<
From version < 43.26 >
edited by Xiaoling
on 2023/05/16 14:31
To version < 41.4 >
edited by Xiaoling
on 2023/05/16 10:42
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,15 +16,18 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
21 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
27 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
30 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
... ... @@ -42,7 +42,6 @@
42 42  
43 43  == 1.3 Specification ==
44 44  
45 -
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 48  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,7 +79,6 @@
79 79  
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 -
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -137,7 +137,6 @@
137 137  
138 138  == Hole Option ==
139 139  
140 -
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -291,21 +291,32 @@
291 291  
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 -
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
296 +(% style="width:1110px" %)
297 +|**Size(bytes)**|**2**|(% style="width:191px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**
299 299  |**Value**|Bat|(% style="width:191px" %)(((
300 -Temperature(DS18B20)(PC13)
299 +Temperature(DS18B20)
300 +
301 +(PC13)
301 301  )))|(% style="width:78px" %)(((
302 -ADC(PA4)
303 +ADC
304 +
305 +(PA4)
303 303  )))|(% style="width:216px" %)(((
304 -Digital in(PB15)&Digital Interrupt(PA8)
307 +Digital in(PB15) &
308 +
309 +Digital Interrupt(PA8)
310 +
311 +
305 305  )))|(% style="width:308px" %)(((
306 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
313 +Temperature
314 +
315 +(SHT20 or SHT31 or BH1750 Illumination Sensor)
307 307  )))|(% style="width:154px" %)(((
308 -Humidity(SHT20 or SHT31)
317 +Humidity
318 +
319 +(SHT20 or SHT31)
309 309  )))
310 310  
311 311  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
... ... @@ -315,26 +315,34 @@
315 315  
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
329 +(% style="width:1011px" %)
330 +|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
320 320  |**Value**|BAT|(% style="width:196px" %)(((
321 -Temperature(DS18B20)(PC13)
332 +Temperature(DS18B20)
333 +
334 +(PC13)
322 322  )))|(% style="width:87px" %)(((
323 -ADC(PA4)
336 +ADC
337 +
338 +(PA4)
324 324  )))|(% style="width:189px" %)(((
325 -Digital in(PB15) & Digital Interrupt(PA8)
340 +Digital in(PB15) &
341 +
342 +Digital Interrupt(PA8)
326 326  )))|(% style="width:208px" %)(((
327 -Distance measure by:1) LIDAR-Lite V3HP
328 -Or 2) Ultrasonic Sensor
344 +Distance measure by:
345 +1) LIDAR-Lite V3HP
346 +Or
347 +2) Ultrasonic Sensor
329 329  )))|(% style="width:117px" %)Reserved
330 330  
331 331  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 332  
333 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
352 +**Connection of LIDAR-Lite V3HP:**
334 334  
335 335  [[image:image-20230512173758-5.png||height="563" width="712"]]
336 336  
337 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
356 +**Connection to Ultrasonic Sensor:**
338 338  
339 339  Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
340 340  
... ... @@ -342,14 +342,20 @@
342 342  
343 343  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 344  
345 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
364 +(% style="width:1113px" %)
365 +|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
347 347  |**Value**|BAT|(% style="width:183px" %)(((
348 -Temperature(DS18B20)(PC13)
367 +Temperature(DS18B20)
368 +
369 +(PC13)
349 349  )))|(% style="width:173px" %)(((
350 -Digital in(PB15) & Digital Interrupt(PA8)
371 +Digital in(PB15) &
372 +
373 +Digital Interrupt(PA8)
351 351  )))|(% style="width:84px" %)(((
352 -ADC(PA4)
375 +ADC
376 +
377 +(PA4)
353 353  )))|(% style="width:323px" %)(((
354 354  Distance measure by:1)TF-Mini plus LiDAR
355 355  Or 
... ... @@ -375,22 +375,32 @@
375 375  
376 376  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377 377  
378 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
379 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
403 +(% style="width:1031px" %)
404 +|=(((
380 380  **Size(bytes)**
381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
406 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
382 382  |**Value**|(% style="width:68px" %)(((
383 -ADC1(PA4)
408 +ADC1
409 +
410 +(PA4)
384 384  )))|(% style="width:75px" %)(((
385 -ADC2(PA5)
412 +ADC2
413 +
414 +(PA5)
386 386  )))|(((
387 -ADC3(PA8)
416 +ADC3
417 +
418 +(PA8)
388 388  )))|(((
389 389  Digital Interrupt(PB15)
390 390  )))|(% style="width:304px" %)(((
391 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
422 +Temperature
423 +
424 +(SHT20 or SHT31 or BH1750 Illumination Sensor)
392 392  )))|(% style="width:163px" %)(((
393 -Humidity(SHT20 or SHT31)
426 +Humidity
427 +
428 +(SHT20 or SHT31)
394 394  )))|(% style="width:53px" %)Bat
395 395  
396 396  [[image:image-20230513110214-6.png]]
... ... @@ -401,16 +401,18 @@
401 401  
402 402  This mode has total 11 bytes. As shown below:
403 403  
404 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
405 -|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
439 +(% style="width:1017px" %)
440 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
406 406  |**Value**|BAT|(% style="width:186px" %)(((
407 407  Temperature1(DS18B20)
408 408  (PC13)
409 409  )))|(% style="width:82px" %)(((
410 410  ADC
446 +
411 411  (PA4)
412 412  )))|(% style="width:210px" %)(((
413 413  Digital in(PB15) &
450 +
414 414  Digital Interrupt(PA8) 
415 415  )))|(% style="width:191px" %)Temperature2(DS18B20)
416 416  (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
... ... @@ -447,12 +447,17 @@
447 447  )))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
448 448  |**Value**|BAT|(% style="width:193px" %)(((
449 449  Temperature(DS18B20)
487 +
450 450  (PC13)
489 +
490 +
451 451  )))|(% style="width:85px" %)(((
452 452  ADC
493 +
453 453  (PA4)
454 454  )))|(% style="width:186px" %)(((
455 455  Digital in(PB15) &
497 +
456 456  Digital Interrupt(PA8)
457 457  )))|(% style="width:100px" %)Weight
458 458  
... ... @@ -477,12 +477,15 @@
477 477  (PC13)
478 478  )))|(% style="width:108px" %)(((
479 479  ADC
522 +
480 480  (PA4)
481 481  )))|(% style="width:126px" %)(((
482 482  Digital in
526 +
483 483  (PB15)
484 484  )))|(% style="width:145px" %)(((
485 485  Count
530 +
486 486  (PA8)
487 487  )))
488 488  
... ... @@ -497,9 +497,11 @@
497 497  )))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
498 498  |**Value**|BAT|(% style="width:188px" %)(((
499 499  Temperature(DS18B20)
545 +
500 500  (PC13)
501 501  )))|(% style="width:83px" %)(((
502 502  ADC
549 +
503 503  (PA5)
504 504  )))|(% style="width:184px" %)(((
505 505  Digital Interrupt1(PA8)
... ... @@ -515,17 +515,21 @@
515 515  )))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
516 516  |**Value**|BAT|(% style="width:207px" %)(((
517 517  Temperature(DS18B20)
565 +
518 518  (PC13)
519 519  )))|(% style="width:94px" %)(((
520 520  ADC1
569 +
521 521  (PA4)
522 522  )))|(% style="width:198px" %)(((
523 523  Digital Interrupt(PB15)
524 524  )))|(% style="width:84px" %)(((
525 525  ADC2
575 +
526 526  (PA5)
527 527  )))|(% style="width:82px" %)(((
528 528  ADC3
579 +
529 529  (PA8)
530 530  )))
531 531  
... ... @@ -540,21 +540,27 @@
540 540  )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
541 541  |**Value**|BAT|(((
542 542  Temperature1(DS18B20)
594 +
543 543  (PC13)
544 544  )))|(((
545 545  Temperature2(DS18B20)
598 +
546 546  (PB9)
547 547  )))|(((
548 548  Digital Interrupt
602 +
549 549  (PB15)
550 550  )))|(% style="width:193px" %)(((
551 551  Temperature3(DS18B20)
606 +
552 552  (PB8)
553 553  )))|(% style="width:78px" %)(((
554 554  Count1
610 +
555 555  (PA8)
556 556  )))|(% style="width:78px" %)(((
557 557  Count2
614 +
558 558  (PA4)
559 559  )))
560 560  
... ... @@ -598,7 +598,7 @@
598 598  
599 599  ==== 2.3.3.2  Temperature (DS18B20) ====
600 600  
601 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
658 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
602 602  
603 603  More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
604 604  
... ... @@ -626,7 +626,7 @@
626 626  (((
627 627  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
628 628  
629 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
686 +**Note:**The maximum voltage input supports 3.6V.
630 630  )))
631 631  
632 632  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
... ... @@ -637,18 +637,17 @@
637 637  
638 638  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
639 639  
640 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
697 +**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
641 641  
642 -
643 643  ==== 2.3.3.5 Digital Interrupt ====
644 644  
645 645  Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
646 646  
647 -(% style="color:blue" %)**~ Interrupt connection method:**
703 +**~ Interrupt connection method:**
648 648  
649 649  [[image:image-20230513105351-5.png||height="147" width="485"]]
650 650  
651 -(% style="color:blue" %)**Example to use with door sensor :**
707 +**Example to use with door sensor :**
652 652  
653 653  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
654 654  
... ... @@ -656,7 +656,7 @@
656 656  
657 657  When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
658 658  
659 -(% style="color:blue" %)**~ Below is the installation example:**
715 +**~ Below is the installation example:**
660 660  
661 661  Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
662 662  
... ... @@ -681,7 +681,7 @@
681 681  
682 682  The command is:
683 683  
684 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
740 +**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
685 685  
686 686  Below shows some screen captures in TTN V3:
687 687  
... ... @@ -758,7 +758,7 @@
758 758  
759 759  The 5V output time can be controlled by AT Command.
760 760  
761 -(% style="color:blue" %)**AT+5VT=1000**
817 +**AT+5VT=1000**
762 762  
763 763  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
764 764  
... ... @@ -793,8 +793,6 @@
793 793  * 7: MOD8
794 794  * 8: MOD9
795 795  
796 -
797 -
798 798  == 2.4 Payload Decoder file ==
799 799  
800 800  
... ... @@ -938,6 +938,7 @@
938 938  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
939 939  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
940 940  500(default)
995 +
941 941  OK
942 942  )))
943 943  |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
... ... @@ -1018,6 +1018,7 @@
1018 1018  )))
1019 1019  |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1020 1020  OK
1076 +
1021 1021  Attention:Take effect after ATZ
1022 1022  )))
1023 1023  
... ... @@ -1103,5 +1103,4 @@
1103 1103  
1104 1104  
1105 1105  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1106 -
1107 1107  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0