<
From version < 43.3 >
edited by Xiaoling
on 2023/05/16 13:40
To version < 11.1 >
edited by Edwin Chen
on 2023/05/11 20:42
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,15 +16,18 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
... ... @@ -120,7 +120,7 @@
120 120  == 1.7 Pin Definitions ==
121 121  
122 122  
123 -[[image:image-20230513102034-2.png]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
124 124  
125 125  
126 126  == 1.8 Mechanical ==
... ... @@ -147,7 +147,7 @@
147 147  == 2.1 How it works ==
148 148  
149 149  
150 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
151 151  
152 152  
153 153  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,11 +158,11 @@
158 158  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
159 159  
160 160  
161 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
162 162  
163 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
165 +Each S31x-LB is shipped with a sticker with the default device EUI as below:
164 164  
165 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
167 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
166 166  
167 167  
168 168  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -189,10 +189,10 @@
189 189  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
190 190  
191 191  
192 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
194 +(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
193 193  
194 194  
195 -Press the button for 5 seconds to activate the SN50v3-LB.
197 +Press the button for 5 seconds to activate the S31x-LB.
196 196  
197 197  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
198 198  
... ... @@ -204,7 +204,7 @@
204 204  === 2.3.1 Device Status, FPORT~=5 ===
205 205  
206 206  
207 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
208 208  
209 209  The Payload format is as below.
210 210  
... ... @@ -216,9 +216,11 @@
216 216  
217 217  Example parse in TTNv3
218 218  
221 +[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
219 219  
220 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
221 221  
224 +(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
225 +
222 222  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
223 223  
224 224  (% style="color:#037691" %)**Frequency Band**:
... ... @@ -270,396 +270,39 @@
270 270  Ex2: 0x0B49 = 2889mV
271 271  
272 272  
273 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 +=== 2.3.2  Sensor Data. FPORT~=2 ===
274 274  
275 275  
276 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 +Sensor Data is uplink via FPORT=2
277 277  
278 -For example:
279 -
280 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
281 -
282 -
283 -(% style="color:red" %) **Important Notice:**
284 -
285 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
286 -1. All modes share the same Payload Explanation from HERE.
287 -1. By default, the device will send an uplink message every 20 minutes.
288 -
289 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
290 -
291 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
292 -
293 -(% style="width:1110px" %)
294 -|**Size(bytes)**|**2**|(% style="width:191px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**
295 -|**Value**|Bat|(% style="width:191px" %)(((
296 -Temperature(DS18B20)
297 -
298 -(PC13)
299 -)))|(% style="width:78px" %)(((
300 -ADC
301 -
302 -(PA4)
303 -)))|(% style="width:216px" %)(((
304 -Digital in(PB15) &
305 -
306 -Digital Interrupt(PA8)
307 -
308 -
309 -)))|(% style="width:308px" %)(((
310 -Temperature
311 -
312 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
313 -)))|(% style="width:154px" %)(((
314 -Humidity
315 -
316 -(SHT20 or SHT31)
317 -)))
318 -
319 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
320 -
321 -
322 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
323 -
324 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
325 -
326 -(% style="width:1011px" %)
327 -|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
328 -|**Value**|BAT|(% style="width:196px" %)(((
329 -Temperature(DS18B20)
330 -
331 -(PC13)
332 -)))|(% style="width:87px" %)(((
333 -ADC
334 -
335 -(PA4)
336 -)))|(% style="width:189px" %)(((
337 -Digital in(PB15) &
338 -
339 -Digital Interrupt(PA8)
340 -)))|(% style="width:208px" %)(((
341 -Distance measure by:
342 -1) LIDAR-Lite V3HP
343 -Or
344 -2) Ultrasonic Sensor
345 -)))|(% style="width:117px" %)Reserved
346 -
347 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
348 -
349 -**Connection of LIDAR-Lite V3HP:**
350 -
351 -[[image:image-20230512173758-5.png||height="563" width="712"]]
352 -
353 -**Connection to Ultrasonic Sensor:**
354 -
355 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
356 -
357 -[[image:image-20230512173903-6.png||height="596" width="715"]]
358 -
359 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
360 -
361 -(% style="width:1113px" %)
362 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
363 -|**Value**|BAT|(% style="width:183px" %)(((
364 -Temperature(DS18B20)
365 -
366 -(PC13)
367 -)))|(% style="width:173px" %)(((
368 -Digital in(PB15) &
369 -
370 -Digital Interrupt(PA8)
371 -)))|(% style="width:84px" %)(((
372 -ADC
373 -
374 -(PA4)
375 -)))|(% style="width:323px" %)(((
376 -Distance measure by:1)TF-Mini plus LiDAR
377 -Or 
378 -2) TF-Luna LiDAR
379 -)))|(% style="width:188px" %)Distance signal  strength
380 -
381 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
382 -
383 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
384 -
385 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
386 -
387 -[[image:image-20230512180609-7.png||height="555" width="802"]]
388 -
389 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
390 -
391 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
392 -
393 -[[image:image-20230513105207-4.png||height="469" width="802"]]
394 -
395 -
396 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
397 -
398 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
399 -
400 -(% style="width:1031px" %)
401 -|=(((
282 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
283 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
402 402  **Size(bytes)**
403 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
404 -|**Value**|(% style="width:68px" %)(((
405 -ADC1
406 -
407 -(PA4)
408 -)))|(% style="width:75px" %)(((
409 -ADC2
410 -
411 -(PA5)
412 -)))|(((
413 -ADC3
414 -
415 -(PA8)
416 -)))|(((
417 -Digital Interrupt(PB15)
418 -)))|(% style="width:304px" %)(((
419 -Temperature
420 -
421 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
422 -)))|(% style="width:163px" %)(((
423 -Humidity
424 -
425 -(SHT20 or SHT31)
426 -)))|(% style="width:53px" %)Bat
427 -
428 -[[image:image-20230513110214-6.png]]
429 -
430 -
431 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
432 -
433 -
434 -This mode has total 11 bytes. As shown below:
435 -
436 -(% style="width:1017px" %)
437 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
438 -|**Value**|BAT|(% style="width:186px" %)(((
439 -Temperature1(DS18B20)
440 -(PC13)
441 -)))|(% style="width:82px" %)(((
442 -ADC
443 -
444 -(PA4)
445 -)))|(% style="width:210px" %)(((
446 -Digital in(PB15) &
447 -
448 -Digital Interrupt(PA8) 
449 -)))|(% style="width:191px" %)Temperature2(DS18B20)
450 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
451 -(PB8)
452 -
453 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
454 -
455 -[[image:image-20230513134006-1.png||height="559" width="736"]]
456 -
457 -
458 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
459 -
460 -[[image:image-20230512164658-2.png||height="532" width="729"]]
461 -
462 -Each HX711 need to be calibrated before used. User need to do below two steps:
463 -
464 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
465 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
466 -1. (((
467 -Weight has 4 bytes, the unit is g.
285 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
286 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
287 +[[Battery>>||anchor="HBattery:"]]
288 +)))|(% style="width:130px" %)(((
289 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
290 +)))|(% style="width:91px" %)(((
291 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
292 +)))|(% style="width:103px" %)(((
293 +[[Temperature>>||anchor="HTemperature:"]]
294 +)))|(% style="width:80px" %)(((
295 +[[Humidity>>||anchor="HHumidity:"]]
468 468  )))
469 469  
470 -For example:
298 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
471 471  
472 -**AT+GETSENSORVALUE =0**
300 +Sensor Battery Level.
473 473  
474 -Response:  Weight is 401 g
475 -
476 -Check the response of this command and adjust the value to match the real value for thing.
477 -
478 -(% style="width:767px" %)
479 -|=(((
480 -**Size(bytes)**
481 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
482 -|**Value**|BAT|(% style="width:193px" %)(((
483 -Temperature(DS18B20)
484 -
485 -(PC13)
486 -
487 -
488 -)))|(% style="width:85px" %)(((
489 -ADC
490 -
491 -(PA4)
492 -)))|(% style="width:186px" %)(((
493 -Digital in(PB15) &
494 -
495 -Digital Interrupt(PA8)
496 -)))|(% style="width:100px" %)Weight
497 -
498 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
499 -
500 -
501 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
502 -
503 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
504 -
505 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
506 -
507 -[[image:image-20230512181814-9.png||height="543" width="697"]]
508 -
509 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
510 -
511 -(% style="width:961px" %)
512 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
513 -|**Value**|BAT|(% style="width:256px" %)(((
514 -Temperature(DS18B20)
515 -
516 -(PC13)
517 -)))|(% style="width:108px" %)(((
518 -ADC
519 -
520 -(PA4)
521 -)))|(% style="width:126px" %)(((
522 -Digital in
523 -
524 -(PB15)
525 -)))|(% style="width:145px" %)(((
526 -Count
527 -
528 -(PA8)
529 -)))
530 -
531 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
532 -
533 -
534 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
535 -
536 -(% style="width:1108px" %)
537 -|=(((
538 -**Size(bytes)**
539 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
540 -|**Value**|BAT|(% style="width:188px" %)(((
541 -Temperature(DS18B20)
542 -
543 -(PC13)
544 -)))|(% style="width:83px" %)(((
545 -ADC
546 -
547 -(PA5)
548 -)))|(% style="width:184px" %)(((
549 -Digital Interrupt1(PA8)
550 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
551 -
552 -[[image:image-20230513111203-7.png||height="324" width="975"]]
553 -
554 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
555 -
556 -(% style="width:922px" %)
557 -|=(((
558 -**Size(bytes)**
559 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
560 -|**Value**|BAT|(% style="width:207px" %)(((
561 -Temperature(DS18B20)
562 -
563 -(PC13)
564 -)))|(% style="width:94px" %)(((
565 -ADC1
566 -
567 -(PA4)
568 -)))|(% style="width:198px" %)(((
569 -Digital Interrupt(PB15)
570 -)))|(% style="width:84px" %)(((
571 -ADC2
572 -
573 -(PA5)
574 -)))|(% style="width:82px" %)(((
575 -ADC3
576 -
577 -(PA8)
578 -)))
579 -
580 -[[image:image-20230513111231-8.png||height="335" width="900"]]
581 -
582 -
583 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
584 -
585 -(% style="width:1010px" %)
586 -|=(((
587 -**Size(bytes)**
588 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
589 -|**Value**|BAT|(((
590 -Temperature1(DS18B20)
591 -
592 -(PC13)
593 -)))|(((
594 -Temperature2(DS18B20)
595 -
596 -(PB9)
597 -)))|(((
598 -Digital Interrupt
599 -
600 -(PB15)
601 -)))|(% style="width:193px" %)(((
602 -Temperature3(DS18B20)
603 -
604 -(PB8)
605 -)))|(% style="width:78px" %)(((
606 -Count1
607 -
608 -(PA8)
609 -)))|(% style="width:78px" %)(((
610 -Count2
611 -
612 -(PA4)
613 -)))
614 -
615 -[[image:image-20230513111255-9.png||height="341" width="899"]]
616 -
617 -**The newly added AT command is issued correspondingly:**
618 -
619 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
620 -
621 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
622 -
623 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
624 -
625 -**AT+SETCNT=aa,bb** 
626 -
627 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
628 -
629 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
630 -
631 -
632 -
633 -=== 2.3.3  ​Decode payload ===
634 -
635 -While using TTN V3 network, you can add the payload format to decode the payload.
636 -
637 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
638 -
639 -The payload decoder function for TTN V3 are here:
640 -
641 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
642 -
643 -
644 -==== 2.3.3.1 Battery Info ====
645 -
646 -Check the battery voltage for SN50v3.
647 -
648 648  Ex1: 0x0B45 = 2885mV
649 649  
650 650  Ex2: 0x0B49 = 2889mV
651 651  
652 652  
653 -==== 2.3.3.2  Temperature (DS18B20) ====
654 654  
655 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
308 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
656 656  
657 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
658 -
659 -**Connection:**
660 -
661 -[[image:image-20230512180718-8.png||height="538" width="647"]]
662 -
663 663  **Example**:
664 664  
665 665  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -669,213 +669,195 @@
669 669  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
670 670  
671 671  
672 -==== 2.3.3.3 Digital Input ====
319 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
673 673  
674 -The digital input for pin PB15,
675 675  
676 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
677 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
322 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
678 678  
679 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
680 -(((
681 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
682 682  
683 -**Note:**The maximum voltage input supports 3.6V.
325 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
684 684  
685 -
686 -)))
687 687  
688 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
328 +**Example:**
689 689  
690 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
330 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
691 691  
692 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
332 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
693 693  
694 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
334 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
695 695  
696 -**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
336 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
697 697  
698 698  
699 -==== 2.3.3.5 Digital Interrupt ====
339 +== 2.4 Payload Decoder file ==
700 700  
701 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
702 702  
703 -**~ Interrupt connection method:**
342 +In TTN, use can add a custom payload so it shows friendly reading
704 704  
705 -[[image:image-20230513105351-5.png||height="147" width="485"]]
344 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
706 706  
707 -**Example to use with door sensor :**
346 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
708 708  
709 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
710 710  
711 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
349 +== 2.5 Datalog Feature ==
712 712  
713 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
714 714  
715 -**~ Below is the installation example:**
352 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
716 716  
717 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
718 718  
719 -* (((
720 -One pin to SN50_v3's PA8 pin
721 -)))
722 -* (((
723 -The other pin to SN50_v3's VDD pin
724 -)))
355 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
725 725  
726 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
727 727  
728 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
358 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
729 729  
730 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
360 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
361 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
731 731  
732 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
363 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
733 733  
734 -The above photos shows the two parts of the magnetic switch fitted to a door.
365 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
735 735  
736 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
367 +=== 2.5.2 Unix TimeStamp ===
737 737  
738 -The command is:
739 739  
740 -**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
370 +S31x-LB uses Unix TimeStamp format based on
741 741  
742 -Below shows some screen captures in TTN V3:
372 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
743 743  
744 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
374 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
745 745  
746 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
376 +Below is the converter example
747 747  
748 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
378 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
749 749  
380 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
750 750  
751 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
752 752  
753 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
383 +=== 2.5.3 Set Device Time ===
754 754  
755 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
756 756  
757 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
386 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
758 758  
759 -Below is the connection to SHT20/ SHT31. The connection is as below:
388 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
760 760  
390 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
761 761  
762 -[[image:image-20230513103633-3.png||height="448" width="716"]]
763 763  
764 -The device will be able to get the I2C sensor data now and upload to IoT Server.
393 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
765 765  
766 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
767 767  
768 -Convert the read byte to decimal and divide it by ten.
396 +The Datalog uplinks will use below payload format.
769 769  
770 -**Example:**
398 +**Retrieval data payload:**
771 771  
772 -Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
400 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
401 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
402 +**Size(bytes)**
403 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
404 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
405 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
406 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
773 773  
774 -Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
408 +**Poll message flag & Ext:**
775 775  
776 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
410 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
777 777  
412 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
778 778  
779 -==== 2.3.3.7  ​Distance Reading ====
414 +**Poll Message Flag**: 1: This message is a poll message reply.
780 780  
781 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
416 +* Poll Message Flag is set to 1.
782 782  
418 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
783 783  
784 -==== 2.3.3.8 Ultrasonic Sensor ====
420 +For example, in US915 band, the max payload for different DR is:
785 785  
786 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
422 +**a) DR0:** max is 11 bytes so one entry of data
787 787  
788 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
424 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
789 789  
790 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
426 +**c) DR2:** total payload includes 11 entries of data
791 791  
792 -The picture below shows the connection:
428 +**d) DR3: **total payload includes 22 entries of data.
793 793  
794 -[[image:image-20230512173903-6.png||height="596" width="715"]]
430 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
795 795  
796 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
797 797  
798 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
799 -
800 800  **Example:**
801 801  
802 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
435 +If S31x-LB has below data inside Flash:
803 803  
437 +[[image:1682646494051-944.png]]
804 804  
439 +If user sends below downlink command: 3160065F9760066DA705
805 805  
806 -==== 2.3.3.9  Battery Output - BAT pin ====
441 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
807 807  
808 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
443 + Stop time: 60066DA7= time 21/1/19 05:27:03
809 809  
810 810  
811 -==== 2.3.3.1 +5V Output ====
446 +**S31x-LB will uplink this payload.**
812 812  
813 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling
448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
814 814  
815 -The 5V output time can be controlled by AT Command.
450 +(((
451 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
452 +)))
816 816  
817 -**AT+5VT=1000**
454 +(((
455 +Where the first 11 bytes is for the first entry:
456 +)))
818 818  
819 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
458 +(((
459 +7FFF089801464160065F97
460 +)))
820 820  
821 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
462 +(((
463 +**Ext sensor data**=0x7FFF/100=327.67
464 +)))
822 822  
466 +(((
467 +**Temp**=0x088E/100=22.00
468 +)))
823 823  
470 +(((
471 +**Hum**=0x014B/10=32.6
472 +)))
824 824  
825 -==== 2.3.3.11  BH1750 Illumination Sensor ====
474 +(((
475 +**poll message flag & Ext**=0x41,means reply data,Ext=1
476 +)))
826 826  
827 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
478 +(((
479 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
480 +)))
828 828  
829 -[[image:image-20230512172447-4.png||height="416" width="712"]]
830 830  
831 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
483 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
832 832  
485 +== 2.6 Temperature Alarm Feature ==
833 833  
834 -==== 2.3.3.12  Working MOD ====
835 835  
836 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
488 +S31x-LB work flow with Alarm feature.
837 837  
838 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
839 839  
840 -Case 7^^th^^ Byte >> 2 & 0x1f:
491 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
841 841  
842 -* 0: MOD1
843 -* 1: MOD2
844 -* 2: MOD3
845 -* 3: MOD4
846 -* 4: MOD5
847 -* 5: MOD6
848 -* 6: MOD7
849 -* 7: MOD8
850 -* 8: MOD9
851 851  
852 -== ==
494 +== 2.7 Frequency Plans ==
853 853  
854 -== 2.4 Payload Decoder file ==
855 855  
497 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
856 856  
857 -In TTN, use can add a custom payload so it shows friendly reading
858 -
859 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
860 -
861 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
862 -
863 -
864 -
865 -== 2.5 Frequency Plans ==
866 -
867 -
868 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
869 -
870 870  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
871 871  
872 872  
873 -= 3. Configure SN50v3-LB =
502 += 3. Configure S31x-LB =
874 874  
875 875  == 3.1 Configure Methods ==
876 876  
877 877  
878 -SN50v3-LB supports below configure method:
507 +S31x-LB supports below configure method:
879 879  
880 880  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
881 881  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -894,7 +894,7 @@
894 894  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
895 895  
896 896  
897 -== 3.3 Commands special design for SN50v3-LB ==
526 +== 3.3 Commands special design for S31x-LB ==
898 898  
899 899  
900 900  These commands only valid for S31x-LB, as below:
... ... @@ -902,6 +902,7 @@
902 902  
903 903  === 3.3.1 Set Transmit Interval Time ===
904 904  
534 +
905 905  Feature: Change LoRaWAN End Node Transmit Interval.
906 906  
907 907  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -927,167 +927,118 @@
927 927  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
928 928  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
929 929  
930 -=== ===
931 -
932 932  === 3.3.2 Get Device Status ===
933 933  
934 -Send a LoRaWAN downlink to ask the device to send its status.
935 935  
563 +Send a LoRaWAN downlink to ask device send Alarm settings.
564 +
936 936  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
937 937  
938 938  Sensor will upload Device Status via FPORT=5. See payload section for detail.
939 939  
940 940  
941 -=== 3.3.3 Set Interrupt Mode ===
570 +=== 3.3.3 Set Temperature Alarm Threshold ===
942 942  
943 -Feature, Set Interrupt mode for GPIO_EXIT.
572 +* (% style="color:blue" %)**AT Command:**
944 944  
945 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
574 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
946 946  
947 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
948 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
949 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
950 -0
951 -OK
952 -the mode is 0 =Disable Interrupt
953 -)))
954 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
955 -Set Transmit Interval
956 -0. (Disable Interrupt),
957 -~1. (Trigger by rising and falling edge)
958 -2. (Trigger by falling edge)
959 -3. (Trigger by rising edge)
960 -)))|(% style="width:157px" %)OK
961 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
962 -Set Transmit Interval
576 +* When min=0, and max≠0, Alarm higher than max
577 +* When min≠0, and max=0, Alarm lower than min
578 +* When min≠0 and max≠0, Alarm higher than max or lower than min
963 963  
964 -trigger by rising edge.
965 -)))|(% style="width:157px" %)OK
966 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
580 +Example:
967 967  
968 -(% style="color:blue" %)**Downlink Command: 0x06**
582 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
969 969  
970 -Format: Command Code (0x06) followed by 3 bytes.
584 +* (% style="color:blue" %)**Downlink Payload:**
971 971  
972 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
586 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
973 973  
974 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
975 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
976 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
977 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
588 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
978 978  
979 -=== ===
980 980  
981 -=== 3.3.4 Set Power Output Duration ===
591 +=== 3.3.4 Set Humidity Alarm Threshold ===
982 982  
983 -Control the output duration 5V . Before each sampling, device will
593 +* (% style="color:blue" %)**AT Command:**
984 984  
985 -~1. first enable the power output to external sensor,
595 +(% style="color:#037691" %)**AT+SHHUM=min,max**
986 986  
987 -2. keep it on as per duration, read sensor value and construct uplink payload
597 +* When min=0, and max≠0, Alarm higher than max
598 +* When min≠0, and max=0, Alarm lower than min
599 +* When min≠0 and max≠0, Alarm higher than max or lower than min
988 988  
989 -3. final, close the power output.
601 +Example:
990 990  
991 -(% style="color:blue" %)**AT Command: AT+5VT**
603 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
992 992  
993 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
994 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
995 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
996 -500(default)
605 +* (% style="color:blue" %)**Downlink Payload:**
997 997  
998 -OK
999 -)))
1000 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1001 -Close after a delay of 1000 milliseconds.
1002 -)))|(% style="width:157px" %)OK
607 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
1003 1003  
1004 -(% style="color:blue" %)**Downlink Command: 0x07**
609 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
1005 1005  
1006 -Format: Command Code (0x07) followed by 2 bytes.
1007 1007  
1008 -The first and second bytes are the time to turn on.
612 +=== 3.3.5 Set Alarm Interval ===
1009 1009  
1010 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1011 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
614 +The shortest time of two Alarm packet. (unit: min)
1012 1012  
1013 -=== ===
616 +* (% style="color:blue" %)**AT Command:**
1014 1014  
1015 -=== 3.3.5 Set Weighing parameters ===
618 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
1016 1016  
1017 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
620 +* (% style="color:blue" %)**Downlink Payload:**
1018 1018  
1019 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
622 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
1020 1020  
1021 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1022 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1023 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1024 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1025 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1026 1026  
1027 -(% style="color:blue" %)**Downlink Command: 0x08**
625 +=== 3.3.6 Get Alarm settings ===
1028 1028  
1029 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1030 1030  
1031 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
628 +Send a LoRaWAN downlink to ask device send Alarm settings.
1032 1032  
1033 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
630 +* (% style="color:#037691" %)**Downlink Payload **(%%)0x0E 01
1034 1034  
1035 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1036 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1037 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
632 +**Example:**
1038 1038  
1039 -=== ===
634 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1040 1040  
1041 -=== 3.3.6 Set Digital pulse count value ===
1042 1042  
1043 -Feature: Set the pulse count value.
637 +**Explain:**
1044 1044  
1045 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
639 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1046 1046  
1047 -(% style="color:blue" %)**AT Command: AT+SETCNT**
641 +=== 3.3.7 Set Interrupt Mode ===
1048 1048  
1049 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1050 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1051 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1052 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1053 1053  
1054 -(% style="color:blue" %)**Downlink Command: 0x09**
644 +Feature, Set Interrupt mode for GPIO_EXIT.
1055 1055  
1056 -Format: Command Code (0x09) followed by 5 bytes.
646 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1057 1057  
1058 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1059 -
1060 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1061 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1062 -
1063 -=== ===
1064 -
1065 -=== 3.3.7 Set Workmode ===
1066 -
1067 -Feature: Switch working mode.
1068 -
1069 -(% style="color:blue" %)**AT Command: AT+MOD**
1070 -
1071 1071  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1072 1072  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1073 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
650 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
651 +0
1074 1074  OK
653 +the mode is 0 =Disable Interrupt
1075 1075  )))
1076 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1077 -OK
655 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
656 +Set Transmit Interval
657 +0. (Disable Interrupt),
658 +~1. (Trigger by rising and falling edge)
659 +2. (Trigger by falling edge)
660 +3. (Trigger by rising edge)
661 +)))|(% style="width:157px" %)OK
1078 1078  
1079 -Attention:Take effect after ATZ
1080 -)))
663 +(% style="color:blue" %)**Downlink Command: 0x06**
1081 1081  
1082 -(% style="color:blue" %)**Downlink Command: 0x0A**
665 +Format: Command Code (0x06) followed by 3 bytes.
1083 1083  
1084 -Format: Command Code (0x0A) followed by 1 bytes.
667 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1085 1085  
1086 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1087 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
669 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
670 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1088 1088  
1089 -= =
1090 -
1091 1091  = 4. Battery & Power Consumption =
1092 1092  
1093 1093  
... ... @@ -1116,10 +1116,7 @@
1116 1116  
1117 1117  = 6. FAQ =
1118 1118  
1119 -== 6.1 Where can i find source code of SN50v3-LB? ==
1120 1120  
1121 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1122 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1123 1123  
1124 1124  = 7. Order Info =
1125 1125  
... ... @@ -1161,4 +1161,4 @@
1161 1161  
1162 1162  
1163 1163  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1164 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
742 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0