2.3.3.2 Temperature (DS18B20) ==== 654 654 612 + 655 655 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 656 656 657 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]615 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 658 658 659 -**Connection:** 617 +(% style="color:blue" %)**Connection:** 660 660 661 661 [[image:image-20230512180718-8.png||height="538" width="647"]] 662 662 663 -**Example**: 664 664 622 +(% style="color:blue" %)**Example**: 623 + 665 665 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 666 666 667 667 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -671,6 +671,7 @@ 671 671 672 672 ==== 2.3.3.3 Digital Input ==== 673 673 633 + 674 674 The digital input for pin PB15, 675 675 676 676 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -680,7 +680,7 @@ 680 680 ((( 681 681 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 682 682 683 -**Note: **The maximum voltage input supports 3.6V.643 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 684 684 685 685 686 686 ))) ... ... @@ -687,6 +687,7 @@ 687 687 688 688 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 689 689 650 + 690 690 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 691 691 692 692 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -693,39 +693,43 @@ 693 693 694 694 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 695 695 696 -**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 697 697 658 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 698 698 660 + 699 699 ==== 2.3.3.5 Digital Interrupt ==== 700 700 701 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 702 702 703 - **~Interruptconnection method:**664 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 704 704 666 +(% style="color:blue" %)** Interrupt connection method:** 667 + 705 705 [[image:image-20230513105351-5.png||height="147" width="485"]] 706 706 707 -**Example to use with door sensor :** 708 708 671 +(% style="color:blue" %)**Example to use with door sensor :** 672 + 709 709 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 710 710 711 711 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 712 712 713 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.677 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 714 714 715 -**~ Below is the installation example:** 716 716 717 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:680 +(% style="color:blue" %)**Below is the installation example:** 718 718 682 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 683 + 719 719 * ((( 720 -One pin to SN50 _v3's PA8 pin685 +One pin to SN50v3-LB's PA8 pin 721 721 ))) 722 722 * ((( 723 -The other pin to SN50 _v3's VDD pin688 +The other pin to SN50v3-LB's VDD pin 724 724 ))) 725 725 726 726 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 727 727 728 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 693 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 729 729 730 730 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 731 731 ... ... @@ -737,30 +737,33 @@ 737 737 738 738 The command is: 739 739 740 -**AT+INTMOD1=1 705 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 741 741 742 742 Below shows some screen captures in TTN V3: 743 743 744 744 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 745 745 746 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 747 747 712 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 713 + 748 748 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 749 749 750 750 751 751 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 752 752 719 + 753 753 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 754 754 755 755 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 756 756 757 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.724 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 758 758 726 + 759 759 Below is the connection to SHT20/ SHT31. The connection is as below: 760 760 761 - 762 762 [[image:image-20230513103633-3.png||height="448" width="716"]] 763 763 731 + 764 764 The device will be able to get the I2C sensor data now and upload to IoT Server. 765 765 766 766 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -778,23 +778,26 @@ 778 778 779 779 ==== 2.3.3.7 Distance Reading ==== 780 780 781 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 782 782 750 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 783 783 752 + 784 784 ==== 2.3.3.8 Ultrasonic Sensor ==== 785 785 755 + 786 786 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 787 787 788 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.758 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 789 789 790 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 760 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 791 791 792 792 The picture below shows the connection: 793 793 794 794 [[image:image-20230512173903-6.png||height="596" width="715"]] 795 795 796 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 797 797 767 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 768 + 798 798 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 799 799 800 800 **Example:** ... ... @@ -802,37 +802,40 @@ 802 802 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 803 803 804 804 805 - 806 806 ==== 2.3.3.9 Battery Output - BAT pin ==== 807 807 808 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 809 809 779 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 810 810 781 + 811 811 ==== 2.3.3.10 +5V Output ==== 812 812 813 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 814 814 785 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 786 + 815 815 The 5V output time can be controlled by AT Command. 816 816 817 -**AT+5VT=1000** 789 +(% style="color:blue" %)**AT+5VT=1000** 818 818 819 819 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 820 820 821 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 793 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 822 822 823 823 824 - 825 825 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 826 826 798 + 827 827 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 828 828 829 829 [[image:image-20230512172447-4.png||height="416" width="712"]] 830 830 803 + 831 831 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 832 832 833 833 834 834 ==== 2.3.3.12 Working MOD ==== 835 835 809 + 836 836 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 837 837 838 838 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -849,7 +849,6 @@ 849 849 * 7: MOD8 850 850 * 8: MOD9 851 851 852 -== == 853 853 854 854 == 2.4 Payload Decoder file == 855 855 ... ... @@ -861,7 +861,6 @@ 861 861 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 862 862 863 863 864 - 865 865 == 2.5 Frequency Plans == 866 866 867 867 ... ... @@ -881,6 +881,7 @@ 881 881 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 882 882 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 883 883 856 + 884 884 == 3.2 General Commands == 885 885 886 886 ... ... @@ -897,11 +897,12 @@ 897 897 == 3.3 Commands special design for SN50v3-LB == 898 898 899 899 900 -These commands only valid for S3 1x-LB, as below:873 +These commands only valid for SN50v3-LB, as below: 901 901 902 902 903 903 === 3.3.1 Set Transmit Interval Time === 904 904 878 + 905 905 Feature: Change LoRaWAN End Node Transmit Interval. 906 906 907 907 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -927,19 +927,20 @@ 927 927 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 928 928 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 929 929 930 -=== === 931 931 932 932 === 3.3.2 Get Device Status === 933 933 907 + 934 934 Send a LoRaWAN downlink to ask the device to send its status. 935 935 936 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01910 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 937 937 938 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 912 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 939 939 940 940 941 941 === 3.3.3 Set Interrupt Mode === 942 942 917 + 943 943 Feature, Set Interrupt mode for GPIO_EXIT. 944 944 945 945 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -960,7 +960,6 @@ 960 960 )))|(% style="width:157px" %)OK 961 961 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 962 962 Set Transmit Interval 963 - 964 964 trigger by rising edge. 965 965 )))|(% style="width:157px" %)OK 966 966 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -976,10 +976,10 @@ 976 976 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 977 977 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 978 978 979 -=== === 980 980 981 981 === 3.3.4 Set Power Output Duration === 982 982 956 + 983 983 Control the output duration 5V . Before each sampling, device will 984 984 985 985 ~1. first enable the power output to external sensor, ... ... @@ -994,7 +994,6 @@ 994 994 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 995 995 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 996 996 500(default) 997 - 998 998 OK 999 999 ))) 1000 1000 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( ... ... @@ -1010,10 +1010,10 @@ 1010 1010 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1011 1011 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1012 1012 1013 -=== === 1014 1014 1015 1015 === 3.3.5 Set Weighing parameters === 1016 1016 989 + 1017 1017 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1018 1018 1019 1019 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -1036,10 +1036,10 @@ 1036 1036 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1037 1037 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1038 1038 1039 -=== === 1040 1040 1041 1041 === 3.3.6 Set Digital pulse count value === 1042 1042 1015 + 1043 1043 Feature: Set the pulse count value. 1044 1044 1045 1045 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1060,10 +1060,10 @@ 1060 1060 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1061 1061 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1062 1062 1063 -=== === 1064 1064 1065 1065 === 3.3.7 Set Workmode === 1066 1066 1039 + 1067 1067 Feature: Switch working mode. 1068 1068 1069 1069 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1075,7 +1075,6 @@ 1075 1075 ))) 1076 1076 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1077 1077 OK 1078 - 1079 1079 Attention:Take effect after ATZ 1080 1080 ))) 1081 1081 ... ... @@ -1086,7 +1086,6 @@ 1086 1086 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1087 1087 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1088 1088 1089 -= = 1090 1090 1091 1091 = 4. Battery & Power Consumption = 1092 1092 ... ... @@ -1100,27 +1100,29 @@ 1100 1100 1101 1101 1102 1102 (% class="wikigeneratedid" %) 1103 -User can change firmware SN50v3-LB to: 1074 +**User can change firmware SN50v3-LB to:** 1104 1104 1105 1105 * Change Frequency band/ region. 1106 1106 * Update with new features. 1107 1107 * Fix bugs. 1108 1108 1109 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1080 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1110 1110 1082 +**Methods to Update Firmware:** 1111 1111 1112 -Methods to Update Firmware: 1113 - 1114 1114 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1115 1115 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1116 1116 1087 + 1117 1117 = 6. FAQ = 1118 1118 1119 1119 == 6.1 Where can i find source code of SN50v3-LB? == 1120 1120 1092 + 1121 1121 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1122 1122 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1123 1123 1096 + 1124 1124 = 7. Order Info = 1125 1125 1126 1126 ... ... @@ -1144,8 +1144,10 @@ 1144 1144 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1145 1145 * (% style="color:red" %)**NH**(%%): No Hole 1146 1146 1120 + 1147 1147 = 8. Packing Info = 1148 1148 1123 + 1149 1149 (% style="color:#037691" %)**Package Includes**: 1150 1150 1151 1151 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1157,8 +1157,10 @@ 1157 1157 * Package Size / pcs : cm 1158 1158 * Weight / pcs : g 1159 1159 1135 + 1160 1160 = 9. Support = 1161 1161 1162 1162 1163 1163 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1140 + 1164 1164 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]