Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -30,6 +30,7 @@ 30 30 31 31 == 1.2 Features == 32 32 33 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -40,6 +40,8 @@ 40 40 * Downlink to change configure 41 41 * 8500mAh Battery for long term use 42 42 44 + 45 + 43 43 == 1.3 Specification == 44 44 45 45 ... ... @@ -77,6 +77,8 @@ 77 77 * Sleep Mode: 5uA @ 3.3v 78 78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 79 79 83 + 84 + 80 80 == 1.4 Sleep mode and working mode == 81 81 82 82 ... ... @@ -104,6 +104,8 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 112 + 113 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -289,6 +289,8 @@ 289 289 1. All modes share the same Payload Explanation from HERE. 290 290 1. By default, the device will send an uplink message every 20 minutes. 291 291 299 + 300 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -295,7 +295,7 @@ 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**307 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 299 299 |**Value**|Bat|(% style="width:191px" %)((( 300 300 Temperature(DS18B20)(PC13) 301 301 )))|(% style="width:78px" %)((( ... ... @@ -311,12 +311,14 @@ 311 311 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 312 312 313 313 323 + 314 314 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 315 315 326 + 316 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 317 317 318 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 319 -|(% style=" width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 320 320 |**Value**|BAT|(% style="width:196px" %)((( 321 321 Temperature(DS18B20)(PC13) 322 322 )))|(% style="width:87px" %)((( ... ... @@ -325,15 +325,18 @@ 325 325 Digital in(PB15) & Digital Interrupt(PA8) 326 326 )))|(% style="width:208px" %)((( 327 327 Distance measure by:1) LIDAR-Lite V3HP 328 -Or 2) Ultrasonic Sensor 339 +Or 340 +2) Ultrasonic Sensor 329 329 )))|(% style="width:117px" %)Reserved 330 330 331 331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 332 332 345 + 333 333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 334 334 335 335 [[image:image-20230512173758-5.png||height="563" width="712"]] 336 336 350 + 337 337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 338 338 339 339 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. ... ... @@ -340,10 +340,11 @@ 340 340 341 341 [[image:image-20230512173903-6.png||height="596" width="715"]] 342 342 357 + 343 343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 344 344 345 345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 346 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**361 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 347 347 |**Value**|BAT|(% style="width:183px" %)((( 348 348 Temperature(DS18B20)(PC13) 349 349 )))|(% style="width:173px" %)((( ... ... @@ -358,6 +358,7 @@ 358 358 359 359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 360 360 376 + 361 361 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 362 362 363 363 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. ... ... @@ -364,6 +364,7 @@ 364 364 365 365 [[image:image-20230512180609-7.png||height="555" width="802"]] 366 366 383 + 367 367 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 368 368 369 369 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. ... ... @@ -373,12 +373,13 @@ 373 373 374 374 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 375 375 393 + 376 376 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 377 377 378 378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 379 379 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 380 380 **Size(bytes)** 381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 40px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1399 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 382 382 |**Value**|(% style="width:68px" %)((( 383 383 ADC1(PA4) 384 384 )))|(% style="width:75px" %)((( ... ... @@ -402,7 +402,7 @@ 402 402 This mode has total 11 bytes. As shown below: 403 403 404 404 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 405 -|(% style=" width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**423 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 406 406 |**Value**|BAT|(% style="width:186px" %)((( 407 407 Temperature1(DS18B20)(PC13) 408 408 )))|(% style="width:82px" %)((( ... ... @@ -417,8 +417,10 @@ 417 417 [[image:image-20230513134006-1.png||height="559" width="736"]] 418 418 419 419 438 + 420 420 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 421 421 441 + 422 422 [[image:image-20230512164658-2.png||height="532" width="729"]] 423 423 424 424 Each HX711 need to be calibrated before used. User need to do below two steps: ... ... @@ -427,6 +427,9 @@ 427 427 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 428 428 1. ((( 429 429 Weight has 4 bytes, the unit is g. 450 + 451 + 452 + 430 430 ))) 431 431 432 432 For example: ... ... @@ -437,26 +437,25 @@ 437 437 438 438 Check the response of this command and adjust the value to match the real value for thing. 439 439 440 -(% style="width: 767px" %)441 -|=((( 463 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 464 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 442 442 **Size(bytes)** 443 -)))|=**2**|=(% style="width: 1 93px;" %)**2**|=(% style="width:85px;" %)**2**|=(% style="width:186px;" %)**1**|=(% style="width:100px;" %)**4**466 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 444 444 |**Value**|BAT|(% style="width:193px" %)((( 445 -Temperature(DS18B20) 446 -(PC13) 468 +Temperature(DS18B20)(PC13) 447 447 )))|(% style="width:85px" %)((( 448 -ADC 449 -(PA4) 470 +ADC(PA4) 450 450 )))|(% style="width:186px" %)((( 451 -Digital in(PB15) & 452 -Digital Interrupt(PA8) 472 +Digital in(PB15) & Digital Interrupt(PA8) 453 453 )))|(% style="width:100px" %)Weight 454 454 455 455 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 456 456 457 457 478 + 458 458 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 459 459 481 + 460 460 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 461 461 462 462 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -463,40 +463,37 @@ 463 463 464 464 [[image:image-20230512181814-9.png||height="543" width="697"]] 465 465 466 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 467 467 468 -(% style="width:961px" %) 469 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 470 -|**Value**|BAT|(% style="width:256px" %)((( 471 -Temperature(DS18B20) 489 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 472 472 473 -(PC13) 491 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 492 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 493 +|**Value**|BAT|(% style="width:256px" %)((( 494 +Temperature(DS18B20)(PC13) 474 474 )))|(% style="width:108px" %)((( 475 -ADC 476 -(PA4) 496 +ADC(PA4) 477 477 )))|(% style="width:126px" %)((( 478 -Digital in 479 -(PB15) 498 +Digital in(PB15) 480 480 )))|(% style="width:145px" %)((( 481 -Count 482 -(PA8) 500 +Count(PA8) 483 483 ))) 484 484 485 485 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 486 486 487 487 506 + 488 488 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 489 489 490 -(% style="width:1108px" %) 491 -|=((( 509 + 510 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 511 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 492 492 **Size(bytes)** 493 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width:83px;" %)**2**|=(% style="width:184px;" %)**1**|=(% style="width:186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width:100px;" %)2513 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 494 494 |**Value**|BAT|(% style="width:188px" %)((( 495 495 Temperature(DS18B20) 496 496 (PC13) 497 497 )))|(% style="width:83px" %)((( 498 -ADC 499 -(PA5) 518 +ADC(PA5) 500 500 )))|(% style="width:184px" %)((( 501 501 Digital Interrupt1(PA8) 502 502 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -503,26 +503,25 @@ 503 503 504 504 [[image:image-20230513111203-7.png||height="324" width="975"]] 505 505 525 + 506 506 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 507 507 508 -(% style="width:922px" %) 509 -|=((( 528 + 529 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 530 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 510 510 **Size(bytes)** 511 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2532 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 512 512 |**Value**|BAT|(% style="width:207px" %)((( 513 513 Temperature(DS18B20) 514 514 (PC13) 515 515 )))|(% style="width:94px" %)((( 516 -ADC1 517 -(PA4) 537 +ADC1(PA4) 518 518 )))|(% style="width:198px" %)((( 519 519 Digital Interrupt(PB15) 520 520 )))|(% style="width:84px" %)((( 521 -ADC2 522 -(PA5) 541 +ADC2(PA5) 523 523 )))|(% style="width:82px" %)((( 524 -ADC3 525 -(PA8) 543 +ADC3(PA8) 526 526 ))) 527 527 528 528 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -530,50 +530,50 @@ 530 530 531 531 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 532 532 533 -(% style="width:1010px" %) 534 -|=((( 551 + 552 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 553 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 535 535 **Size(bytes)** 536 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4555 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 537 537 |**Value**|BAT|((( 538 -Temperature 1(DS18B20)539 -(PC13) 557 +Temperature 558 +(DS18B20)(PC13) 540 540 )))|((( 541 -Temperature2 (DS18B20)542 -(PB9) 560 +Temperature2 561 +(DS18B20)(PB9) 543 543 )))|((( 544 544 Digital Interrupt 545 545 (PB15) 546 546 )))|(% style="width:193px" %)((( 547 -Temperature3 (DS18B20)548 -(PB8) 566 +Temperature3 567 +(DS18B20)(PB8) 549 549 )))|(% style="width:78px" %)((( 550 -Count1 551 -(PA8) 569 +Count1(PA8) 552 552 )))|(% style="width:78px" %)((( 553 -Count2 554 -(PA4) 571 +Count2(PA4) 555 555 ))) 556 556 557 557 [[image:image-20230513111255-9.png||height="341" width="899"]] 558 558 559 -**The newly added AT command is issued correspondingly:** 576 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 560 560 561 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**578 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 562 562 563 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**580 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 564 564 565 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**582 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 566 566 567 -**AT+SETCNT=aa,bb** 568 568 585 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 586 + 569 569 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 570 570 571 571 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 572 572 573 573 574 - 575 575 === 2.3.3 Decode payload === 576 576 594 + 577 577 While using TTN V3 network, you can add the payload format to decode the payload. 578 578 579 579 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -585,6 +585,7 @@ 585 585 586 586 ==== 2.3.3.1 Battery Info ==== 587 587 606 + 588 588 Check the battery voltage for SN50v3. 589 589 590 590 Ex1: 0x0B45 = 2885mV ... ... @@ -594,16 +594,18 @@ 594 594 595 595 ==== 2.3.3.2 Temperature (DS18B20) ==== 596 596 616 + 597 597 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 598 598 599 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]619 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 600 600 601 -**Connection:** 621 +(% style="color:blue" %)**Connection:** 602 602 603 603 [[image:image-20230512180718-8.png||height="538" width="647"]] 604 604 605 -**Example**: 606 606 626 +(% style="color:blue" %)**Example**: 627 + 607 607 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 608 608 609 609 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -613,6 +613,7 @@ 613 613 614 614 ==== 2.3.3.3 Digital Input ==== 615 615 637 + 616 616 The digital input for pin PB15, 617 617 618 618 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -622,11 +622,14 @@ 622 622 ((( 623 623 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 624 624 625 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 647 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 648 + 649 + 626 626 ))) 627 627 628 628 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 629 629 654 + 630 630 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 631 631 632 632 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -633,17 +633,19 @@ 633 633 634 634 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 635 635 636 -(% style="color:red" %)**Note: **If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.661 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 637 637 638 638 639 639 ==== 2.3.3.5 Digital Interrupt ==== 640 640 666 + 641 641 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 642 642 643 -(% style="color:blue" %)** ~Interrupt connection method:**669 +(% style="color:blue" %)** Interrupt connection method:** 644 644 645 645 [[image:image-20230513105351-5.png||height="147" width="485"]] 646 646 673 + 647 647 (% style="color:blue" %)**Example to use with door sensor :** 648 648 649 649 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -652,8 +652,9 @@ 652 652 653 653 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 654 654 655 -(% style="color:blue" %)**~ Below is the installation example:** 656 656 683 +(% style="color:blue" %)**Below is the installation example:** 684 + 657 657 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 658 658 659 659 * ((( ... ... @@ -665,7 +665,7 @@ 665 665 666 666 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 667 667 668 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 696 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 669 669 670 670 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 671 671 ... ... @@ -677,12 +677,13 @@ 677 677 678 678 The command is: 679 679 680 -(% style="color:blue" %)**AT+INTMOD1=1 708 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 681 681 682 682 Below shows some screen captures in TTN V3: 683 683 684 684 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 685 685 714 + 686 686 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 687 687 688 688 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; ... ... @@ -690,6 +690,7 @@ 690 690 691 691 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 692 692 722 + 693 693 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 694 694 695 695 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. ... ... @@ -718,23 +718,26 @@ 718 718 719 719 ==== 2.3.3.7 Distance Reading ==== 720 720 721 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 722 722 752 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 723 723 754 + 724 724 ==== 2.3.3.8 Ultrasonic Sensor ==== 725 725 757 + 726 726 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 727 727 728 728 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 729 729 730 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 762 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 731 731 732 732 The picture below shows the connection: 733 733 734 734 [[image:image-20230512173903-6.png||height="596" width="715"]] 735 735 736 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 737 737 769 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 770 + 738 738 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 739 739 740 740 **Example:** ... ... @@ -742,14 +742,15 @@ 742 742 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 743 743 744 744 745 - 746 746 ==== 2.3.3.9 Battery Output - BAT pin ==== 747 747 780 + 748 748 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 749 749 750 750 751 751 ==== 2.3.3.10 +5V Output ==== 752 752 786 + 753 753 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 754 754 755 755 The 5V output time can be controlled by AT Command. ... ... @@ -761,18 +761,20 @@ 761 761 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 762 762 763 763 764 - 765 765 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 766 766 800 + 767 767 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 768 768 769 769 [[image:image-20230512172447-4.png||height="416" width="712"]] 770 770 805 + 771 771 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 772 772 773 773 774 774 ==== 2.3.3.12 Working MOD ==== 775 775 811 + 776 776 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 777 777 778 778 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -801,7 +801,6 @@ 801 801 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 802 802 803 803 804 - 805 805 == 2.5 Frequency Plans == 806 806 807 807 ... ... @@ -821,6 +821,8 @@ 821 821 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 822 822 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 823 823 859 + 860 + 824 824 == 3.2 General Commands == 825 825 826 826 ... ... @@ -842,6 +842,7 @@ 842 842 843 843 === 3.3.1 Set Transmit Interval Time === 844 844 882 + 845 845 Feature: Change LoRaWAN End Node Transmit Interval. 846 846 847 847 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -871,6 +871,7 @@ 871 871 872 872 === 3.3.2 Get Device Status === 873 873 912 + 874 874 Send a LoRaWAN downlink to ask the device to send its status. 875 875 876 876 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 ... ... @@ -880,6 +880,7 @@ 880 880 881 881 === 3.3.3 Set Interrupt Mode === 882 882 922 + 883 883 Feature, Set Interrupt mode for GPIO_EXIT. 884 884 885 885 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -920,6 +920,7 @@ 920 920 921 921 === 3.3.4 Set Power Output Duration === 922 922 963 + 923 923 Control the output duration 5V . Before each sampling, device will 924 924 925 925 ~1. first enable the power output to external sensor, ... ... @@ -953,6 +953,7 @@ 953 953 954 954 === 3.3.5 Set Weighing parameters === 955 955 997 + 956 956 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 957 957 958 958 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -979,6 +979,7 @@ 979 979 980 980 === 3.3.6 Set Digital pulse count value === 981 981 1024 + 982 982 Feature: Set the pulse count value. 983 983 984 984 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1003,6 +1003,7 @@ 1003 1003 1004 1004 === 3.3.7 Set Workmode === 1005 1005 1049 + 1006 1006 Feature: Switch working mode. 1007 1007 1008 1008 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1052,13 +1052,18 @@ 1052 1052 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1053 1053 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1054 1054 1099 + 1100 + 1055 1055 = 6. FAQ = 1056 1056 1057 1057 == 6.1 Where can i find source code of SN50v3-LB? == 1058 1058 1105 + 1059 1059 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1060 1060 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1061 1061 1109 + 1110 + 1062 1062 = 7. Order Info = 1063 1063 1064 1064 ... ... @@ -1082,8 +1082,11 @@ 1082 1082 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1083 1083 * (% style="color:red" %)**NH**(%%): No Hole 1084 1084 1134 + 1135 + 1085 1085 = 8. Packing Info = 1086 1086 1138 + 1087 1087 (% style="color:#037691" %)**Package Includes**: 1088 1088 1089 1089 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1095,6 +1095,8 @@ 1095 1095 * Package Size / pcs : cm 1096 1096 * Weight / pcs : g 1097 1097 1150 + 1151 + 1098 1098 = 9. Support = 1099 1099 1100 1100