Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
Uploaded new attachment "image-20230810121434-1.png", version {1}
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 5 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Edwin - Content
-
... ... @@ -30,6 +30,7 @@ 30 30 31 31 == 1.2 Features == 32 32 33 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -40,6 +40,8 @@ 40 40 * Downlink to change configure 41 41 * 8500mAh Battery for long term use 42 42 44 + 45 + 43 43 == 1.3 Specification == 44 44 45 45 ... ... @@ -77,6 +77,8 @@ 77 77 * Sleep Mode: 5uA @ 3.3v 78 78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 79 79 83 + 84 + 80 80 == 1.4 Sleep mode and working mode == 81 81 82 82 ... ... @@ -104,6 +104,8 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 112 + 113 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 513102034-2.png]]132 +[[image:image-20230610163213-1.png||height="404" width="699"]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -135,7 +135,7 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== Hole Option == 145 +== 1.9 Hole Option == 139 139 140 140 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.168 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 217 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -215,44 +215,44 @@ 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 217 217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 218 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT225 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 219 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: 228 228 229 - *0x01: EU868236 +0x01: EU868 230 230 231 - *0x02: US915238 +0x02: US915 232 232 233 - *0x03: IN865240 +0x03: IN865 234 234 235 - *0x04: AU915242 +0x04: AU915 236 236 237 - *0x05: KZ865244 +0x05: KZ865 238 238 239 - *0x06: RU864246 +0x06: RU864 240 240 241 - *0x07: AS923248 +0x07: AS923 242 242 243 - *0x08: AS923-1250 +0x08: AS923-1 244 244 245 - *0x09: AS923-2252 +0x09: AS923-2 246 246 247 - *0x0a: AS923-3254 +0x0a: AS923-3 248 248 249 - *0x0b: CN470256 +0x0b: CN470 250 250 251 - *0x0c: EU433258 +0x0c: EU433 252 252 253 - *0x0d: KR920260 +0x0d: KR920 254 254 255 - *0x0e: MA869262 +0x0e: MA869 256 256 257 257 258 258 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -276,19 +276,22 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 286 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 290 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 295 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 291 291 297 +2. All modes share the same Payload Explanation from HERE. 298 + 299 +3. By default, the device will send an uplink message every 20 minutes. 300 + 301 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -295,8 +295,8 @@ 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**299 -| **Value**|Bat|(% style="width:191px" %)(((308 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 309 +|Value|Bat|(% style="width:191px" %)((( 300 300 Temperature(DS18B20)(PC13) 301 301 )))|(% style="width:78px" %)((( 302 302 ADC(PA4) ... ... @@ -313,11 +313,12 @@ 313 313 314 314 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 315 315 326 + 316 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 317 317 318 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 319 -|(% style=" width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**320 -| **Value**|BAT|(% style="width:196px" %)(((330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 +|Value|BAT|(% style="width:196px" %)((( 321 321 Temperature(DS18B20)(PC13) 322 322 )))|(% style="width:87px" %)((( 323 323 ADC(PA4) ... ... @@ -324,27 +324,30 @@ 324 324 )))|(% style="width:189px" %)((( 325 325 Digital in(PB15) & Digital Interrupt(PA8) 326 326 )))|(% style="width:208px" %)((( 327 -Distance measure by:1) LIDAR-Lite V3HP 338 +Distance measure by: 1) LIDAR-Lite V3HP 328 328 Or 2) Ultrasonic Sensor 329 329 )))|(% style="width:117px" %)Reserved 330 330 331 331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 332 332 344 + 333 333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 334 334 335 335 [[image:image-20230512173758-5.png||height="563" width="712"]] 336 336 349 + 337 337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 338 338 339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 352 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 340 340 341 341 [[image:image-20230512173903-6.png||height="596" width="715"]] 342 342 356 + 343 343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 344 344 345 345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 346 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**347 -| **Value**|BAT|(% style="width:183px" %)(((360 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 361 +|Value|BAT|(% style="width:183px" %)((( 348 348 Temperature(DS18B20)(PC13) 349 349 )))|(% style="width:173px" %)((( 350 350 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -352,34 +352,36 @@ 352 352 ADC(PA4) 353 353 )))|(% style="width:323px" %)((( 354 354 Distance measure by:1)TF-Mini plus LiDAR 355 -Or 356 -2) TF-Luna LiDAR 369 +Or 2) TF-Luna LiDAR 357 357 )))|(% style="width:188px" %)Distance signal strength 358 358 359 359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 360 360 374 + 361 361 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 362 362 363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 364 364 365 365 [[image:image-20230512180609-7.png||height="555" width="802"]] 366 366 381 + 367 367 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 368 368 369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 384 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 370 370 371 -[[image:image-20230 513105207-4.png||height="469" width="802"]]386 +[[image:image-20230610170047-1.png||height="452" width="799"]] 372 372 373 373 374 374 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 375 375 391 + 376 376 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 377 377 378 378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 379 379 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 380 380 **Size(bytes)** 381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 40px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1382 -| **Value**|(% style="width:68px" %)(((397 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 398 +|Value|(% style="width:68px" %)((( 383 383 ADC1(PA4) 384 384 )))|(% style="width:75px" %)((( 385 385 ADC2(PA5) ... ... @@ -402,65 +402,65 @@ 402 402 This mode has total 11 bytes. As shown below: 403 403 404 404 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 405 -|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2** 406 -|**Value**|BAT|(% style="width:186px" %)((( 407 -Temperature1(DS18B20) 408 -(PC13) 421 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 422 +|Value|BAT|(% style="width:186px" %)((( 423 +Temperature1(DS18B20)(PC13) 409 409 )))|(% style="width:82px" %)((( 410 -ADC 411 -(PA4) 425 +ADC(PA4) 412 412 )))|(% style="width:210px" %)((( 413 -Digital in(PB15) & 414 -Digital Interrupt(PA8) 427 +Digital in(PB15) & Digital Interrupt(PA8) 415 415 )))|(% style="width:191px" %)Temperature2(DS18B20) 416 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 417 -(PB8) 429 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 418 418 419 419 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 420 420 433 + 421 421 [[image:image-20230513134006-1.png||height="559" width="736"]] 422 422 423 423 424 424 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 425 425 439 + 426 426 [[image:image-20230512164658-2.png||height="532" width="729"]] 427 427 428 428 Each HX711 need to be calibrated before used. User need to do below two steps: 429 429 430 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 431 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 444 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 445 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 432 432 1. ((( 433 433 Weight has 4 bytes, the unit is g. 448 + 449 + 450 + 434 434 ))) 435 435 436 436 For example: 437 437 438 -**AT+GETSENSORVALUE =0** 455 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 439 439 440 440 Response: Weight is 401 g 441 441 442 442 Check the response of this command and adjust the value to match the real value for thing. 443 443 444 -(% style="width: 767px" %)445 -|=((( 461 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 462 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 446 446 **Size(bytes)** 447 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4** 448 -|**Value**|BAT|(% style="width:193px" %)((( 449 -Temperature(DS18B20) 450 -(PC13) 464 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 465 +|Value|BAT|(% style="width:193px" %)((( 466 +Temperature(DS18B20)(PC13) 451 451 )))|(% style="width:85px" %)((( 452 -ADC 453 -(PA4) 468 +ADC(PA4) 454 454 )))|(% style="width:186px" %)((( 455 -Digital in(PB15) & 456 -Digital Interrupt(PA8) 470 +Digital in(PB15) & Digital Interrupt(PA8) 457 457 )))|(% style="width:100px" %)Weight 458 458 459 459 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 460 460 461 461 476 + 462 462 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 463 463 479 + 464 464 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 465 465 466 466 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -467,23 +467,19 @@ 467 467 468 468 [[image:image-20230512181814-9.png||height="543" width="697"]] 469 469 470 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 471 471 472 -(% style="width:961px" %) 473 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 474 -|**Value**|BAT|(% style="width:256px" %)((( 475 -Temperature(DS18B20) 487 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 476 476 477 -(PC13) 489 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 490 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 491 +|Value|BAT|(% style="width:256px" %)((( 492 +Temperature(DS18B20)(PC13) 478 478 )))|(% style="width:108px" %)((( 479 -ADC 480 -(PA4) 494 +ADC(PA4) 481 481 )))|(% style="width:126px" %)((( 482 -Digital in 483 -(PB15) 496 +Digital in(PB15) 484 484 )))|(% style="width:145px" %)((( 485 -Count 486 -(PA8) 498 +Count(PA8) 487 487 ))) 488 488 489 489 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] ... ... @@ -491,16 +491,16 @@ 491 491 492 492 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 493 493 494 -(% style="width:1108px" %) 495 -|=((( 506 + 507 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 508 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 496 496 **Size(bytes)** 497 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width:83px;" %)**2**|=(% style="width:184px;" %)**1**|=(% style="width:186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width:100px;" %)2498 -| **Value**|BAT|(% style="width:188px" %)(((510 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 511 +|Value|BAT|(% style="width:188px" %)((( 499 499 Temperature(DS18B20) 500 500 (PC13) 501 501 )))|(% style="width:83px" %)((( 502 -ADC 503 -(PA5) 515 +ADC(PA5) 504 504 )))|(% style="width:184px" %)((( 505 505 Digital Interrupt1(PA8) 506 506 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -507,26 +507,25 @@ 507 507 508 508 [[image:image-20230513111203-7.png||height="324" width="975"]] 509 509 522 + 510 510 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 511 511 512 -(% style="width:922px" %) 513 -|=((( 525 + 526 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 527 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 514 514 **Size(bytes)** 515 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2516 -| **Value**|BAT|(% style="width:207px" %)(((529 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 530 +|Value|BAT|(% style="width:207px" %)((( 517 517 Temperature(DS18B20) 518 518 (PC13) 519 519 )))|(% style="width:94px" %)((( 520 -ADC1 521 -(PA4) 534 +ADC1(PA4) 522 522 )))|(% style="width:198px" %)((( 523 523 Digital Interrupt(PB15) 524 524 )))|(% style="width:84px" %)((( 525 -ADC2 526 -(PA5) 538 +ADC2(PA5) 527 527 )))|(% style="width:82px" %)((( 528 -ADC3 529 -(PA8) 540 +ADC3(PA8) 530 530 ))) 531 531 532 532 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -534,50 +534,50 @@ 534 534 535 535 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 536 536 537 -(% style="width:1010px" %) 538 -|=((( 548 + 549 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 550 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 539 539 **Size(bytes)** 540 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4541 -| **Value**|BAT|(((542 -Temperature 1(DS18B20)543 -(PC13) 552 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 553 +|Value|BAT|((( 554 +Temperature 555 +(DS18B20)(PC13) 544 544 )))|((( 545 -Temperature2 (DS18B20)546 -(PB9) 557 +Temperature2 558 +(DS18B20)(PB9) 547 547 )))|((( 548 548 Digital Interrupt 549 549 (PB15) 550 550 )))|(% style="width:193px" %)((( 551 -Temperature3 (DS18B20)552 -(PB8) 563 +Temperature3 564 +(DS18B20)(PB8) 553 553 )))|(% style="width:78px" %)((( 554 -Count1 555 -(PA8) 566 +Count1(PA8) 556 556 )))|(% style="width:78px" %)((( 557 -Count2 558 -(PA4) 568 +Count2(PA4) 559 559 ))) 560 560 561 561 [[image:image-20230513111255-9.png||height="341" width="899"]] 562 562 563 -**The newly added AT command is issued correspondingly:** 573 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 564 564 565 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**575 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 566 566 567 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**577 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 568 568 569 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**579 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 570 570 571 -**AT+SETCNT=aa,bb** 572 572 582 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 583 + 573 573 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 574 574 575 575 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 576 576 577 577 578 - 579 579 === 2.3.3 Decode payload === 580 580 591 + 581 581 While using TTN V3 network, you can add the payload format to decode the payload. 582 582 583 583 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -584,13 +584,14 @@ 584 584 585 585 The payload decoder function for TTN V3 are here: 586 586 587 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 598 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 588 588 589 589 590 590 ==== 2.3.3.1 Battery Info ==== 591 591 592 -Check the battery voltage for SN50v3. 593 593 604 +Check the battery voltage for SN50v3-LB. 605 + 594 594 Ex1: 0x0B45 = 2885mV 595 595 596 596 Ex2: 0x0B49 = 2889mV ... ... @@ -598,16 +598,18 @@ 598 598 599 599 ==== 2.3.3.2 Temperature (DS18B20) ==== 600 600 613 + 601 601 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 602 602 603 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]616 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 604 604 605 -**Connection:** 618 +(% style="color:blue" %)**Connection:** 606 606 607 607 [[image:image-20230512180718-8.png||height="538" width="647"]] 608 608 609 -**Example**: 610 610 623 +(% style="color:blue" %)**Example**: 624 + 611 611 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 612 612 613 613 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -617,6 +617,7 @@ 617 617 618 618 ==== 2.3.3.3 Digital Input ==== 619 619 634 + 620 620 The digital input for pin PB15, 621 621 622 622 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -626,28 +626,34 @@ 626 626 ((( 627 627 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 628 628 629 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 644 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 645 + 646 + 630 630 ))) 631 631 632 632 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 633 633 634 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 635 635 636 - Whenthemeasuredoutput voltage of thesensorisnot withinthe rangeof0Vand1.1V,theoutputvoltageterminal of theensor shall be divided The example in the following figure istoreduce the output voltage of the sensorby three timesIf it is necessary toreduce moretimes,calculate according to the formula in the figure and connect the corresponding resistance in series.652 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 637 637 654 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 655 + 638 638 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 639 639 640 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 641 641 659 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 642 642 661 + 643 643 ==== 2.3.3.5 Digital Interrupt ==== 644 644 645 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 646 646 647 - (% style="color:blue"%)**~Interruptconnection method:**665 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 648 648 667 +(% style="color:blue" %)** Interrupt connection method:** 668 + 649 649 [[image:image-20230513105351-5.png||height="147" width="485"]] 650 650 671 + 651 651 (% style="color:blue" %)**Example to use with door sensor :** 652 652 653 653 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -654,22 +654,23 @@ 654 654 655 655 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 656 656 657 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.678 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 658 658 659 -(% style="color:blue" %)**~ Below is the installation example:** 660 660 661 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:681 +(% style="color:blue" %)**Below is the installation example:** 662 662 683 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 684 + 663 663 * ((( 664 -One pin to SN50 _v3's PA8 pin686 +One pin to SN50v3-LB's PA8 pin 665 665 ))) 666 666 * ((( 667 -The other pin to SN50 _v3's VDD pin689 +The other pin to SN50v3-LB's VDD pin 668 668 ))) 669 669 670 670 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 671 671 672 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 694 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 673 673 674 674 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 675 675 ... ... @@ -681,29 +681,32 @@ 681 681 682 682 The command is: 683 683 684 -(% style="color:blue" %)**AT+INTMOD1=1 706 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 685 685 686 686 Below shows some screen captures in TTN V3: 687 687 688 688 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 689 689 690 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 691 691 713 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 714 + 692 692 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 693 693 694 694 695 695 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 696 696 720 + 697 697 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 698 698 699 699 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 700 700 701 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.725 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 702 702 727 + 703 703 Below is the connection to SHT20/ SHT31. The connection is as below: 704 704 730 +[[image:image-20230610170152-2.png||height="501" width="846"]] 705 705 706 -[[image:image-20230513103633-3.png||height="448" width="716"]] 707 707 708 708 The device will be able to get the I2C sensor data now and upload to IoT Server. 709 709 ... ... @@ -722,23 +722,26 @@ 722 722 723 723 ==== 2.3.3.7 Distance Reading ==== 724 724 725 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 726 726 751 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 727 727 753 + 728 728 ==== 2.3.3.8 Ultrasonic Sensor ==== 729 729 756 + 730 730 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 731 731 732 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.759 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 733 733 734 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 761 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 735 735 736 736 The picture below shows the connection: 737 737 738 738 [[image:image-20230512173903-6.png||height="596" width="715"]] 739 739 740 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 741 741 768 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 769 + 742 742 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 743 743 744 744 **Example:** ... ... @@ -746,16 +746,17 @@ 746 746 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 747 747 748 748 749 - 750 750 ==== 2.3.3.9 Battery Output - BAT pin ==== 751 751 752 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 753 753 780 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 754 754 782 + 755 755 ==== 2.3.3.10 +5V Output ==== 756 756 757 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 758 758 786 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 787 + 759 759 The 5V output time can be controlled by AT Command. 760 760 761 761 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -762,21 +762,23 @@ 762 762 763 763 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 764 764 765 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 794 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 766 766 767 767 768 - 769 769 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 770 770 799 + 771 771 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 772 772 773 773 [[image:image-20230512172447-4.png||height="416" width="712"]] 774 774 804 + 775 775 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 776 776 777 777 778 778 ==== 2.3.3.12 Working MOD ==== 779 779 810 + 780 780 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 781 781 782 782 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -805,7 +805,6 @@ 805 805 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 806 806 807 807 808 - 809 809 == 2.5 Frequency Plans == 810 810 811 811 ... ... @@ -825,6 +825,8 @@ 825 825 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 826 826 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 827 827 858 + 859 + 828 828 == 3.2 General Commands == 829 829 830 830 ... ... @@ -841,17 +841,18 @@ 841 841 == 3.3 Commands special design for SN50v3-LB == 842 842 843 843 844 -These commands only valid for S3 1x-LB, as below:876 +These commands only valid for SN50v3-LB, as below: 845 845 846 846 847 847 === 3.3.1 Set Transmit Interval Time === 848 848 881 + 849 849 Feature: Change LoRaWAN End Node Transmit Interval. 850 850 851 851 (% style="color:blue" %)**AT Command: AT+TDC** 852 852 853 853 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 854 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 887 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 855 855 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 856 856 30000 857 857 OK ... ... @@ -875,21 +875,23 @@ 875 875 876 876 === 3.3.2 Get Device Status === 877 877 911 + 878 878 Send a LoRaWAN downlink to ask the device to send its status. 879 879 880 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01914 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 881 881 882 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 916 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 883 883 884 884 885 885 === 3.3.3 Set Interrupt Mode === 886 886 921 + 887 887 Feature, Set Interrupt mode for GPIO_EXIT. 888 888 889 889 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 890 890 891 891 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 892 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**927 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 893 893 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 894 894 0 895 895 OK ... ... @@ -904,7 +904,6 @@ 904 904 )))|(% style="width:157px" %)OK 905 905 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 906 906 Set Transmit Interval 907 - 908 908 trigger by rising edge. 909 909 )))|(% style="width:157px" %)OK 910 910 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -924,6 +924,7 @@ 924 924 925 925 === 3.3.4 Set Power Output Duration === 926 926 961 + 927 927 Control the output duration 5V . Before each sampling, device will 928 928 929 929 ~1. first enable the power output to external sensor, ... ... @@ -935,7 +935,7 @@ 935 935 (% style="color:blue" %)**AT Command: AT+5VT** 936 936 937 937 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 938 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**973 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 939 939 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 940 940 500(default) 941 941 OK ... ... @@ -957,12 +957,13 @@ 957 957 958 958 === 3.3.5 Set Weighing parameters === 959 959 995 + 960 960 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 961 961 962 962 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 963 963 964 964 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 965 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1001 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 966 966 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 967 967 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 968 968 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -983,6 +983,7 @@ 983 983 984 984 === 3.3.6 Set Digital pulse count value === 985 985 1022 + 986 986 Feature: Set the pulse count value. 987 987 988 988 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -990,7 +990,7 @@ 990 990 (% style="color:blue" %)**AT Command: AT+SETCNT** 991 991 992 992 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 993 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1030 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 994 994 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 995 995 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 996 996 ... ... @@ -1007,12 +1007,13 @@ 1007 1007 1008 1008 === 3.3.7 Set Workmode === 1009 1009 1047 + 1010 1010 Feature: Switch working mode. 1011 1011 1012 1012 (% style="color:blue" %)**AT Command: AT+MOD** 1013 1013 1014 1014 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1015 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1053 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1016 1016 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1017 1017 OK 1018 1018 ))) ... ... @@ -1042,27 +1042,37 @@ 1042 1042 1043 1043 1044 1044 (% class="wikigeneratedid" %) 1045 -User can change firmware SN50v3-LB to: 1083 +**User can change firmware SN50v3-LB to:** 1046 1046 1047 1047 * Change Frequency band/ region. 1048 1048 * Update with new features. 1049 1049 * Fix bugs. 1050 1050 1051 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1089 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]** 1052 1052 1091 +**Methods to Update Firmware:** 1053 1053 1054 -Methods to Update Firmware: 1093 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1094 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1055 1055 1056 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1057 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1058 1058 1097 + 1059 1059 = 6. FAQ = 1060 1060 1061 1061 == 6.1 Where can i find source code of SN50v3-LB? == 1062 1062 1102 + 1063 1063 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1064 1064 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1065 1065 1106 + 1107 + 1108 +== 6.2 How to generate PWM Output in SN50v3-LB? == 1109 + 1110 + 1111 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1112 + 1113 + 1066 1066 = 7. Order Info = 1067 1067 1068 1068 ... ... @@ -1086,8 +1086,11 @@ 1086 1086 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1087 1087 * (% style="color:red" %)**NH**(%%): No Hole 1088 1088 1137 + 1138 + 1089 1089 = 8. Packing Info = 1090 1090 1141 + 1091 1091 (% style="color:#037691" %)**Package Includes**: 1092 1092 1093 1093 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1099,6 +1099,8 @@ 1099 1099 * Package Size / pcs : cm 1100 1100 * Weight / pcs : g 1101 1101 1153 + 1154 + 1102 1102 = 9. Support = 1103 1103 1104 1104
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.3 KB - Content