<
From version < 43.26 >
edited by Xiaoling
on 2023/05/16 14:31
To version < 44.2 >
edited by Xiaoling
on 2023/05/18 08:57
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -30,6 +30,7 @@
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 +
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -276,19 +276,22 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
291 291  
291 +2. All modes share the same Payload Explanation from HERE.
292 +
293 +3. By default, the device will send an uplink message every 20 minutes.
294 +
295 +
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 294  
... ... @@ -295,7 +295,7 @@
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 297  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
302 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
299 299  |**Value**|Bat|(% style="width:191px" %)(((
300 300  Temperature(DS18B20)(PC13)
301 301  )))|(% style="width:78px" %)(((
... ... @@ -311,12 +311,14 @@
311 311  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
312 312  
313 313  
318 +
314 314  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315 315  
321 +
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 318  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
325 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
320 320  |**Value**|BAT|(% style="width:196px" %)(((
321 321  Temperature(DS18B20)(PC13)
322 322  )))|(% style="width:87px" %)(((
... ... @@ -325,25 +325,29 @@
325 325  Digital in(PB15) & Digital Interrupt(PA8)
326 326  )))|(% style="width:208px" %)(((
327 327  Distance measure by:1) LIDAR-Lite V3HP
328 -Or 2) Ultrasonic Sensor
334 +Or
335 +2) Ultrasonic Sensor
329 329  )))|(% style="width:117px" %)Reserved
330 330  
331 331  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 332  
340 +
333 333  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
334 334  
335 335  [[image:image-20230512173758-5.png||height="563" width="712"]]
336 336  
345 +
337 337  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
338 338  
339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
348 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
340 340  
341 341  [[image:image-20230512173903-6.png||height="596" width="715"]]
342 342  
352 +
343 343  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 344  
345 345  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
356 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
347 347  |**Value**|BAT|(% style="width:183px" %)(((
348 348  Temperature(DS18B20)(PC13)
349 349  )))|(% style="width:173px" %)(((
... ... @@ -358,15 +358,17 @@
358 358  
359 359  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
360 360  
371 +
361 361  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
362 362  
363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
374 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
364 364  
365 365  [[image:image-20230512180609-7.png||height="555" width="802"]]
366 366  
378 +
367 367  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
368 368  
369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
370 370  
371 371  [[image:image-20230513105207-4.png||height="469" width="802"]]
372 372  
... ... @@ -373,12 +373,13 @@
373 373  
374 374  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
375 375  
388 +
376 376  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377 377  
378 378  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
379 379  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
380 380  **Size(bytes)**
381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
394 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 382  |**Value**|(% style="width:68px" %)(((
383 383  ADC1(PA4)
384 384  )))|(% style="width:75px" %)(((
... ... @@ -402,19 +402,15 @@
402 402  This mode has total 11 bytes. As shown below:
403 403  
404 404  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
405 -|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
418 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
406 406  |**Value**|BAT|(% style="width:186px" %)(((
407 -Temperature1(DS18B20)
408 -(PC13)
420 +Temperature1(DS18B20)(PC13)
409 409  )))|(% style="width:82px" %)(((
410 -ADC
411 -(PA4)
422 +ADC(PA4)
412 412  )))|(% style="width:210px" %)(((
413 -Digital in(PB15) &
414 -Digital Interrupt(PA8) 
424 +Digital in(PB15) & Digital Interrupt(PA8) 
415 415  )))|(% style="width:191px" %)Temperature2(DS18B20)
416 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
417 -(PB8)
426 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
418 418  
419 419  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
420 420  
... ... @@ -421,46 +421,50 @@
421 421  [[image:image-20230513134006-1.png||height="559" width="736"]]
422 422  
423 423  
433 +
424 424  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
425 425  
436 +
426 426  [[image:image-20230512164658-2.png||height="532" width="729"]]
427 427  
428 428  Each HX711 need to be calibrated before used. User need to do below two steps:
429 429  
430 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
431 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
441 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
432 432  1. (((
433 433  Weight has 4 bytes, the unit is g.
445 +
446 +
447 +
434 434  )))
435 435  
436 436  For example:
437 437  
438 -**AT+GETSENSORVALUE =0**
452 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
439 439  
440 440  Response:  Weight is 401 g
441 441  
442 442  Check the response of this command and adjust the value to match the real value for thing.
443 443  
444 -(% style="width:767px" %)
445 -|=(((
458 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
459 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
446 446  **Size(bytes)**
447 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
461 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
448 448  |**Value**|BAT|(% style="width:193px" %)(((
449 -Temperature(DS18B20)
450 -(PC13)
463 +Temperature(DS18B20)(PC13)
451 451  )))|(% style="width:85px" %)(((
452 -ADC
453 -(PA4)
465 +ADC(PA4)
454 454  )))|(% style="width:186px" %)(((
455 -Digital in(PB15) &
456 -Digital Interrupt(PA8)
467 +Digital in(PB15) & Digital Interrupt(PA8)
457 457  )))|(% style="width:100px" %)Weight
458 458  
459 459  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
460 460  
461 461  
473 +
462 462  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
463 463  
476 +
464 464  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
465 465  
466 466  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -467,40 +467,37 @@
467 467  
468 468  [[image:image-20230512181814-9.png||height="543" width="697"]]
469 469  
470 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
471 471  
472 -(% style="width:961px" %)
473 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
474 -|**Value**|BAT|(% style="width:256px" %)(((
475 -Temperature(DS18B20)
484 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
476 476  
477 -(PC13)
486 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
488 +|**Value**|BAT|(% style="width:256px" %)(((
489 +Temperature(DS18B20)(PC13)
478 478  )))|(% style="width:108px" %)(((
479 -ADC
480 -(PA4)
491 +ADC(PA4)
481 481  )))|(% style="width:126px" %)(((
482 -Digital in
483 -(PB15)
493 +Digital in(PB15)
484 484  )))|(% style="width:145px" %)(((
485 -Count
486 -(PA8)
495 +Count(PA8)
487 487  )))
488 488  
489 489  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
490 490  
491 491  
501 +
492 492  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
493 493  
494 -(% style="width:1108px" %)
495 -|=(((
504 +
505 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
506 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
496 496  **Size(bytes)**
497 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
508 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
498 498  |**Value**|BAT|(% style="width:188px" %)(((
499 499  Temperature(DS18B20)
500 500  (PC13)
501 501  )))|(% style="width:83px" %)(((
502 -ADC
503 -(PA5)
513 +ADC(PA5)
504 504  )))|(% style="width:184px" %)(((
505 505  Digital Interrupt1(PA8)
506 506  )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
... ... @@ -507,26 +507,25 @@
507 507  
508 508  [[image:image-20230513111203-7.png||height="324" width="975"]]
509 509  
520 +
510 510  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
511 511  
512 -(% style="width:922px" %)
513 -|=(((
523 +
524 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
525 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
514 514  **Size(bytes)**
515 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
527 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
516 516  |**Value**|BAT|(% style="width:207px" %)(((
517 517  Temperature(DS18B20)
518 518  (PC13)
519 519  )))|(% style="width:94px" %)(((
520 -ADC1
521 -(PA4)
532 +ADC1(PA4)
522 522  )))|(% style="width:198px" %)(((
523 523  Digital Interrupt(PB15)
524 524  )))|(% style="width:84px" %)(((
525 -ADC2
526 -(PA5)
536 +ADC2(PA5)
527 527  )))|(% style="width:82px" %)(((
528 -ADC3
529 -(PA8)
538 +ADC3(PA8)
530 530  )))
531 531  
532 532  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -534,50 +534,50 @@
534 534  
535 535  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
536 536  
537 -(% style="width:1010px" %)
538 -|=(((
546 +
547 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
548 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
539 539  **Size(bytes)**
540 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
550 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
541 541  |**Value**|BAT|(((
542 -Temperature1(DS18B20)
543 -(PC13)
552 +Temperature
553 +(DS18B20)(PC13)
544 544  )))|(((
545 -Temperature2(DS18B20)
546 -(PB9)
555 +Temperature2
556 +(DS18B20)(PB9)
547 547  )))|(((
548 548  Digital Interrupt
549 549  (PB15)
550 550  )))|(% style="width:193px" %)(((
551 -Temperature3(DS18B20)
552 -(PB8)
561 +Temperature3
562 +(DS18B20)(PB8)
553 553  )))|(% style="width:78px" %)(((
554 -Count1
555 -(PA8)
564 +Count1(PA8)
556 556  )))|(% style="width:78px" %)(((
557 -Count2
558 -(PA4)
566 +Count2(PA4)
559 559  )))
560 560  
561 561  [[image:image-20230513111255-9.png||height="341" width="899"]]
562 562  
563 -**The newly added AT command is issued correspondingly:**
571 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
564 564  
565 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
573 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
566 566  
567 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
575 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
568 568  
569 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
577 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
570 570  
571 -**AT+SETCNT=aa,bb** 
572 572  
580 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
581 +
573 573  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
574 574  
575 575  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
576 576  
577 577  
578 -
579 579  === 2.3.3  ​Decode payload ===
580 580  
589 +
581 581  While using TTN V3 network, you can add the payload format to decode the payload.
582 582  
583 583  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -584,13 +584,14 @@
584 584  
585 585  The payload decoder function for TTN V3 are here:
586 586  
587 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
596 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
588 588  
589 589  
590 590  ==== 2.3.3.1 Battery Info ====
591 591  
592 -Check the battery voltage for SN50v3.
593 593  
602 +Check the battery voltage for SN50v3-LB.
603 +
594 594  Ex1: 0x0B45 = 2885mV
595 595  
596 596  Ex2: 0x0B49 = 2889mV
... ... @@ -598,16 +598,18 @@
598 598  
599 599  ==== 2.3.3.2  Temperature (DS18B20) ====
600 600  
611 +
601 601  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
602 602  
603 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
614 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
604 604  
605 -**Connection:**
616 +(% style="color:blue" %)**Connection:**
606 606  
607 607  [[image:image-20230512180718-8.png||height="538" width="647"]]
608 608  
609 -**Example**:
610 610  
621 +(% style="color:blue" %)**Example**:
622 +
611 611  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
612 612  
613 613  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -617,6 +617,7 @@
617 617  
618 618  ==== 2.3.3.3 Digital Input ====
619 619  
632 +
620 620  The digital input for pin PB15,
621 621  
622 622  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -626,11 +626,14 @@
626 626  (((
627 627  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
628 628  
629 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
642 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
643 +
644 +
630 630  )))
631 631  
632 632  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
633 633  
649 +
634 634  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
635 635  
636 636  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -637,17 +637,20 @@
637 637  
638 638  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
639 639  
640 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
641 641  
657 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
642 642  
659 +
643 643  ==== 2.3.3.5 Digital Interrupt ====
644 644  
645 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
646 646  
647 -(% style="color:blue" %)**~ Interrupt connection method:**
663 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
648 648  
665 +(% style="color:blue" %)** Interrupt connection method:**
666 +
649 649  [[image:image-20230513105351-5.png||height="147" width="485"]]
650 650  
669 +
651 651  (% style="color:blue" %)**Example to use with door sensor :**
652 652  
653 653  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -654,22 +654,23 @@
654 654  
655 655  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
656 656  
657 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
676 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
658 658  
659 -(% style="color:blue" %)**~ Below is the installation example:**
660 660  
661 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
679 +(% style="color:blue" %)**Below is the installation example:**
662 662  
681 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
682 +
663 663  * (((
664 -One pin to SN50_v3's PA8 pin
684 +One pin to SN50v3-LB's PA8 pin
665 665  )))
666 666  * (((
667 -The other pin to SN50_v3's VDD pin
687 +The other pin to SN50v3-LB's VDD pin
668 668  )))
669 669  
670 670  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
671 671  
672 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
692 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
673 673  
674 674  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
675 675  
... ... @@ -681,12 +681,13 @@
681 681  
682 682  The command is:
683 683  
684 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
704 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
685 685  
686 686  Below shows some screen captures in TTN V3:
687 687  
688 688  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
689 689  
710 +
690 690  In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
691 691  
692 692  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
... ... @@ -694,15 +694,16 @@
694 694  
695 695  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
696 696  
718 +
697 697  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
698 698  
699 699  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
700 700  
701 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
723 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
702 702  
725 +
703 703  Below is the connection to SHT20/ SHT31. The connection is as below:
704 704  
705 -
706 706  [[image:image-20230513103633-3.png||height="448" width="716"]]
707 707  
708 708  The device will be able to get the I2C sensor data now and upload to IoT Server.
... ... @@ -722,23 +722,26 @@
722 722  
723 723  ==== 2.3.3.7  ​Distance Reading ====
724 724  
725 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
726 726  
748 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
727 727  
750 +
728 728  ==== 2.3.3.8 Ultrasonic Sensor ====
729 729  
753 +
730 730  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
731 731  
732 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
756 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
733 733  
734 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
758 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
735 735  
736 736  The picture below shows the connection:
737 737  
738 738  [[image:image-20230512173903-6.png||height="596" width="715"]]
739 739  
740 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
741 741  
765 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
766 +
742 742  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
743 743  
744 744  **Example:**
... ... @@ -746,16 +746,17 @@
746 746  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
747 747  
748 748  
749 -
750 750  ==== 2.3.3.9  Battery Output - BAT pin ====
751 751  
776 +
752 752  The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
753 753  
754 754  
755 755  ==== 2.3.3.10  +5V Output ====
756 756  
757 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
758 758  
783 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
784 +
759 759  The 5V output time can be controlled by AT Command.
760 760  
761 761  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -765,18 +765,20 @@
765 765  By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
766 766  
767 767  
768 -
769 769  ==== 2.3.3.11  BH1750 Illumination Sensor ====
770 770  
796 +
771 771  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
772 772  
773 773  [[image:image-20230512172447-4.png||height="416" width="712"]]
774 774  
801 +
775 775  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
776 776  
777 777  
778 778  ==== 2.3.3.12  Working MOD ====
779 779  
807 +
780 780  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
781 781  
782 782  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -793,8 +793,6 @@
793 793  * 7: MOD8
794 794  * 8: MOD9
795 795  
796 -
797 -
798 798  == 2.4 Payload Decoder file ==
799 799  
800 800  
... ... @@ -805,7 +805,6 @@
805 805  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
806 806  
807 807  
808 -
809 809  == 2.5 Frequency Plans ==
810 810  
811 811  
... ... @@ -841,11 +841,12 @@
841 841  == 3.3 Commands special design for SN50v3-LB ==
842 842  
843 843  
844 -These commands only valid for S31x-LB, as below:
869 +These commands only valid for SN50v3-LB, as below:
845 845  
846 846  
847 847  === 3.3.1 Set Transmit Interval Time ===
848 848  
874 +
849 849  Feature: Change LoRaWAN End Node Transmit Interval.
850 850  
851 851  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -871,10 +871,9 @@
871 871  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
872 872  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
873 873  
874 -
875 -
876 876  === 3.3.2 Get Device Status ===
877 877  
902 +
878 878  Send a LoRaWAN downlink to ask the device to send its status.
879 879  
880 880  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
... ... @@ -884,6 +884,7 @@
884 884  
885 885  === 3.3.3 Set Interrupt Mode ===
886 886  
912 +
887 887  Feature, Set Interrupt mode for GPIO_EXIT.
888 888  
889 889  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
... ... @@ -904,7 +904,6 @@
904 904  )))|(% style="width:157px" %)OK
905 905  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
906 906  Set Transmit Interval
907 -
908 908  trigger by rising edge.
909 909  )))|(% style="width:157px" %)OK
910 910  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -920,10 +920,9 @@
920 920  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
921 921  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
922 922  
923 -
924 -
925 925  === 3.3.4 Set Power Output Duration ===
926 926  
950 +
927 927  Control the output duration 5V . Before each sampling, device will
928 928  
929 929  ~1. first enable the power output to external sensor,
... ... @@ -953,10 +953,9 @@
953 953  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
954 954  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
955 955  
956 -
957 -
958 958  === 3.3.5 Set Weighing parameters ===
959 959  
982 +
960 960  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
961 961  
962 962  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
... ... @@ -979,10 +979,9 @@
979 979  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
980 980  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
981 981  
982 -
983 -
984 984  === 3.3.6 Set Digital pulse count value ===
985 985  
1007 +
986 986  Feature: Set the pulse count value.
987 987  
988 988  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1003,10 +1003,9 @@
1003 1003  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1004 1004  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1005 1005  
1006 -
1007 -
1008 1008  === 3.3.7 Set Workmode ===
1009 1009  
1030 +
1010 1010  Feature: Switch working mode.
1011 1011  
1012 1012  (% style="color:blue" %)**AT Command: AT+MOD**
... ... @@ -1028,8 +1028,6 @@
1028 1028  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1029 1029  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1030 1030  
1031 -
1032 -
1033 1033  = 4. Battery & Power Consumption =
1034 1034  
1035 1035  
... ... @@ -1060,6 +1060,7 @@
1060 1060  
1061 1061  == 6.1 Where can i find source code of SN50v3-LB? ==
1062 1062  
1082 +
1063 1063  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1064 1064  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1065 1065  
... ... @@ -1088,6 +1088,7 @@
1088 1088  
1089 1089  = 8. ​Packing Info =
1090 1090  
1111 +
1091 1091  (% style="color:#037691" %)**Package Includes**:
1092 1092  
1093 1093  * SN50v3-LB LoRaWAN Generic Node
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0